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Abstract

We report the utility of surface-enhanced Raman scattering (SERS) analysis of urine from 

deceased donors for prognosis of kidney transplant outcomes. Iodide-modified silver nanoparticles 

were used as the enabler for sensitive measurements of urine proteins. Principal component 

analysis (PCA) and linear discriminant analysis (LDA) were employed for the statistical analysis 

of the SERS data. Thirty urine samples in three classes were analysed. The ATN class consists of 

donors whose kidneys had acute tubular necrosis (ATN), the most common type of acute kidney 

injury (AKI) with high risk of poor graft performance in recipients, yet yielded acceptable 

transplant outcome. The DGF class is comprised of donors whose kidney had delayed graft 

function (DGF) in recipients. The control class includes donors whose kidneys did not have donor 

ATN or recipient DGF. We show a sensitivity of more than 90% in differentiating the ATN class 

from the DGF and control classes. Our methodology can thus help clinicians choose kidneys in the 

high-risk ATN category for transplant which would otherwise be discarded. Our research is 

impactful in that it could serve as a valuable guidance to expand the deceased donor pool to 

include those perceived as high-risk AKI type based on common urinary biomarkers.

Graphical Abstract

Scheme of SERS analysis of urine samples from deceased donors for kidney transplant outcome 

indication.
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1. Introduction

The total number of candidates on the waiting list for kidney transplant has increased 

steadily from approximately 58,000 in 2004 to 99,306 at the end of October 2016 [1,2]. 

There are two types of donors for kidney transplants, living donors and deceased donors. 

Since 2004, the number of kidney transplants from living donors has slightly decreased. 

Over the same time period, the number of kidney transplants from deceased donors has 

increased from 6,325 to 8,304. Unfortunately, demand for kidney transplants still outstrips 

the supply, and over 5,000 people die every year while awaiting kidney transplant.

Despite the urgent demand for more kidney donors, a large percentage of kidneys from 

deceased donors are not used for transplant, especially when donors have a terminal 

creatinine concentration above 1.5 mg/dL [3]. The elevated terminal creatinine is a sign of 

acute kidney injury (AKI), which can be associated with poor transplant outcomes [4,5]. 

Transplant centers have been reluctant to use kidneys with AKI, and many kidneys are 

discarded because of this reason. However, some studies involving deceased donor kidney 

transplants have reported that kidneys with AKI had similar transplant outcomes compared 

with kidneys without AKI [4,6–11].

We have previously reported the association of AKI with kidney transplant outcomes [8]. 

We evaluated 1,632 deceased donors and classified them as having AKI stage 1–3 or no 

AKI. The 6-month estimated glomerular filtration rate (eGFR) was similar across the AKI 

categories and suggested that transplant clinicians should consider expanding the kidney 

pool by accepting selected donors with AKI, given the acceptable 6-month allograft function 

of kidneys from AKI donors.
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Several scoring systems and algorithms have been established to study the transplant 

outcomes using donor AKI kidneys from deceased donors. Terminal serum creatinine, which 

can be used to calculate an eGFR, is often used to evaluate deceased donor kidneys. The 

creatinine and eGFR, however, are not reliable indicators of kidney status during the episode 

AKI [12]. Other novel biomarkers have shown promising association with the clinical 

outcomes, such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury 

molecule-1 (KIM-1), interleukin-18 (IL-18) in both urine and serum [13–19].

A majority of the studies on these novel biomarkers were based on the urine or blood 

collected from recipients. However, the analysis of recipient biomarkers does not help in the 

decision to accept or not accept a deceased donor kidney for transplant. There are challenges 

in establishing the association of donor biomarkers with transplant outcomes. For instance, 

Buemi et al. measured the plasma and urine NGAL in both donors and recipients to examine 

their predictive ability of renal function after transplant. No correlation was observed 

between donors’ plasma and urine NGAL and the occurrence of post-transplant DGF [18].

SERS is a powerful, label-free analytical technique with excellent sensitivity and molecular 

specificity. Traditional Raman spectroscopy is already widely used for chemical analysis 

with high molecular specificity. However, the exceedingly low Raman scattering cross 

section (~10−30 cm2/molecule) makes the conventional Raman technique suitable only for 

measurement of high analyte concentrations. SERS is a type of Raman scattering 

spectroscopy that is conducted with the aid of noble metal (typically Ag and Au) 

nanostructures. Collective excitation of free electrons in the conduction band of the metal 

nanostructure, commonly known as localized surface plasmon resonance (LSPR) under light 

irradiation, results in an electromagnetic (EM) field that is significantly higher than that of 

the incident irradiation. The field amplification by LSPR is responsible for the enormous 

gain (up to 1014) in the Raman scattering cross section, dramatically increasing detection 

sensitivities ranging from parts per million to single molecules [20]. SERS has been 

extensively exploited for bioanalysis [21–24], biosensing [23,25–28], and diagnostics [29–

31]. We have also demonstrated the use of SERS of patient urine for early prognosis of acute 

kidney transplant rejection with very encouraging results [20].

Evaluation of donor urine samples by SERS offers several important advantages. First, 

SERS does not require any special sample preparation and can be performed very quickly 

often in seconds. Second, SERS can potentially be carried out using inexpensive, hand-held, 

fiber-optic Raman probes, which offers the possibility that SERS can eventually be field-

deployed for timely evaluation and efficient procurement of deceased donor organs. Third, 

as a vibrational spectroscopy technique, SERS measurements can reveal the presence of 

multiple molecules and functional groups, rather than target just a single biomarker in urine.

In this paper, we present a SERS investigation of urine from deceased kidney donors and 

demonstrate its potential in predicting kidney transplant outcome.
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2. Methods

2.1. Kidney donors and urine samples

Urine samples from 30 deceased kidney donors were analyzed in this study. Detailed clinical 

information of each donor is shown in supplemental information (Table S1). This study used 

data from the Organ Procurement and Transplantation Network (OPTN). The OPTN data 

system includes data on all donor, wait-listed candidates, and transplant recipients in the US, 

submitted by the members of the Organ Procurement and Transplantation Network (OPTN), 

and has been described elsewhere. The Health Resources and Services Administration 

(HRSA), U.S. Department of Health and Human Services provides oversight to the activities 

of the OPTN contractor. Each donor had donated both kidneys. Donors were defined as three 

classes: donor acute tubular necrosis (ATN) on biopsy, recipient delayed graft function 

(DGF), and control. with a population of 10 for each class. The controls had neither donor 

ATN nor recipient DGF. ATN is a histologic manifestation of kidney damage, but ATN is not 

always associated with clinically apparent AKI. DGF is clinically apparent AKI after 

transplant and is defined as the need for dialysis in the recipient within the first week after 

the transplant. Detailed descriptions and definitions of each group are summarized in Table 

1. Kidneys of ATN class had high donor AKI risk which made clinician hesitant to use them 

in transplant. However, the transplant outcomes of kidneys in ATN class were acceptable. 

For 7 out of 10 donors in ATN class, both kidneys did not have DGF after transplant. For the 

remaining three pairs of kidneys, only one of each pair had recipient DGF.

2.2. Iodide-modified silver nanoparticles

Iodide-modified silver nanoparticles (Ag-I NPs) were employed to enable SERS 

measurements of the urine samples. The iodide modification process of silver nanoparticles 

(AgNPs) used in this study was established by Xu et al. [32] by mixing potassium iodide 

(KI) with concentrated AgNPs colloidal solution. The synthesis of AgNPs colloidal solution 

was described in our earlier publications [33,34]. Briefly, silver nitrate was reduced into 

metal AgNPs by sodium citrate under UV light exposure and continuous stirring in water 

bath. The AgNPs had an average size of 40±5 nm in diameter and a ζ potential of 

approximately −40 mV.

The synthesized AgNPs colloidal solution was aliquoted into 1.5 mL centrifuge tubes and 

centrifuged at 10,000 RPM for 10 min. The clear supernatant was carefully pipetted away 

and each 1 mL AgNPs colloidal solution was approximately concentrated into 10 μL. The 

concentrated AgNPs colloidal solution was then mixed with the same volume of KI solution 

(1mM) and sonicated for 1 min. The mixture was allowed 1-hour incubation at room 

temperature for a complete modification and was then immediately used for SERS 

measurements. For each SERS measurement, 1.5 μL urine was mixed with the same volume 

of concentrated Ag-I NPs colloidal solution. The mixture was dropped on a small piece of 

silicon wafer followed by SERS analysis immediately.

UV-vis absorption spectroscopy was used to characterize AgNPs and Ag-I NPs colloidal 

solutions (Figure S1). There is a slight blue shift in the resonance wavelength after iodide 

modification. The resonance wavelengths for AgNPs and Ag-I NPs are 416 nm and 400 nm 
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respectively. The blue shift is a result of the changing of surface chemistry and the local 

dielectric environment of the nanoparticles. The ζ potential of Ag-I NPs is −20 mV, slightly 

higher than that of AgNPs due to variance in surface adsorbed ligands, in agreement with the 

work of Xu et al. [32].

The SERS spectra of a randomly selected urine sample from the DGF class using both 

AgNPs and Ag-I NPs are demonstrated in Figure S2. AgNPs exhibited significant spectral 

features at 1000 and 1300–1500 cm−1, which can be a challenge in SERS analysis. On the 

other hand, Ag-I NPs offered a much clear spectral background, enabling the measurements 

of spectral features at around 1000 cm−1.

2.3. SERS measurement and data pre-processing

The optical setup of our Raman system was reported in our earlier paper [33]. Briefly, a 

632.8 nm laser was used as the excitation source and the laser power was approximately 0.5 

mW to avoid overheating. Data acquisition time is 20 sec. Five SERS spectra were collected 

for each urine and Ag-I NPs mixture. The measurements were repeated in the same fashion 

in another round of experiments with excellent reproducibility. A total of 300 spectra were 

acquired, 10 for each urine sample. The SERS measurements were carried out in blind 

without clinical information being made available to avoid any real or perceived bias in data 

acquisition and treatment.

The raw spectra were truncated from 500 to 1800 cm−1 using Specwin32, and the truncated 

spectra were smoothed and baseline corrected using Labspec. The treated spectra were then 

normalized by the area under the curve in OriginLab. A fifth order polynomial was used for 

baseline correction [35].

2.4. Statistical analysis

The SERS measurements yielded a huge collection of Raman spectra, which by themselves 

were rich in spectral details. Principal component analysis (PCA), a commonly used 

classification method in Raman analysis [36–40], was firstly employed as a variable 

reduction procedure. In PCA analysis, the data are unlabelled and the analysis is only based 

on the data’s feature. The process of PCA starts from decomposition of averaged data matrix 

into a set of orthogonal vectors, which are ranked from descending order of the contribution 

of overall variance of all data. The vectors are called principal component (PC) and the 

weight of the contribution of each vector to each original data set is called scores. 

Specifically for Raman spectrum, PCs are a set of spectra and scores are the weight of each 

PC’s contribution to the original Raman spectrum. Mathematically, one original spectrum S 

is decomposed into Σ PCi × Si + e, where PCi are orthogonal spectra, Si are the 

corresponding scores to each PC, and e is the averaged spectrum of all original data. In most 

cases of Raman analysis, the first several PCs constitute more than 95% of overall variance. 

Thus, we will not compromise noticeably accuracy by investigating the scores of first several 

PCs compared with analysing hundreds of intensities recorded for each spectrum.

Linear discriminant analysis (LDA) was then applied to the new data set of the 

dimensionally reduced variables for classification analysis. The principle of LDA is to 

generate a hyperplane, on which the projection of each observation can be separated into 
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several segments according to their classes. Mathematically, the goal of LDA is to generate a 

linear function, y = a0 + a1x1 + a2x2 + .…. + anxn, where xi are the variables and ai are the 

parameters to be determined by LDA in such a way that the classes will be discriminated the 

best.

The association of scores of each PC with clinical characteristics was evaluated using 

logistic regression and Chi-square test. The validation of PCA-LDA classifier was tested 

using 10-fold cross validation. In 10-fold cross validation, the 300 SERS spectra were 

randomly partitioned into 10 groups of equal size (30 spectra in each group). Then, 9 groups 

were used as training data for PCA-LDA classification, and the remaining group was 

employed as the test group to evaluate the performance of such classifier. All 10 groups were 

tested in the same fashion, and the average performance was reported. PCA and LDA were 

performed in Matlab using statistics toolbox. Logistic regression and Chi-square test were 

calculated using SAS.

3. Results

3.1. Protein detection enhancement

AgNPs colloidal solution was firstly used for SERS measurements. However, PCA results 

did not show a promising clustering of any class. The PCA scatter plot of SERS spectra 

based on AgNPs colloidal solution is shown in supporting information (Figure S3). Urine is 

a very complex matrix consisting of various compounds, of which the concentration may be 

significantly different from person to person, especially for major components including 

urea, uric acid, etc. However, such variances of the concentration of most urinary 

components are not necessarily related to the functionality of kidney. The fluctuation in the 

concentration of these irrelevant urinary components has a significantly impact on the SERS 

spectra. To minimize the unrelated components and maximize the influence of potential 

biomarkers, especially proteins and peptides, Ag-I NPs colloidal solution was utilized to 

increase the sensitivity of protein and minimize the inherent background of the colloidal 

solution itself. The iodide modification of AgNPs not only provided an iodide monolayer, 

which replaced the surface adsorbates (mainly citrate group used in reduction reaction) from 

the nanoparticles, but also prevented the protein from denaturation because of its strong 

chemical interaction with silver [32]. Comparison of SERS enhancement of hemoglobin 

using AgNPs and Ag-I NPs was shown in Figure S4. As indicated, Ag-I NPs had a clear 

advantage over regular AgNPs in SERS measurements of proteins, consistent with published 

work [31].

3.2. Raman spectral features of urine

Average Raman spectra and spectral differences between each two classes are shown in 

Figure 1. Common urinary amino acids were observed, such as phenylalanine at 1001 cm−1 

and collagen at 1264 cm−1. Dominant Raman peak is at 1620 cm−1, which corresponds to 

the ring stretching mode of porphyrin. Tentative Raman band assignments are shown in 

Table 2 [41–45]. Because the urine samples were stored at −80°C and thawed before SERS 

measurements, the impact of freeze and thaw cycle on SERS spectra was investigated. We 
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did not find appreciable effect on the SERS spectral features over six freeze-thaw cycles 

(Figure S5)

3.3. Association of prominent SERS spectral features with donor clinical characteristics

3.3.1. Significant spectral distinction between DGF and control classes—SERS 

spectra with full informative Raman shift range (600–1700 cm−1) were used for PCA 

initially. A trend of bias in the distribution of control and DGF classes along PC1 vector was 

observed (Figure S6). To maximize the overall SERS spectral variance between control and 

DGF classes and minimize the irrelevant variance (such as inherent peaks from Ag-I NPs 

colloidal solution), three spectral ranges were selected for PCA analysis, namely 630–772, 

1204–1390 and 1552–1641 cm−1 (highlighted area in Figure 1). 1552–1641 cm−1 was 

chosen because the absolute intensity was high in the spectral difference between control 

and DGF. 630–772 and 1204–1390 cm−1 were selected because the ratio of variance to their 

original peak intensity was high. To estimate the contribution to the spectral variance from 

the selected Raman shift range, the integral of the absolute intensity of PC1 and PC2 spectra, 

which were based on 300 SERS spectra using full Raman shift range, was calculated. The 

integral ratio of the selected Raman shift ranges to the full range Raman shift are 64.46% 

and 54.50% respectively for PC1 and PC2 (Figure S7). All PCA and LDA analyses in this 

study were based on these three selected ranges unless stated otherwise.

Figure 2 shows the scatter plot of PC1 and PC2 based on the selected wavenumber ranges 

for the three classes. All 300 spectra were used in PCA, and each data point represents a 

single spectrum. PC1 and PC2 have the highest variance of all data with a total cumulative 

variance of 64.69%. The scatter plot shows the overall relative similarity and variance of all 

300 spectra. The control class and DGF class have a trend of separation along the PC1 

vector, where most control data have negative PC1 scores, and most DGF data have positive 

values. For the ATN class, there is no clear separation or clustering.

3.3.2. Risk prediction for the ATN class to develop DGF—The clinical 

characteristics of donors in ATN class overlap with donors in the DGF class, as shown by 

the PCA score plot in Figure 2. For donors in DGF class, both kidneys from each donor had 

DGF after transplant. Based on the clinical diagnosis, there were three DGF cases in ATN 

class, but only one kidney from each donor had DGF in recipients after transplant. Because 

there were such similarities in the presence of DGF in transplant outcomes between ATN 

and DGF classes, we hypothesized that the six ATN cases who have positive average PC1 

score values (0.0012, 0.0048, 0.0052, 0.0054, 0.0162, 0.0223), had a higher probability of 

developing DGF after transplant.

Among the three DGF cases in the ATN group, two cases (average PC1 score 0.0223 and 

0.0054) had a positive average PC1 score. The other one, however, had a negative average 

PC1 score (−0.0158). Besides DGF, there are four cases of slow graft function (SGF) in the 

ATN class. Among these four cases, two showed positive average PC1 scores (0.0162 and 

0.0052). To summarize, among the six ATN donors who were in the DGF region based on 

the PCA analysis of SERS spectra (with positive PC1 score), two were clinically diagnosed 

as DGF, and two were diagnosed as SGF.
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Based on Figure 2, there is an appreciable spectral variance between the control and the 

DGF classes along the PC1 vector. To study the ability of PCA in distinguishing the DGF 

class from the control class, PCA was then conducted only on spectra of the DGF and the 

control classes using selected ranges of the Raman shifts.

3.3.3. Effect of kidney fibrosis and kidney atherosclerosis on classification—
Figure 3 shows the scatter plot of PC1 and PC2 based on control and DGF classes. By taking 

away the ATN data, the dispersion of data point of these 2 classes is almost identical as they 

are in Figure 2, which indicated that it is the control and DGF classes that contribute to the 

dominant variances among all data matrix. There are two clusters of outliers in each class 

that sit in the other class’s region. Because 10 spectra of each urine sample were used in 

PCA analysis, spectra from the same urine are of high similarity. Thus, each cluster of 

outlier represents spectra from a single urine sample. So Figure 3 shows that both control 

and DGF classes have 2 outliers that have similar spectral features with the other class.

We believe that kidney fibrosis (KF) and kidney atherosclerosis (KA) might contribute to the 

outlying of the 2 control cases. The two outliers of the control class are among the 3 cases 

that had mild form of donor KF and KA respectively based on the clinical diagnosis. The 7 

remaining donors in the control class did not have KF or KA. In the ATN class, the presence 

of donor KA and KF also seems to have a contribution to the unique SERS spectral features 

of DGF class. There are 4 out of 6 donors in ATN class who had donor KF and/or KA are in 

the DGF region in the PCA scatter plot (Figure 2). In the DGF class, there are two outliers 

located in the control region. Both of them lacked KF and KA diagnosis. We note that the 

SERS measurements and the PCA-LDA analyses were all carried out blind with detailed 

clinical information being withheld from the investigators till completion of classifications 

to avoid any real or perceived bias regarding the hypothesized effect of KF and KA. Based 

on the spectral similarity of KF and KA cases with the DGF class, donors with KF and KA 

may exhibit urinary SERS features in a similar way as DGF, given the correlation between 

biopsy and PCA. Further studies involving more urine samples are needed to support this 

hypothesis.

3.4. Classification improvement

The classification between each pair of classes was firstly investigated, and LDA was 

applied on both raw spectra and scores of PCs. PCA is an unsupervised dimension reduction 

method, which does not take the class identities of data into account when generating a new 

space of data. The significant overlapping among the three classes in the PCA scatter plot 

implies that the most prominent variances of all SERS spectra do not have strong 

associations with their class information. Thus, LDA was used to achieve a better 

classification performance.

3.4.1. Data size-dependent performance of LDA—Unlike PCA, LDA is a supervised 

classification tool that aims at finding a hyperplane that can separate data the most based on 

their classes. LDA does not necessarily depend on data of reduced complexity, so all 

intensities within the selected range of Raman shifts was firstly used in LDA test. The 10-

fold cross validation was then adapted to validate the accuracy and repeatability of this 

Chi et al. Page 8

J Biophotonics. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classifier. The performance of LDA on raw spectral data, however, was not very promising. 

The sensitivity and specificity of DGF are 64.0% and 74.0% respectively, with an overall 

accuracy of 69.5%.

The poor performance of LDA when using raw spectra data is because all information, 

regardless of its association to the class identity, was enclosed in the analysis. We found that 

excessive amounts of subtle spectral information would hinder the performance of LDA. To 

prove this point, we adapted conventional PCA-LDA by using the first several PCs in LDA. 

The change of performance of LDA with the number of first PCs used is shown in Figure 4. 

The black curve shows the results when PCs were ranked by their contribution to the data’s 

overall variance, which is the regular way that PCs are ranked in PCA. When only first 3 

PCs were used, the accuracy was only 66%. As more PCs were used, the accuracy increased 

and a maximum of 96% was reached when 36 PCs were used. When more than 36 PCs were 

used, the accuracy decreased even though more information were included in LDA. Because 

PCs are ranked in a descending order of the overall variance of all data, PCs of lower order 

contains more subtle spectral information than PCs of higher orders. Thus, excessive subtle 

information would reduce the performance of LDA since the accuracy dropped to 67% when 

all 194 PCs were used.

3.4.2. Classifications using optimized PCA-LDA analysis—The purpose of using 

PCA is to reduce the complexity of data. Using 36 PCs does not serve this purpose very 

much. To reduce the PC used in LDA but not sacrificing too much efficiency of PCA-LDA, 

PCs with higher associations with their class identities are preferentially used in LDA to 

achieve a better classification performance. To evaluate the association of scores of each PC 

with the class identities, logistic regression was applied. The PCs then were ranked by an 

ascending order of the P-value, which is defined as the possibility of null hypothesis used in 

statistics. When P-value is less than 0.05, it is suggested that null hypothesis is rejected, 

which alternatively means the variable has a significant association with the response. In the 

analysis of binary classification below, PCs with P-values less than 0.05 were used in LDA. 

By using PCs with high associations with classes, the data complexity used on LDA was 

further reduced and the performance was not affected much.

In Figure 4, the red curve shows the enhanced performance of PCA-LDA classifier for 

control DGF binary classification when PCs were ranked by their association with the class 

identities. The accuracy of the classifier was about 83% when the 3 PCs which the highest 

association with the class identities were used (namely PC1, PC9 and PC20). This is a 

tremendous improvement comparing with the accuracy of only 64% when the first 3 PCs 

were used in LDA (namely PC1, PC2 and PC3). Moreover, the accuracy approached 90% 

faster when use PCs with stronger association with class identities. So the evaluation of the 

PCs with class reduces the amount of PCs used in LDA.

Logistic regression is commonly used as an independent classification tool for categorical 

results analysis. To the best of our knowledge, this is the first time that logistic regression is 

used to enhance the performance of the conventional PCA-LDA analysis. The impact of the 

adaption of logistic regression before the LDA step is the significant data size reduction. The 
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reduced data complexity can contribute to a faster data processing and less power consuming 

on the potential prognostic tool that uses this approach.

Figure 5 shows the scatter plots of PCA and LDA of binary classification study of the three 

class pairs. In PCA scatter plot, the two PCs that had the lowest P values were used to 

present the best separation. Based on the statistical analysis of scores of each PC and the 

class, the PCs that had a P value less than 0.05, which suggested that null hypothesis was 

rejected, were used in LDA. In control and DGF pair, nine PCs (PC1, PC9, PC20, PC6, PC7, 

PC21, PC3, PC15 and PC2 ranked in ascending order of P-value, with a total variance of 

85.52%) were used in LDA. In control and ATN pair, eight PCs (PC1, PC13, PC11, PC5, 

PC12, PC4, PC21 and PC10, with a total variance of 54.11%) were used in LDA. In ATN 

and DGF pair, the PC5, which ranked the 10th in the association with class, still had a low P 

value of 0.0247, and the ten PCs already provided enough information for an excellent 

performance of LDA. So in this pair, ten PCs (PC1, PC11, PC16, PC10, PC4, PC2, PC19, 

PC15, PC6 and PC5, with a total variance of 76.22%) were used in LDA. The P values of 

each PC for all three binary classifications are shown in Table S2.

The lowest order of PC used in the PCA-LDA analysis above is PC21. Figure S8 shows the 

loading spectra of PC1, PC21, and PC130 of the PCA results of the control and the DGF 

classes. There are 194 PCs generated by the PCA for each pair of classes. PC130 is a 

randomly selected low order PC to demonstrate the noise signal. For PC130, the spectrum 

randomly oscillated at every 2 cm−1, which is the wavenumber resolution of the spectrum. In 

PC 21, however, the spectrum still shows significant spectral information, which can 

contribute to the classification in the following LDA process.

The validation of LDA on each pair of cases was evaluated by 10-fold cross validation and 

the receiver operating characteristics (ROC) curves are plotted. All LDA models are highly 

efficient and reproducible based on the results of 10-fold cross validation. The areas under 

the curve (AUC) are 0.9830, 0.9814 and 0.9808 for each pair of classes. Table 3 shows the 

confusion matrix of 10-fold cross validation of the PCA-LDA classifier based the binary 

classification of each pair of classes. By using the PCs with high associations with the 

classes, the performance of LDA has a significant improvement over LDA using raw spectra 

data. Confusion matrix summarizes the true positive prediction (PP), true negative prediction 

(NP), false positive prediction (FP) and false negative prediction (FN), based on which the 

sensitivity, specificity and accuracy were derived. The sensitivity equals to PP/(PP+FP), the 

specificity equals to TN/(TN+FN), and the accuracy is the average of sensitivity and 

specificity. Although based on the scatter plot of PC1 and PC2, the control and DGF cases 

have the higher trend of variance than the other two classes pairs, the sensitivity of DGF 

over control is 86%, which is the lowest among three pairs. This implies that spectra of the 

two outliers of DGF are of high similarities as control spectra and the PCA-LDA classifier 

cannot differentiate them very accurately.

For other two class pairs, the sensitivities are both 96%, which indicates a very efficient and 

reliable classification. The specificities of all classifications are >90%, and the highest is 

ATN class at 97% in the ATN and control binary classification. This suggests that the SERS 

spectral features are highly specific to their clinical diagnosis.
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3.5. Multi-class classifications

Similar to the binary classification, PCA-LDA was then conducted on all three classes based 

on PCs with significant associations with class. In multi-class classification, data of all three 

classes were used and classified at the same time. Scores of nine PCs were used in LDA, 

namely PC1, PC13, PC14, PC6, PC12, PC2, PC19, and PC10, with a total weight of 

74.72%. Table 4 shows the confusion matrix and performance of PCA-LDA of all three 

classes based on 10-fold cross validation. The average performance of this classifier is 

74.44% in accuracy. DGF has the highest sensitivity over all three classes at 79%. This is 

consistent with the fact that there are two outliers of DGF urine samples whose spectral 

features are highly similar to urines in the control class. The sensitivity and precision for 

three classes classification are between 70% and 80%

Such a degraded performance compared with binary classification is due to the insufficient 

information included in LDA calculation. To enhance the performance of LDA, more PCs 

were used and the best performance was achieved when the first thirty PCs were included in 

LDA (Table 4). The total weight of first thirty PCs were 99.53%, and the accuracy increased 

to 86.57%. The sensitivity of ATN is 91%, which is the highest among all three classes. 

There are in a total amount of 194 PCs generated by PCA, and the accumulative weight of 

PCs not used on LDA (from PC30 to PC194) is only 0.57%. This subtle amount of 

information, however, will hinder the performance of LDA in a similar way as the binary 

classification shown in Figure 4 and the accuracy will drop to 69.00%.

Figure 6 shows the scatter plot of PCA and LDA of all three classes. The PCA scatter plot 

uses PC1 and PC13, of which the scores have the highest association with class. The use of 

PC1 and PC13 is only for illustration purpose and to show the best visual separation of all 

three classes that PCA can deliver. The LDA scatter plot was based on the first thirty PCs 

with a total weight of 99.57% and shows a much better separation of the three classes 

compared with PCA. The control and ATN classes can be separated by LD1. The DGF can 

be differentiated from control and ATN by LD2.

4. Discussion

The sensitivity of ATN class is the best among all three classes in both binary classification 

and multi-class classification in the PCA-LDA analysis. In PCA, however, the ATN class has 

a significant overlapping with control and DGF classes. This is because in the process of 

PCA, class identities are not considered in the reorganization of the data matrix. The goal of 

PCA is to find a set of PCs that can demonstrate the majority of variance of all data and 

reduce the data complexity by dropping PCs of low weight in contribution. The unique 

spectral features that have high associations with the class identities are not necessarily the 

dominant variances of spectra. It is worth noting that in both binary classification and multi-

class classification, the PCs that have the second highest association with class are of very 

minus contribution to the overall variance. Thus PCA might not reveal all the specific 

features of class identities.

LDA, in contrast, is aiming at projecting each data into a linear hyperplane that has 

minimum inter-class distance and maximum intra-class distance. By evaluating the 
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association of each PC to the class identity, PCs with higher association with class can be 

used in LDA to achieve an excellent performance. This is a more computationally efficient 

way compared with regular PCA-LDA analysis, which simply adapts as many PCs the best 

classification results and accuracy.

However, the performance of LDA is not always optimum by only using PCs with high 

associations with class. In multi-class classification, more information is required to have 

acceptable performance. In multi-class classification, the LDA performance degraded 

significantly when only the PCs with a P value smaller than 0.05 was used. To reach the best 

performance, more information needs to be used. On the other hand, the performance of 

LDA will not always get better when more information is used. The maximum classification 

accuracy will be achieved when a certain amount of PCs are used and further subtle 

information will reduce the accuracy of LDA. So the amount of PC used in LDA can be 

chosen in different ways to balanced computational cost and overall performance.

The LDA results show a very promising classification ability of three classes, especially for 

the ATN class, of which the sensitivity is ≥90% in both binary classification and multi-class 

classifications. The ability to differentiate the ATN class from the DGF class is especially 

valuable, since the kidneys of ATN class are the ones that can be saved and utilized, while 

the kidneys in DGF class are the ones that have poor performance and should have been 

discarded. This methodology is thus of significant value to transplant physicians when they 

seek to determine which deceased donor kidneys to accept. Our results show potential in 

determining the kidneys which have donor ATN but with an acceptable transplant outcome.

Besides the high sensitivity, another important aspect of this study is that the analysis is 

based on urine of donors, which enables the clinicians to have the results while making 

decisions about which donor kidneys to accept for use in transplantation. The SERS analysis 

of urine is a non-invasive, label-free sensing technology, and the whole sensing set up can be 

packed onto a portable, hand-held tool since various portable Raman spectrometers are 

commercially available now.

Moreover, the SERS experiment requires minimum sample preparation and instrument 

training. With all these advantages, this approach has the potential to be transformed into a 

highly sensitive and specific point of care prognostic tool for quality selection of kidneys 

from deceased donors, which can help clinicians to expand the kidney pool from deceased 

donors by utilizing kidneys with high AKI risk.

5. Conclusion

In this work, we have demonstrated the utility of SERS measurements of urine from 

deceased donors and associated PCA-LDA analysis as a potential tool to predict kidney 

transplant outcomes. SERS provides a non-invasive and label-free detection of subtle 

changes in urine that have a high level of correlation with DGF. By utilizing PCA-LDA and 

logistic regression, more than 90% of sensitivity can be achieved in differentiating high 

donor AKI risk kidney with acceptable transplant outcomes (ATN class) from the ones with 

recipient DGF (DGF class). Both ATN and DGF classes show unique spectral features and 
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can be classified efficiently from the control class. The occurrence of recipient DGF results 

in the main spectral differences in most intense spectral features from the control class, 

while the occurrence of donor ATN affects more subtle features of SERS spectra. To 

summarize, SERS has the potential to provide an early indication of deceased donor kidney 

transplant outcome before transplantation and can be a great asset to clinicians for 

expanding the deceased donor kidney pool by utilizing kidneys with high donor AKI risk as 

perceived by other biomarkers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average spectra of the three classes and their spectral difference. Spectral difference curves 

are the subtraction of average spectrum of one class from another class. For example, control 

– DGF curve (blue bold line) is the result of average of control (light blue line) minus 

average of DGF (light green line). Three spectral difference curves (bold curves at the 

bottom) are vertically shifted for a clearer viewing. The horizontal dash lines on each 

spectral difference curve are the zero intensity position. Highlighted regions over 630–772, 

1204–1390, 1552–1641 cm−1 are selected for PCA analysis. * Inherent peaks from Ag-I 

NPs colloidal solution.
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Figure 2. 
Score plot of PC1 and PC2 of PCA analysis using all 300 SERS spectra. The contribution of 

variance of PC1 and PC2 are 44.91% and19.78% respectively.
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Figure 3. 
PCA scatter plot of PC1 and PC2 of control and DGF classes. The contribution of variance 

of PC1 and PC2 are 48.62% and 28.99% respectively. The red circle and blue circle 

demonstrate the outliers of the DGF class and the control class, respectively.
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Figure 4. 
Enhanced PCA-LDA classification performance when use PCs with high associations with 

class identity in LDA. The curves shows the accuracy of control DGF binary classification 

when different number PCs were used in LDA based on 10-fold cross validation. Black 

curve corresponds to the result based on PCs ranked by the contribution of the overall all 

variance (regular rank of PC in PCA). Red curve present the results when PCs were ranked 

by their association with class identities.
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Figure 5. 
The first row are the scatter plots of PCA. The PCs of the first two highest association with 

classes are used to present best separation. The second row are 1-D scatter plots of LDA 

based on the ten PCs with the first ten highest association with the class. The third row are 

the ROC curves of 10-fold cross validation based on the LDA. The AUC for the three binary 

classifications are 0.9830, 0.9814 and 0.9808 respectively. The first column is control and 

DGF classes; the second column is control and ATN classes; the third column is ATN and 

DGF classes.
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Figure 6. 
Scatter plot of PCA and LDA of 3 classes. (1) Scatter plot of PCA. The 2 PCs with the 

highest association with classes are chosen to show best separation of classes. (2) Scatter 

plot of LDA. The first 30 PCs are used in LDA.
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Table 1

Definition and description of 3 classes

Class name Population Definition

ATN* 10 Donors with biopsy proven ATN in both kidneys

DGF** 10 Both kidneys from the donor had DGF in recipients after transplant

Control 10 No donor AKI***, no donor ATN and no recipient DGF

*
ATN: acute tubular necrosis.

**
DGF: delayed graft function.

***
AKI: acute kidney injury.
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Table 2

Tentative Raman band assignments

Raman bands (cm−1) Tentative assignments

675 Glycerol; glutathione

772 Alanine

1000 Phenyl ring breath (Amino acid, phenylalanine); symmetrical C-N stretch of (urea)

1028 Coenzyme A

1125 Adenine

1264 Collagen; Amide III (protein)

1301 CH2 bending mode, collagen wagging mode

1350 Guanine

1620 Ring stretching (porphyrin)
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Table 3

Confusion matrix of 10-fold cross validation of PCA-LDA classifier on binary classification of each pair of 

classes.

Control and DGF, DGF as positive

Predicted class

DGF Control

True class DGF 86 14

Control 7 93

Sensitivity 86.00%

Specificity 93.00%

9 PCs used for LDA.

Cumulative variance = 85.52%

Accuracy = 89.50%

Control and ATN, ATN as positive

Predicted class

ATN Control

True class ATN 96 4

Control 3 97

Sensitivity 96.00%

Specificity 97.00%

8 PCs used for LDA

Cumulative variance = 54.11%

Accuracy = 96.50%

ATN and DGF, DGF as positive

Predicted class

DGF ATN

True class ATN 91 9

DGF 4 96

Sensitivity 96.00%

Specificity 91.00%

10 PCs used for LDA.

Cumulative variance = 76.22%

Accuracy = 93.50%
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Table 4

Confusion matrix of 10-fold cross validation of PCA-LDA classifier on three classes using 9 PCs and 30 PCs.

LDA using 9 PCs
Predicted class

Control ATN DGF

True class Control 70 6 24

ATN 18 75 7

DGF 9 12 79

Positive classes

Control ATN DGF

Sensitivity 70.00% 75.00% 79.00%

Precision 72.16% 80.64% 71.81%

9 PCs used, total weight = 74.72%

Accuracy = 74.77%

LDA using 30 PCs
Predicted class

Control ATN DGF

True class Control 81 9 10

ATN 4 91 5

DGF 2 11 87

Positive classes

Control ATN DGF

Sensitivity 81.00% 91.00% 87.00%

Precision 93.10% 82.00% 85.29%

30 PCs used, total weight = 99.53%

Accuracy = 86.57%
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