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Summary

Immunotherapies have been traditionally applied in malignant melanoma,

which represent one of the most immunogenic tumours. Recently,

immune checkpoint modulation has shown high therapeutic efficacy and

may provide long-term survival in a significant proportion of affected

patients. T cells are the major players in tumour rejection and recognize

tumour cells predominantly in an MHC-dependent way. The immunopep-

tidome comprises the peptide repertoire presented by MHC class I and II

molecules on the surface of the body’s cells including tumour cells. To

understand characteristics of suitable rejection antigens as well as respec-

tive effective T-cell responses, determination of the immunopeptidome is

of utmost importance. Suitable rejection antigens need to be further char-

acterized and validated not only to systematically improve current thera-

peutic approaches, but also to develop individualized treatment options.

In this review, we report on current tools to explore the immunopep-

tidome in human melanoma and discuss current understanding and

future developments to specifically detect and select those antigens that

may be most relevant and promising for effective tumour rejection.

Keywords: immunogenicity; immunopeptidome; melanoma; T cells;

tumor antigens; tumor rejection.

Recognition of melanoma by the immune system

Malignant melanoma represents one of the most aggres-

sive but also highly immunogenic tumours, which has

traditionally been targeted by immunotherapies. High-risk

resectable melanoma has long been treated by the

immune-modulating cytokine interferon-a in an adjuvant

setting following surgery.1 Moreover, over a long period,

a high number of clinical immunotherapeutic approaches

have been tested in clinical studies aiming to specifically

stimulate T cells by vaccination or to target a defined

antigens by directed adoptive T-cell transfer.2,3 However,

the success of these approaches was either limited or

associated with major side effects.4,5 In contrast, high effi-

cacy of adoptive T-cell transfer of tumour-infiltrating

lymphocytes (TIL) with mainly unknown specificity was

reported repeatedly over a long period of time although

larger, phase three clinical trials were missing.6 The dis-

covery of immune checkpoints potentially exerting a

major inhibitory effect on tumour-reactive T cells was an

outstanding break-through in the emerging clinical appli-

cation of novel immunotherapies.7,8 Over the last decade,

immune checkpoint modulators became available pre-

venting exhaustion of endogenous T-cell populations with

unknown specificity and improving tumour-cell recogni-

tion by supporting T-cell priming and depletion of regu-

latory T cells in vivo.9 Immune-checkpoint-modulating

antibodies targeting the programmed death-1(PD-1)/ pro-

grammed death ligand-1(PD-L1) axis meanwhile repre-

sent standard therapies in the treatment of diverse

malignant diseases including melanoma, lung cancer,

renal cell carcinoma, and head and neck squamous cell

carcinoma, but also other malignant disease entities.10

These therapeutic agents have proven exceptionally effec-

tive in patients with melanoma,11 indicating that highly

suitable target structures for tumour rejection are pre-

sented on melanoma cells. The identification and under-

standing of the nature of such target structures and the

characterization of respective T-cell responses is of funda-

mental importance to improve current therapies not only

in melanoma but also in other malignant diseases.

The immunopeptidome represents the sum of peptide

ligands presented by the MHC class I and II complexes

on the body’s cells including tumour cells and therefore
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in principle recognizable by T cells (Box 1). Recognition

and elimination of target cells by T cells has been inten-

sively studied for decades accompanied by immunological

milestone discoveries such as MHC presenting antigenic

peptides potentially representing epitopes to be recog-

nized by T cells.12,13 Until now, numerous approaches

aimed at the mostly focused identification of immuno-

genic peptides suitable for further clinical application. In

this regard, a prime example for MHC-restricted antigen

recognition by T cells was the detection of foreign anti-

gens.13,14 Antigenic peptides derive from intracellularly

degraded exogenous or endogenous proteins processed by

the antigen-presenting machinery and presented by MHC

class II and I molecules as peptide–MHC complex,

respectively.15 T cells recognize such presented peptide

ligands by their T-cell receptor (TCR) and may subse-

quently eliminate target cells by a professional lytic

machinery.16–18 The precondition for this highly fine-

tuned recognition is thought to base on the co-evolution

of MHC genes and TCR genes.19,20 Education of the

immune cells in the thymus is an essential prerequisite

for the critical distinction between foreign and self and

therefore maintenance of self tolerance as recently

reviewed.21

Although recognition of tumour cells by the patient’s

immune system has been long-term propagated,22 routine

recognition of tumour cells was questioned over the years

and tolerance or ignorance of such transformed cells

seemed to be dominant in the discourse of the immune

system and cancer. Our understanding of the coherence

of cancer and the immune system has improved and

immune evasion has been recognized as one of the hall-

marks of cancer.23 Evolution of tumours under immune

pressure and immune editing has been determined as a

key element of immune evasion and subsequent tumour

progression.24 The tumour-related immunopeptidome is

also affected by such immune editing25,26 and characteris-

tics of peptide ligands suitable for effective tumour rejec-

tion may depend on a number of factors, such as

relevance of the source protein for cell survival,

dependence of peptide presentation on the antigen pre-

sentation machinery and affinity of the peptide towards

MHC.27 Otherwise, target recognition is highly dependent

on the relevant T-cell population and higher-affinity TCR

towards MHC–peptide may be more effective in tumour

cell rejection. Such TCR are generally observed against

non-self antigens or in the context of a non-educated T-

cell repertoire or mismatched MHC environment.28–30

Hence, definition of the quality and antigenicity of pep-

tide ligands presented by MHC is at least in part inevita-

bly associated with a defined T-cell population displaying

respective reactivity.

Target structures presented on melanoma cells

Melanoma has been identified as a tumour entity that is

potentially recognized by the immune system.31 Extensive

efforts of several groups have been aimed at the identifi-

cation of exactly those peptides of the immunopeptidome

rendering tumour cells immunogenic. The basis of these

efforts was primarily the presence of T cells within

peripheral blood mononuclear cells (PBMC) or TIL of

melanoma patients correlating with anti-tumour activity

in vitro or in vivo.32,33 Potential antigen candidates can be

assigned to two major classes, tumour-associated antigens

(TAA) and tumour-specific antigens (TSA) (Table 1).

TAA are antigens that might be dominantly presented by

malignant cells but may also exist in normal cells. Differ-

entiation antigens, as a subgroup of TAA, are representa-

tive for a defined cell type or tissue and eventually

expressed in tumours originating from these cells. Peptide

ligands derived from differentiation antigens in mela-

noma, such as gp100, MART1/Melan-A and tyrosi-

nase,34,35 may represent promising target structures

inducing also spontaneous immune responses in patients

with disease.36 Responses against these antigens have been

shown to be associated with vitiligo correlating with a

good prognosis in patients with melanoma.37 Another

class of TAA are represented by cancer-germline antigens

defined by exclusive expression in tumour and germline

tissue and thereby representing an attractive means for

targeting different tumour entities.38 In melanoma, a

number of cancer-germline antigens have been described,

such as NY-ESO-1 or members of the Melanoma antigen

encoding genes.39 However, vaccination strategies target-

ing both classes of TAA have shown only limited activity

so far.4,40,41 Limited efficacy of vaccination studies target-

ing this class of antigens may be associated with the lack

of high-avidity T-cell responses due to thymic negative

depletion. However, both classes of TAA may still repre-

sent attractive target antigens in a non-self immune envi-

ronment. Peptides derived from proteins that

quantitatively have higher expression in tumour cells

compared with normal cells represent another class of

TAA used for targeting in melanoma and other tumour

Box 1 Definition of the immunopeptidome

The immunopeptidome comprises the whole set of peptides rep-

resented on the cell surface in the context of MHC and recogniz-

able by T cells. Parts of the immunopeptidome are presented on

both, healthy and tumour cells. Tumour-specific peptide ligands

representing neoepitopes seem to significantly contribute to the

detectability of the tumour by the autologous immune system.

However, other target structures may serve as rejection antigens

depending on the source of T cells (autologous versus allogeneic/

xenogeneic) recognizing respective MHC–peptide ligands pre-

sented by tumour cells.
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entities,42 given Survivin as an example.43 Problems may

arise from proper quantification of gene or protein

expression in different cell types, especially in proteins

with highly dynamic expression as well as critical func-

tions in normal cells rendering them difficult targets,

especially in a non-self T-cell environment potentially

selected to improve efficacy.44 Another source of antigens

is represented by proteasome-generated spliced peptides

obviously representing a substantial part of the

immunopeptidome.45–48 However, cancer specificity and

a potential role for targeting in malignant diseases has so

far not been elucidated. The most attractive source of

antigens is currently estimated to be represented by TSA

or neoantigens not presented on normal cells (Table 1).

Mutated peptide antigens resulting from non-synon-

ymous point mutations are proposed to present an

important source of such target antigens.49 Mutations

may affect binding of peptides to respective MHC by

altered anchor residues or may lead to recognition of

affected amino acids by mutation-specific T cells.50 These

neoantigens represent highly attractive targets when these

peptides derive from public mutations,26 although they

may be also highly suitable for the design of personalized

therapies. Moreover, mutations may result in non-canoni-

cal reading frames additionally representing an important

source for neoantigens, as shown for autoimmune dis-

eases and cancer.51–56 In addition, post-translational mod-

ifications may produce aberrantly processed peptides

potentially representing neoantigens.57 So far, it is not

clear to what extent these diverse alterations and modifi-

cations resulting in neoantigens may contribute to the

immunopeptidome. However, the predominant role of

neoantigens resulting from mutations became obvious in

the context of data indicating a better response rate to

checkpoint modulation for those patients with tumours

with high mutational load, as observed in diverse disease

settings.58–60 In general, the high number of somatic

mutations, as well as the limited tumour heterogeneity, in

comparison to other malignant entities are most likely

key issues in the high and prolonged response rates

observed in patients with melanoma treated with immune

checkpoint modulators.61–63

Strategies for tumour antigen identification on
melanoma

Although all the diverse classes of antigens have been

described, it is currently unclear how widely they are pre-

sented. Moreover, their defined role as suitable rejection

antigens needs to be further clarified. Depending on the

origin of the antigen of interest, the focus is on the selec-

tion of the most potent rejection antigens in a personal-

ized approach or to be applied in a defined patient

collective. As described above, definition of suitable target

antigens also needs to be regarded in the context of the

T-cell repertoire that is therapeutically addressed. Early

approaches mainly focused on highly selective target iden-

tification based on tumour-reactive T cells and a number

Table 1. Classes of tumour antigens rendering melanoma cells immunogeneic

Classes of tumour antigens Description Examples Literature

Tumour-associated antigens (TAA)

Differentiation antigens Proteins mainly expressed in melanocytes

and melanoma cells

MART1/MELAN-A, gp100, tyrosinase 34, 121–123

Cancer germline antigens (CGA) Expression restricted to germline tissues

and various tumours

MAGE family, NY-ESO-1 67,124

Over-expressed antigens Antigens more highly expressed in malignant cells

in relation to healthy tissue

Survivin 43

Tumour-specific antigens (TSA)

Peptides containing mutations Peptide fragments exclusively expressed

in tumour cells due to genomic alterations

SNV ? aa exchange;

In/Del ? frame shifts;

Chromosomal rearrangement

? fused peptides

49, 66, 125–127

Peptides resulting from

non-canonical translation

Changes on the transcriptional level Alternative ORF; retained introns 54,55

Aberrantly spliced peptides Tumour-specific distinct proteasomal processing Fused peptides resulting from different

protein regions

45–48

Peptides derived from TAP- and

proteasome-independent pathways

Unconventional sources for peptides assembled

in the pMHC complex

TAP-independent pathway of

tyrosinase-derived signal sequence

128

Peptides containing tumour-specific

post-translational modifications

Aa modification after ribosomal translation Phosphorylation and deamidation 107,129

aa, amino acid; In/Del, Insertions/Deletions of one or two bases; MAGE, melanoma antigen encoding genes; ORF, open reading frame; SNV, sin-

gle nucleotide variant.
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of diverse techniques have been applied to identify such

antigens (Table 2). With respect to technical improve-

ments and implementation of high-throughput technolo-

gies, new methods aim to detect the most relevant target

antigens in a more personalized way and hence define

more general determinants for tumour rejection.

Direct immunology approach

For definition of target structures, TIL and PBMC from

patients with a favourable course are a highly attractive

source for subsequent identification of tumour antigens.

For direct identification of tumour rejection antigens, iso-

lated TIL or PBMC were co-cultured with tumour cells

without any knowledge of the defined target structure.

Lack of reactivity against autologous healthy control cells

hinted at tumour-specific determinants. Great progress

was made regarding the identification of specific target

structures by the development of tum– variants in combi-

nation with the preparation of cDNA libraries and subse-

quent identification of immunogenic epitopes.64,65

Subsequently, first TSA and TAA were detected in mela-

noma and characterized revealing marked tumour-direc-

ted T-cell responses.66–68

In concordance with the increasing number of identi-

fied targets, databases were established comprising identi-

fied relevant TAA.69,70 In addition databases such as the

immune epitope database (IEDB) were built, gathering

published information about the origin of the identified

epitopes and the results of functional analyses.71

Reverse immunology approach

The so-called reverse immunology approach comprises all

those methods identifying immunogenic tumour-derived

epitopes by the implementation of three sequential steps:

(i) the selection of antigen based on expression or

tumour relevance, (ii) prediction of putative antigens,

and (iii) experimental validation.72 For step (i), putative

antigen candidates are either selected by literature search

of previously described over-expressed antigens or based

on disease-specific expression profiles obtained from sin-

gle patients or a compilation of different patient samples.

As another possible starting point, proteins eliciting

autologous humoral immune responses in cancer patients

were identified by a recombinant expression cloning

(SEREX) approach73 and were then investigated with

regard to their potential as a T-cell-mediated target.29 As

a prerequisite for (ii), public in silico binding prediction

tools pave the way to broader application by the research

community. In the early 1990s, a first structural approach

for the provision of motifs was pursued for MHC class

I,74 followed by the identification of motifs for MHC

class II binding peptides.75 After proposals of several

motifs in the following years, these efforts resulted in the T
ab
le
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development of a first public database for peptide-binding

motifs.76 Currently, a constantly growing number of

binding prediction algorithms is available for both human

HLA and mouse MHC class I and II.76–79 The importance

of peptide ligand quality is strengthened by the fact that

peptides with high affinity towards MHC have a higher

probability of representing immunodominant peptides

and being suitable for tumour rejection.80,81 The predic-

tion of the stability of the peptide–MHC complex is

another important aspect for selecting the most attractive

candidate epitopes.82 In addition, the prediction of pep-

tide-processing steps, such as proteasomal cleavage and

transporter associated with antigen processing (TAP)-

dependent transport to the endoplasmic reticulum, have

found integration into more recent versions of prediction

algorithms as recently reviewed.83 Comparison and vali-

dation of large experimental data sets using different tools

or combinations of them will foster an even more precise

definition of rules for actual presentation.84 Implementa-

tion of structural in silico analyses may provide deeper

insights into conformational binding properties of poten-

tial HLA ligands.85 One of the major drawbacks of pre-

diction-based antigen selection is that not all epitope

candidates with high predicted immunogenicity are actu-

ally presented as expected. For instances, MART127–35-

specific T cells only recognized about half of the MART1-

expressing HLA-matched melanoma cell lines.86 More-

over, a distorted relationship between gene or protein

expression and peptide presentation has also been

reported.87 Validation by a defined T-cell repertoire is

essential for this approach and may be facilitated by the

invention of novel technologies and further optimization

of existing high-throughput technologies.88

Owing to the previous observation of immunogenic

tumour-specific mutations and the generally high muta-

tional load of melanomas,61,66 systematic assessment of

immunogenic tumour-restricted mutations was pursued

by exome sequencing in combination with in silico epitope

prediction.25,89–92 This combinatorial approach was

applied for instances on the analysis of tumour tissue

from three melanoma patients followed by screening

assays using 19-mer peptides encompassing the respective

mutation.92 In all patients, mutation-specific T cells were

detectable and all three individuals responded to the trans-

fer of autologous TIL products. The same approach was

used for the identification of immunogenic MHC-II-

restricted neoepitopes in a murine model showing tumour

rejection upon vaccination with pre-screened candidates.89

Recently, two early-phase clinical vaccination trials focus-

ing on tumour-specific mutations reported promising effi-

cacy in patients with melanoma. Ott and colleagues used

mixtures of long peptides comprising patient-tailored sin-

gle nucleotide variants for the vaccination of six patients

and observed in four patients with stage III melanoma a

stable clinical course with no reccurrence of disease up to

25 months.93 Within the second study, 13 patients with

advanced melanoma have been vaccinated with an RNA-

based poly-neoepitope vaccine encoding multiple single

nucleotide variants per construct and experienced a signif-

icant decrease of relapses compared with their pre-vacci-

nation disease course.94 The described observations are

highly encouraging and demand larger clinical trials. In

particular, the value of vaccination at defined disease

stages compared with immune checkpoint modulation

alone or in combination needs to be elucidated. Moreover,

the characteristics of neoantigens representing most effec-

tive tumour rejection antigens as well as respective T-cell

responses need to be investigated in detail to improve

neoantigen-specific therapeutic strategies.

Mass spectrometry-based immunopeptidomics

HLA-bound ligands that are presented on the cell surface

can be directly identified as such. Since the identification

of naturally presented ligands using the combination of

high-performance liquid chromatography and tandem

mass spectrometry,95,96 this approach profited largely

from recent developments and inventions for the opti-

mization of mass spectrometers.

The ability to directly measure HLA-presented peptides

by mass spectrometry rapidly broadened possibilities for

epitope-specific (onco)immunological research and cur-

rently several strategies for the detection of HLA-bound

peptides by MS are available, as has been reviewed

recently.97 Cell lines have been mostly used for antigen

identification by MS due to the unlimited material that is

available.98 However, direct identification of ligands

derived from primary tumour cells of patients reflects

heterogeneity within one given sample and therefore may

support the identification of those peptides that are well

presented. In fact, primary patient tumour samples led to

the designation of several novel and known immunogenic

target structures with interesting potential for clinical

applications.99–101 In addition, the comparison of ligands

identified in tumour material and patient sera may be

attractive for biomarker development.102,103

The identification of neoantigens in solid tumours by

MS immunopeptidomics among previously unassigned

mass spectra was first shown by the analysis of murine

tissues104,105 and human cell lines.106 Further develop-

ment led to identification of naturally presented neoepi-

topes on cryopreserved human solid tumour tissue

derived from melanoma by mass spectrometry.107 Key

issues of this analysis were the large number of peptides

that were eluted, corresponding to a comparably deeper

level of sensitivity in comparison with other studies. In

addition, an optimized workflow for bioinformatics was

developed using MAXQUANT.107

Mass spectrometry-based immunopeptidomic neoanti-

gen identification has been shown to be successful also in
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lymphomas.108 Several epitopes derived from the

immunoglobulin constant region were presented on

MHC I, but no epitope was detected mapping to the

mutated variable region. In contrast, 14 epitopes pre-

sented on MHC II were detected that derived from the

hypermutated variable region, therefore presenting true

neoepitopes. Due to the authors’ hypothesis, this rather

unexpected distribution of naturally presented tumour-

derived HLA ligands may derive from immunoediting of

respective tumour cells. Hence, comparison of different

modes of processing and epitope editing will help us to

learn from analysed data sets and draw conclusions on

similarities and differences of neoepitope presentation

between different tumour entities.

There are a number of advantages of using mass spec-

trometry for the analysis of the immunopeptidome. The

mass spectrometry-based immunopeptidomic approach

represents an HLA-independent strategy for the identifica-

tion of HLA ligands with direct proof of actual presenta-

tion. This is especially important as prediction analyses are

highly limited to frequent HLA types for which a large

data set is already available. Using a computational

approach for the assignment of a data set of mass spec-

trometry-identified epitopes to its respective HLA restric-

tion element, existing in silico prediction tools can be

further improved in their accuracy if they are trained with

data sets derived from mass spectrometry analyses.109 In

addition, measurement of an immunopeptidome that can

be clearly assigned to one single HLA molecule leads to

more input and a high-quality data set for adjustment of

prediction algorithms, such as the detection of novel

anchor residues.84 Immunopeptidomes identified by mass

spectrometry may therefore contribute to a further

improvement of epitope prediction. Moreover, the unbi-

ased search by mass spectrometry analysis enables the

detection of ligands derived from post-translational modi-

fication, which might be missed by conventional epitope

prediction.107 Other examples are spliced peptide vari-

ants46 and the so far less well described MHC II

immunopeptidome,110 although these peptides are cur-

rently also often difficult to detect by MS. In addition, so-

called ‘hot spots’ of preferential proteasomal processing

and presentation within highly expressed proteins may be

identified by comparison of ligandomes derived from dif-

ferent samples and mapping of frequently detected regions

in a protein sequence.107,111 Processing of retrieved mass

spectra represents one key component for the valid inter-

pretation of the analysed data and requires integration of

state-of-the-art bioinformatics and computational analy-

ses.112 Nonetheless, mass spectrometry-based immunopep-

tidomics currently inherits several limitations, such as the

predominant dependence on those databases that are used

for the assignment of analysed mass spectra. This bias may

be overcome by the implementation of de novo sequenc-

ing.113 Despite the application of stringent filters, the veri-

fication of true binders remains another objective that is

currently faced throughout laborious validation proce-

dures. Moreover, the reported sensitivity for mass spec-

trometry is still rather low, ranging between 0�5% and 3%

yield of peptides captured by immunoprecipitation.97 Fur-

ther challenges are based on the robust identification of

the actually presented HLA peptides, including the correct

assignment of isobaric amino acids such as leucine versus

isoleucine.114 As another technical limitation, very

hydrophobic or hydrophilic peptides are less well detected

by current mass spectrometry technologies, leading to

biased acquisition of the individual immunopeptidome.115

In addition, as mentioned above, the integration of algo-

rithms for the systematic detection of spliced peptides may

contribute to a more comprehensive characterization of

the melanoma immunopeptidome. With the high velocity

of novel developments in the field, sensitivity in peptide

ligand identification is expected to be substantially

improved in the near future.
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Figure 1. Schematic overview of relevant determinants for the comprehensive characterization of immunogenic epitopes.

ª 2017 John Wiley & Sons Ltd, Immunology, 152, 536–544 541

Immunopeptidome in melanoma



Clinical relevance and future challenges

As a result of the high efficacy of immune checkpoint modu-

lation and T-cell-based therapies in melanoma we are cur-

rently able to learn much about suitable target antigens and

respective T-cell responses in a broader patient population.

This will be instrumental in obtaining better understanding

of the efficacy and rejection capabilities of T-cell responses

directed against differentiation antigens and/or mutated epi-

topes,116,117 stressing the importance of thorough functional

characterization of tumour-specific immune responses. Cur-

rently, we have no clear picture of which antigens are the

most relevant for tumour rejection or what aspects may con-

tribute to immunodominance, mainly characterized by the

reactive T-cell population. Large-scale analyses may move

the field forward, including a comprehensive description of

immunogenic epitopes presented on an (individual) mela-

noma tissue and a combination of permanently improving

techniques (Figure 1). However, detailed sequential func-

tional T-cell analyses are essential.107 There are central ques-

tions including a better understanding of the role of the

whole antigen-presenting machinery, the role of CD8 versus

CD4 responses and the contribution of each population to

efficient tumour rejection. One of the biggest challenges is

represented by tumour heterogeneity and immune eva-

sion.25,62,63 Analysis of the immunopeptidome of different

metastatic lesions may therefore help to understand inter-

and intraindividual heterogeneity and its impact on plastic-

ity, immunogenicity, responsiveness to immunotherapy and

immune escape. It will probably become more complex as

soon as a better understanding exists of the impact of other

systems, for example the respective microenvironment118

and the microbiome,119,120 on respective tumour-related

immunopeptidomes and the outcome of immunotherapies

encouraging an integrative view of systemic immunothera-

pies.
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