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Abstract

Spectral imaging technologies have been used for many years by the remote sensing community. 

More recently, these approaches have been applied to biomedical problems, where they have 

shown great promise. However, biomedical spectral imaging has been complicated by the high 

variance of biological data and the reduced ability to construct test scenarios with fixed ground 

truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging 

assays and technologies. Here, we present a standardized methodology that allows assessment of 

the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This 

methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving 

the variability present in biomedical image data. We demonstrate that this approach can be applied 

in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the 

response of different imaging platforms, and to assess the level of target signature required to 

achieve a desired performance. Results indicate that it is possible to compare even very different 

hardware platforms using this methodology. Future applications could include a range of 

optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high 

utility for investigators ranging from design engineers to biomedical scientists.
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1. Introduction

Spectral imaging was developed by NASA and the DoD for remote sensing and aerial 

surveillance [1–7] and applications in the remote sensing field continue to comprise a large 

portion of the spectral imaging market. However, within the last 2 decades, many new 

applications of spectral imaging have been described, especially in the biomedical imaging 

field [8–12]. Microscope-based spectral imaging systems have been in use for use over a 

decade [9, 10, 13–18], while small in vivo animal imaging has also grown in use [19–25]. In 

fact, several commercial systems are now available (spectral microscope systems include, 

but are not limited to, those marketed by Nikon, Olympus, Zeiss, Lightform, and Cytoviva, 

which utilize spectral imaging detectors, while a subset of confocal spectral imaging 

microscopes also allow laser lines to be selected using an acousto-optic tunable filter, or 

AOTF). Potential use of spectral imaging for clinical applications has also been described, 

with great potential for detection of pathologic tissues such as cancer [26–30]. The focus of 

biomedical spectral imaging has been on the detection of either specific molecules (also 

called molecular imaging) or in detecting overall changes in a complex mixture (e.g., 

changes in spectral fingerprint of tissue autofluorescence).

A wide range of analysis approaches has been developed by the remote sensing field to 

understand, interpret, and classify spectral image data [3, 31–37]. These include approaches 

to assess pixel composition such as linear unmixing (also called sub-pixel analysis 

approaches) [38–40], supervised classification approaches such as neural networks [41–43] 

and machine learning [44–47], unsupervised classification approaches that include principle 

component analysis (PCA) and independent component analysis (ICA) –based approaches 

[4, 48, 49], and others [31, 50–53]. In addition, algorithms for pre-processing of spectral 

image data have also been developed to increase the effectiveness of target detection and 

composition assessment [54–56].

A range of analysis approaches have also been demonstrated for biomedical spectral 

imaging applications, including unmixing [8, 57–59], PCA and similar approaches [58, 60–

62], and others [29, 63, 64]. However, only a limited amount of research has been performed 

to apply many of the spectral image processing algorithms developed by the remote sensing 

community to biomedical applications [10]. Even less work has been done to quantitatively 

assess the effectiveness of spectral image analysis algorithms as applied to biological image 

data or to compare algorithms or spectral imaging systems to each other [10, 65–67]. Hence, 

it is not always clear which spectral imaging platform or analysis algorithm should be used 

for a particular biomedical imaging application.

From this brief comparison of remote sensing and biomedical spectral imaging, two limiting 

and compounding issues are apparent. First, it is clear that the full range of possibilities for 

spectral analysis, as described in remote sensing literature, have not been evaluated or 

translated for use by the biomedical imaging community. A likely contributor to this issue is 

that most microscope applications and many of the proposed clinical applications use 

fluorescence, which is typically assumed to be a linear process with respect to molecular 

concentration [8, 57, 58, 68]. Hence, linear unmixing is assumed to be appropriate and has 

been extensively used as the approach of choice in biomedical spectral imaging. Second, the 
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variability of biomedical spectral imaging applications and hardware has made it difficult to 

quantitatively compare the effectiveness of different analysis approaches. Hence, it may be 

difficult to assess which approach is best for a given biomedical spectral imaging scenario 

[65].

A complicating factor is that determination of ground truths in biological samples are often 

difficult (if not impossible) to make [69]. In remote sensing approaches, it is often straight-

forward to evaluate one or several detection scenarios by simply placing or modifying 

ground truth objects. For example, if one would like to test the feasibility for detecting a 

vehicle when it is coated with different camouflage materials, it is easy to place several 

variations of camouflage side-by-side and then image them with a ground or aerial-based 

hyperspectral imager [70]. By contrast, it is very difficult to place a reference concentration 

of GFP molecules side-by-side with a reference concentration of RFP molecules within a 

single cell or tissue, so that one would know with absolute truth that the pixels 

corresponding to region 1 each represent 10 µM GFP and those corresponding to region 2 

each represent 10 µM RFP. In microscopy, when external labels are used, it is possible to 

compile a library of all known labels added to a sample, but it is difficult to create a cellular 

sample where the composition of each pixel is known a priori. In addition, even in the case 

where the library is known a priori, unknown signatures may arise due to cellular 

autofluorescence [71–75], background or stray light, and modifications to the spectral 

properties of exogenous labels due to changes in pH, ROS, etc. [76–78]. Although 

techniques like fluorescence lifetime imaging (FLIM) can be used with specialized probes to 

measure changes in pH [79, 80], these techniques are also limited when a priori information 

is not available for all fluorophores in a sample. When imaging tissue preparations, either in 

microscopy or in pre-clinical or clinical applications, compiling an a priori spectral library 

becomes much more difficult as autofluorescence is usually variable and non-negligible [62, 

71, 75, 81, 82]. In addition, for some scenarios, the autofluorescence signature itself is the 

parameter of interest, and it may be difficult to accurately assemble a spectral library 

containing either the signatures of all molecules that contribute to tissue autofluorescence or 

an accurate sampling of all of the possible autofluorescence spectral signatures that could be 

encountered. In these cases the spectral analysis problem may be overdefined and a unique 

solution may not be possible. In addition to the factors of ground truths and 

autofluorescence, biomedical preparations of tissues may be complicated by additional 

factors of light scatter and absorbance. These factors may create wavelength-dependent 

changes in the optical path-length or transmission properties of the sample, introducing 

optical non-linearities and complicating the separation of fluorescence optical properties 

from scatter- and absorbance-dependent optical properties [39, 83, 84].

The need for an objective methodology to evaluate and compare the effectiveness of spectral 

imaging and analysis approaches for biomedical applications is clear. Ideally, a standardized 

method would allow comparison and optimization of analysis algorithms, acquisition 

parameters, hardware systems, and effects of data pre-processing with objective and 

consistent parameters to evaluate the effectiveness of each option. Such a methodology 

would facilitate further translation of analysis approaches from the remote sensing to the 

biomedical imaging field and could be a critical tool for optimization of potential spectral 

imaging hardware or software.
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In this paper, we present a method for theoretically assessing the experimental sensitivity of 

a spectral imaging approach for detecting a specific signature in biomedical spectral image 

data. This theoretical sensitivity analysis methodology allows quantitative assessment of the 

detection sensitivity and specificity using a set of standardized metrics that can be computed, 

regardless of the analysis algorithm or hardware used. This methodology allows quantitative 

characterization of the detection sensitivity and specificity for a given biological label or 

signature. In addition, we have designed the analysis to incorporate the natural biological 

variability in a sample, as the analysis is based not on purely theoretical estimates of signal 

and noise, but on image data acquired from biological control samples. As we demonstrate 

in the results of this study, the outcomes of the theoretical sensitivity analysis methodology 

can be used to provide a quantitative and objective comparison between different spectral 

analysis algorithms, different equipment settings, or even entirely different hardware 

configurations, all in terms of the ability to detect a specific molecular signature in a 

biomedical sample.

2. Methods

2.1. Theoretical background

The theoretical sensitivity analysis methodology described in this paper may be used to 

assess a wide range of scenarios, from comparing analysis algorithms to selecting an optimal 

spectral imaging platform and acquisition settings. As examples of how the methodology 

may be used, we have compared 4 spectral analysis algorithms that are well described in 

prior literature. These algorithms may present high potential interest for the biological 

spectral imaging community as they have either been extensively used within this 

community (linear unmixing), are very high speed and could be applied in real-time 

(spectral angle mapper), or may be able to more accurately separate unwanted background 

signatures such as autofluorescence from a desired target signature (constrained energy 

minimization and matched filter). Here, we give a brief theoretical overview of these 

algorithms, noting that more detailed descriptions are available in the original literature as 

well as several textbooks. Of particular interest is that, although these analysis algorithms 

have been well-documented for remote sensing applications, little work has been done to 

quantitatively compare the effectiveness of each algorithm for biomedical spectral image 

analysis.

2.2. Terminology

As the target audience for this paper crosses several interdisciplinary fields (remote sensing, 

biomedical imaging, microscopy, clinical imaging) we have added a brief description and 

table of spectral imaging terms and variables (Table 1). The following matrix nomenclature 

will be used: spectral image, x, with dimensions k × l × n (width × height × wavelength 

bands), where a single pixel spectrum (pixel vector) is denoted by of x⃗; spectral library r, 

with dimensions m × n (number of endmembers × wavelength bands), where a single 

component spectrum of the library is denoted by r⃗.

2.2.1. Linear Unmixing—Linear unmixing is the most common analysis technique used 

in biomedical spectral imaging applications. This is because linear unmixing calculates the 
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abundance of each molecular species (endmember) in each pixel, assuming a linear mixing 

model[39]. For biomedical applications linear unmixing allows estimation of the relative 

concentration of each molecule in each pixel. Linear unmixing is typically implemented 

using a spectral library (acquired a priori from control samples) and using least-squares 

regression with a non-negativity constraint[39]. Historically, this technique was used in 

remote sensing to calculate abundances of vegetation, water, land, or other features in aerial 

images[85]. Linear unmixing has also been used in fluorescence microscopy and in vivo 
imaging[9]. An advantage of linear unmixing is that abundances can be obtained for all 

known endmembers. However, for linear unmixing to be effective, spectra from all 

endmembers must be known a priori, and error can arise if additional unexpected 

endmembers are present. Error may also be introduced if the spectrum of an endmember 

varies spatially, within the image. This is particularly relevant for cellular and tissue 

autofluorescence, where autofluorescence spectra may change dramatically from one tissue 

to another[86].

Non-negatively constrained linear unmixing was implemented using the “lsqnonneg” 

function in MATLAB (The MathWorks, Inc., Natick, MA). In brief, this function satisfies 

the following equation using a least-squares approach,

(1)

where x⃗ is the detected pixel spectrum vector and is a summation of the fractional abundance 

for each endmember (ai) multiplied by the respective endmember spectrum (r⃗i) plus the 

additive observation noise vector (w⃗).

2.2.2. Spectral Angle Mapper—Spectral Angle Mapper (SAM) is a classification 

algorithm that can be more insensitive to small spectral changes than linear unmixing [43]. 

SAM was first used for satellite image data analysis in the Spectral Image Processing 

System (SIPS) program in 1993 [3]. An advantage of SAM is that only the target 

endmember spectrum need be known. All pixels in the image are described based on their 

angular separation from the target endmember. This is especially useful in satellite imagery 

where endmember (e.g. vegetation) spectra can vary slightly depending on elevation, soil 

chemistry, moisture content, etc. [87, 88] SAM analysis produces angle images that show 

the variation between the target spectral signature and the measured signature of each pixel. 

A classification decision is then made, typically using a global threshold. The threshold is 

selected so that angles above the threshold are classified negative and angles below the 

threshold are positive. A receiver-operator curve (ROC) can be used to select threshold 

values [89, 90], and the theoretical sensitivity analysis shown here offers additional data that 

may be used for refining a classification threshold level.

SAM was implemented using a custom MATLAB script to calculate the arccosine between 

the measured pixel spectrum and the ith endmember spectrum [3].
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(2)

2.2.3. Constrained Energy Minimization—Constrained Energy Minimization (CEM) 

applies a mathematical filter to amplify the desired spectral signature while minimizing 

background noise[50, 91]. This is done by applying an optical linear operator, LCEM that 

minimizes the intensity of unwanted signatures and amplifies the desired signatures.

(3)

where Rcorr
−1 is the inverse of the sample correlation matrix of the observation pixel 

vectors[50], and was calculated as:

(4)

2.2.4. Mixture-Tuned Matched Filter—Mixture-Tuned Matched Filter (MTMF) 

partially unmixes one desired endmember from an image and maximizes its intensity while 

minimizing all other signatures [10, 92]. Similar to CEM, this technique is useful in 

quantifying the abundance of a known spectral signature where other spectral signatures 

may crowd the desired signal [93]. However, unlike CEM, MTMF magnifies the signal-to-

noise ratio of the desired signature instead of only minimizing undesired signals. MTMF has 

been used in satellite imagery to determine the abundance of leafy spurge in aerial images 

[94]. While a small library of known spectra can be used to unmix the data with higher 

specificity than only using the target endmember, no prior knowledge of all constituent 

spectra is necessary[29]. Similar to CEM, MTMF may be advantageous for biomedical 

applications when a priori information is not known concerning all endmembers in the 

image, and for example, could allow screening for a specific biomolecule across a range of 

samples or tissue types.

The MTMF algorithm calculates a rejection operator, P, to increase SNR for a specific 

signature while minimizing background signatures, as described in [31]:

(5)

where U represents all signatures in the spectral library except the target signature (e.g., 

undesired signatures),

(6)
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and U# is the pseudo-inverse of U,

(7)

The filter operator is calculated as,

(8)

and the product of the rejection operator and the measured pixel spectrum results in the 

matched filter estimated abundance,

(9)

2.3. Cell and Tissue Preparation

To demonstrate the theoretical sensitivity analysis methodology, several sets of previously-

acquired spectral image data were used, acquired from samples demonstrating a common 

biomedical imaging problem – detection of a weak fluorescence signal (GFP-expressing 

cells) in the presence of high background autofluorescence (lung tissue). The cell and tissue 

preparation has been described in detail elsewhere[96, 97]. In brief, pulmonary 

microvascular endothelial cells (PMVECs) were isolated from CD rats. Cells were 

transfected for 48 hours with a lentivirus encoding GFP and further sorted by fluorescence 

activated cell sorting (FACS) to select GFP-expressing PMVECs. Both GFP-expressing and 

non-GFP expressing PMVECs were grown to confluency and suspended in phosphate-

buffered saline (PBS) prior to use.

All animal and tissue resection procedures were carried out in accordance with Institutional 

Animal Care and Use Committee (IACUC) approved protocols and have also been described 

elsewhere[96–98]. In brief, male CD rats were anaesthetized and placed on mechanical 

ventilation. The pulmonary artery and left atrium were then cannulated and rinsed with 50 

mL saline solution. Following rinse, a volume containing either 3 million GFP-expressing 

PMVECs or 3-million non-GFP-expressing PMVECs, suspended in PBS, was perfused into 

the lungs for 5 minutes. Perfused lungs were fixed in OCT, cryosectioned to 10 µm 

thickness, and mounted for imaging. A subset of slices were labeled with Hoechst 33342. 

For this study, spectral image data of control samples of lung perfused with non-GFP-

expressing PMVECs were used, along with a library of pure spectra acquired from a 

confluent monolayer of GFP-expressing cells (GFP spectrum), from a confluent monolayer 

of non-GFP-expressing cells that were labeled with Hoechst 33342 (Hoechst spectrum) and 

from a tissue cryoslice of lung perfused only with PBS (autofluorescence spectrum).

To experimentally validate the results from the theoretical sensitivity curve analysis, a series 

of time-dependent update studies was conducted. HEK293 cells were grown to confluence 

on 25 mm round coverslips. Cells were labeled with 2 drops/mL NucBlue (Molecular 

Probes, ThermoFisher Scientific, Waltham, MA) and incubated for 20 minutes prior to 
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imaging. During imaging, cells were labeled with 3.33 µM Calcein Green, AM (Molecular 

Probes, ThermoFisher Scientific) at a time point of 1 minute and time-lapse spectral image 

data were acquired for 30 minutes, as described below.

2.4. Hyperspectral Imaging Microscopy

Hyperspectral image data were acquired using several different spectral imaging microscope 

systems. For imaging of GFP-expressing cells in lung cryoslice preparations, images were 

acquired using a custom widefield inverted fluorescence microscope platform (TE2000-U, 

Nikon Instruments, Melville, NY) and 40× oil-immersion objective (S Fluor, 40×/1.30 Oil, 

DIC H/N2, Nikon Instruments). Custom long-pass fluorescence filter cubes were used to 

separate fluorescence excitation and emission, as are described in detail below. The 

microscope was configured in each of 3 ways to evaluate different equipment response 

characteristics.

1. An acousto-optic tunable filter (AOTF) based system (HSi-300 Hyperspectral 

Imaging System, ChromoDynamics, Orlando, FL) placed on the emission side of 

the microscope and coupled with an EMCCD camera (Cascade 512B, 

Photometrics, San Diego, CA). The AOTF system operates by deflecting a 

narrow portion of the spectrum via photon-phonon interactions, as has been 

described previously [24, 99–103]. This system was implemented with a 8.5 nm 

full-width at half maximum (FWHM) bandwidth and was sequentially tuned 

through emission wavelength bands, while the EMCCD camera acquired images 

at each wavelength band. Spectral image data were acquired from 450–700 nm, 

at 5 nm increments. A 458 nm long-pass filter cube was utilized that consisted of 

a long-pass dichroic beamsplitter (FF-458-Di02, Semrock, Inc., Rochester, NY) 

and long-pass emission filter (BLP01-458R, Semrock, Inc.). The wavelength 

accuracy, spectral resolution, and wavelength-dependent response of this system 

have been previously documented [96, 97]. In brief, this system provides 

accurate wavelength reproducibility and the ability to vary the bandwidth. When 

set to a bandwidth of 8.5 nm FWHM it achieved an average of 25% transmission 

and an out-of-band optical density (OD) ranging from 2 to 2.75.

2. A thin-film tunable filter (TFTF) based system (VersaChrome®, Semrock Inc.), 

placed on the emission side of the microscope and coupled with an EMCCD 

camera (Rolera EM-C2, QImaging, Surrey, British Columbia). The TFTF system 

operates by selecting an 18–20 FWHM band with a center wavelength that is 

dependent on the angle of incidence between the emitted light and the filter. An 

array of TFTF VersaChrome filters was utilized, each with a tuning range of 

approximately 50–60 nm, so as to be able to tune through a wide range of 

wavelengths. A 495 nm long-pass filter cube was utilized that consisted of a 

long-pass dichroic beamsplitter (FF-495-Di03, Semrock, Inc., Rochester, NY) 

and long-pass emission filter (BLP01-495R, Semrock, Inc.) [97, 104]. The 

wavelength accuracy, spectral resolution, and wavelength-dependent response of 

this system have been previously documented [97, 104]. In brief, this system 

provides accurate wavelength reproducibility, a bandwidth of 18–20 nm FWHM, 
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an average of 80–95% transmission and an out-of-band optical density (OD) 

ranging from 2.5 to 3.

3. A thin-film tunable filter based system similar to #2, but placed on the excitation 

side of the microscope, directly coupled to a Xe arclamp (Titan 300, Sunoptic 

Technologies, Jacksonville, Florida) and coupled to the microscope using a 

liquid light guide (Sutter Instrument Company, Novato, CA). Images were 

acquired using an EMCCD camera (Rolera EM-C2) [67, 86].

For imaging of NucBlue and Calcein Green labeled HEK293 cells, coverslips were mounted 

in Attofluor Cell Chambers (ThermoFisher Scientific, Waltham, MA), maintained in 1× 

PBS, and imaged using a Nikon A1R spectral confocal microscope (Nikon Instruments) 

equipped with 60× water immersion objective (Plan Apo VC 60× DIC N2 WI NA - 1.2, 

Nikon Instruments) and 32 channel photomultiplier tube (PMT) array. The A1R spectral 

detector operates by selecting 1 of 3 available diffraction gratings and dispersing the 

fluorescence emission from the grating onto the 32 channel PMT. Fluorescence was excited 

using a 405 nm laser and spectral image data were acquired from 414–714 nm in 10 nm 

increments. For Calcein Green update studies, time-lapse image data of NucBlue labeled 

HEK293 cells were acquired every 30 seconds for 30 minutes with Calcein Green stain 

added at 1 minute.

2.5. Spectral Data Pre-Processing

Many spectral imaging systems have a wavelength-dependent transmission efficiency that 

produces spectral image data that is modified by the wavelength-dependent transfer function 

of the system. To correct for wavelength-dependent transmission artifacts, spectral image 

data were multiplied by a correction coefficient that was measured in reference to a NIST-

traceable spectral illumination source. This was done by first measuring the wavelength-

dependent system response using a fiber-coupled spectrometer (QE65000, Ocean Optics, 

Dunedin, FL) with integrating sphere and a NIST-traceable lamp (LS-1-CAL-INT, Ocean 

Optics), as described elsewhere[67, 96, 97]. In brief, the spectral response of either the 

emission-scanning or the excitation-scanning side of the microscope was measured and a 

correction factor calculated to correct image data to a flat spectral response. Raw spectral 

image data were corrected by first subtracting the background signal (to correct for stray or 

ambient light) and then by multiplying by the correction factor. All image correction was 

performed using custom scripts written in MATLAB. Spectral confocal image data were not 

corrected in this manner, as the spectral detector of the Nikon A1R microscope is marketed 

as NIST-calibrated.

2.6. Spectral Image Analysis

Custom MATLAB scripts were implemented for each of the 4 analysis algorithms described 

in the Theory section.

2.7. Theoretical Sensitivity Analysis Methodology

The theoretical sensitivity analysis methodology was implemented by first selecting a region 

of interest within a control spectral image that contained all spectral components except for 

the target endmember. A binary mask corresponding to the region was then created. The 
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target endmember spectrum was then multiplied by a scalar, α, and added to each pixel in 

the region,

(10)

A range of scalar values (scaling factors) was used for each scenario, typically ranging from 

0 (no target endmember added) to approximately the peak spectral value of other undesired 

signatures in the image (e.g., the maximum target endmember added was about the same 

level as tissue autofluorescence or other undesired signals). This operation resulted in a 

series of modified spectral images that were then analyzed using each algorithm described 

above. Results were used to construct 3 curves that form the main components of the 

theoretical sensitivity analysis methodology: Theoretical Sensitivity Curve (TSC), 

Thresholded Positive Pixel Curve (TPPC), and Receiver-Operator Curve (ROC).

To demonstrate the theoretical sensitivity methodology, we characterized the sensitivity and 

specificity of several biomedical fluorescence microscopy case studies. In each case, a 

control sample was imaged that contained all of the fluorescent labels that would be present 

in the full biological assay except for the label of interest (the target endmember). Hence, the 

control sample included additional signals and variability from cellular or tissue 

autofluorescence and background signal sources. The first case study shown is that of 

detecting a localized and relatively weak signal – green fluorescent protein (GFP)-

expressing microvascular endothelial cells – in the presence of a strong and broad lung 

tissue autofluorescence signal (Figure 1A). Single-labeled control samples were also 

prepared in order to construct a spectral library to be used for analysis. A region of interest, 

the test region, was then identified. The test region defined the pixels to which the target 

endmember spectrum was added, in order to test the response of the spectral analysis 

approach for detecting the target endmember in each pixel of the region. The target 

endmember spectrum was then added to the region in variable amounts, as specified by 

multiplying the target endmember spectrum by a scalar value (Figure 1B), producing a new 

spectral image that contained the control image data plus the additional target endmember 

spectrum added to selected pixels. This new image was then analyzed – for example, by 

using linear unmixing – and the target endmember image (in terms of abundance, spectral 

angle, etc.) was used for further analysis. Three plots were then constructed: a theoretical 

sensitivity curve (TSC - Figure 1C), a thresholded positive pixel curve (TPPC - Figure 1D), 

and a receiver-operator curve (ROC - Figure 1E).

2.7.1. Theoretical Sensitivity Curve (TSC)—The TSC was constructed by plotting the 

analyzed intensity (e.g., abundance, spectral angle, energy) of each pixel within the region as 

a function of the scaling factor for the target endmember. The average analyzed intensity 

(averaged over all pixels within the region) was also plotted and used to regress a linear fit to 

assess the linearity of sensitivity response (Figure 1C, black line). The standard deviation of 

analyzed pixel values was also calculated and plotted for each scaling factor (Figure 1C, red 

error bars).
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2.7.2. Thresholded Positive Pixel Curve (TPPC)—The TPPC was constructed by 

selecting a threshold for discriminating between positive and negative pixels. The number of 

positive pixels within the entire image was counted and plotted as a function of the scaling 

factor for the target endmember signal added. Positive pixels that were detected when a 

value of 0 target endmember was added were defined as false positive detections. True 

positive pixels can be visualized on the plot as an increase in the number of positive pixels, 

beyond the false positive number. The slope of the TPPC is an indicator of the intensity of 

target endmember signal that must be present in order to produce a positive detection event. 

A high slope indicates that only a small increase in the amount of target endmember signal is 

required to result in a pixel being detected as positive, whereas a low slope indicates that a 

large increase in the target endmember signal would be required for pixels to be detected as 

positive. The difference in the number of positive pixels detected for a specified level of 

target endmember signal added and the number of positive pixels detected for 0 target 

endmember signal added was defined as the detection range of the system (for well-

performing classification the detection range should be the number of pixels within the 

region). This parameter could be used, with additional calculations, to estimate the minimum 

detectable limit of the spectral imaging approach for a given biomedical assay.

2.7.3. Receiver Operator Characteristic (ROC) Curve—The ROC was constructed 

by first defining a fixed scaling factor and a range of global thresholds to consider. For each 

threshold level, the number of positive pixels within the region and the number of positive 

pixels outside of the region were calculated. The true positive detection rate was defined by 

assuming that all pixels within the region should ideally be positive (e.g., the rate was 

calculated by the number of positive pixels detected within the region divided by the total 

number of pixels within the region). The false positive detection rate was defined by 

assuming that all pixels outside of the region should ideally be negative (e.g., the rate was 

calculated by the number of positive pixels outside of the region divided by the total number 

of pixels outside of the region). True positive rate – false positive rate data pairs were then 

plotted for each threshold level considered to construct the ROC curve. The area under the 

curve for the ROC was also calculated.

3. Results

The theoretical sensitivity analysis methodology we present here provides a means for 

assessing the sensitivity and specificity of a biomedical spectral imaging assay without the 

need to perform complex (sometimes impossible) experiments to measure the ground truth 

in a biological spectral imaging assay. This methodology combines experimental image data 

with a static sensitivity approach in a manner that maintains the high variability that is 

typically present in biological image data. Hence, the theoretical sensitivity analysis allows 

estimation of the detection sensitivity in the midst of highly variable and competing signals, 

such as cellular or tissue autofluorescence, stray light, and other background signals.

3.1. Experimental Validation

To determine whether the theoretical sensitivity analysis methodology represents an accurate 

depiction of equipment and sample response, an experimental sensitivity study was also 
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performed and compared to the theoretical response. The uptake of Calcein Green, AM by 

HEK293 cells was monitored over time using a spectral confocal microscope, as the rate of 

cellular uptake and AM cleavage should be relatively linear for a fixed extracellular 

concentration (within a reasonable range of concentrations). Hence, the Calcein Green signal 

would be expected to increase linearly over time and could then be compared to linear 

response from the theoretical sensitivity analysis. NucBlue and Calcein Green 

concentrations and equipment parameters (laser power, detector gain, scan speed, etc.) were 

adjusted such that a small subset of pixels would become saturated prior to the 30 minute 

time course of the experiment (Figure 2). Regions of interest corresponding to pure NucBlue 

and unbound NucBlue signals were identified at a time point of 0 seconds (before Calcein 

Green addition), and the mean spectra from these regions used in the spectral library (ROIs 

shown in Figure 3C). A further cytosolic region containing no NucBlue label was used at a 

time point of 1050 seconds (after Calcein Green addition) and the mean spectrum from this 

region was used in the spectral library as the spectrum for Calcein Green.

Timelapse hyperspectral image data were unmixed using non-negatively constrained linear 

unmixing, resulting in a clear increase in Calcein Green signal over time (Figure 3A). The 

theoretical sensitivity analysis also showed an increase in Calcein Green signal as a function 

of scaling factor (Figure 3B). Several regions were selected to quantify signal response over 

time and to compare the results of the experimental and theoretical sensitivity analysis 

(Figure 3C). These regions included a region with only Calcein Green signal, a region with 

NucBlue and Calcein Green signal, and a region with strong NucBlue and Calcein Green 

signals where the average spectrum became oversaturated at later time points. The unmixed 

images from the experimental image data displayed a linear increase in Calcein Green signal 

after an initial delay, for both the Calcein Green region and the NucBlue region (Calcein 

Green was added at a time point of 60 seconds with a potential further delay introduced by 

mixing of solutions). However, for the oversaturated region, the unmixed Calcein Green 

signal displayed a non-linear response (Figure 3D, red line), indicating that one or more 

wavelength bands were saturating for pixels within this region and that the measured spectra 

of those pixels were no longer reflective of the real signal intensities. A theoretical 

sensitivity analysis was also performed using the oversaturated region, and when constrained 

to a maximum pixel intensity of 4095 (the A1R has a 12-bit detector), also displayed a non-

linear response in unmixed Calcein Green signal, as a function of the scaling factor for 

Calcein Green (Figure 3E). However, the non-linear region for Calcein Green signal 

response occurred at a higher intensity in the theoretical model than in the experimental data 

(Figure 3F). This indicated that the experimental data was likely further limited by the 

detector performance of the system. To better account for detector performance, the 

theoretical saturation level was decreased to 11.5 bits of dynamic range (a maximum 

intensity of 2895), resulting in an accurate match to the experimental data (Figure 3G). 

Hence, results from the theoretical sensitivity analysis highly correlate with experimental 

data given the caveat that the full (claimed) dynamic range of a microscope system may not 

always be achievable (as has been documented elsewhere[105–107]).
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3.2. Assessing Spectral Analysis Algorithms Performance

The theoretical sensitivity analysis methodology can be used to assess the effectiveness of 

different spectral analysis algorithms. Here, we provide an example comparing 4 common 

spectral analysis algorithms for the detection of GFP-positive pixels using the spectral image 

data shown in Figure 1. Results show widely varying effectiveness of the different 

algorithms for detecting GFP-positive pixels (Figure 4). From the TSC, it is clear that linear 

unmixing (LU) and matched filtering (MF) both provide a linear sensitivity to increasing 

levels of target endmember, while spectral angle mapper (SAM) and constrained energy 

minimization (CEM) are non-linear – this is as would be expected. In addition, each 

algorithm shows different effects of increasing target endmember levels on standard 

deviation of the detected level of the target endmember. For example, LU and MF 

algorithms produce a standard deviation of detected target endmember that is relatively 

insensitive to the amount of target endmember added. By contrast, SAM presents decreasing 

standard deviation of detected target endmember levels as a function of increasing target 

endmember added, while CEM presents increasing standard deviation of detected 

endmember levels. These results imply that SAM would have a high variation in detected 

endmember values if trying to identify a very weak target endmember signal in the presence 

of high background (tissue autofluorescence). However, for strong target endmember 

signals, SAM may present a smaller variation in detected signals.

Results for the TPPC were also similar for LU and MF algorithms. The TPPC for SAM had 

a lower slope, indicating a larger increase in target endmember signature would be needed to 

cleanly separate between negative and positive pixels. The TPPC for CEM was very low, 

indicating that it would be difficult to detect all true positive pixels in the region while 

rejecting negative pixels outside the region, for the specified threshold.

Results from the ROC revealed additional information about the effectiveness of each 

algorithm. Interestingly, the ROC curves for LU and MF were not similar, with LU 

producing improved AUC (AUC = 0.742) when compared to MF (AUC = 0.537). SAM 

displayed the best ROC performance (AUC = 0.899). If based solely on ROC performance, 

SAM would be the algorithm of choice for detecting the GFP target endmember signal, as 

added to the image at a value of 10 intensity units (intensity at peak wavelength). However, 

it is worth noting that the performance of SAM in the TPPC was slightly poorer than that of 

LU or MF. This indicates that SAM may perform well for detecting a fixed level of target 

endmember added, but that the performance may be only equivalent with LU or MF when 

assessing the ability to discriminate between varying amounts of target endmember added 

for a given threshold.

Taken together, results from this analysis indicate that either LU or SAM would be 

preferable algorithms for detecting the GFP-positive pixels in lung tissues (using the specific 

hardware configuration and acquisition settings of this assay). LU would likely be the 

preferable choice if a quantitation of the amount of GFP added was being made, as the TSC 

for LU is linear. However, SAM may be preferable for a simple +/− classification scheme, 

especially if the level of target endmember that should be present in a positive pixel is 

relatively constant and is known a priori (e.g., a minimum detectible limit has already been 

established and all cells uniformly express approximately the same amount of GFP).
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3.3. Comparing Equipment Platform Response

In addition to comparing the effectiveness of different spectral analysis algorithms, the 

theoretical sensitivity analysis methodology can be used to compare the performance of 

different hyperspectral imaging hardware. For this example, we have used a similar 

biological assay as was used in Figure 1, but have acquired image data using two different 

spectral imaging microscope systems: a fluorescence emission-scanning hyperspectral 

imaging system[97, 104] and a fluorescence excitation-scanning hyperspectral imaging 

system, both of which were previously developed in our lab[67]. In our prior work, we 

demonstrated that images acquired using the excitation-scanning system had significantly 

higher signal-to-noise ratios when all other imaging parameters were held constant 

(acquisition time, camera gain, etc.). Using image data from these experiments, we show 

here that the theoretical sensitivity analysis methodology allows extraction of much more 

detailed information regarding the effectiveness of each hardware system for detecting the 

target endmember. For consistency, spectral image data were acquired from the same field of 

view using both scanning modes: emission scanning and excitation scanning. The 

acquisition time of the emission scanning system was increased by a factor of 5 to produce a 

similar dynamic range of intensities as that of the excitation scanning system (we have 

previously demonstrated that the general approach of excitation scanning can produce higher 

signal strength than that of emission scanning). To compensate for the increased acquisition 

time required for the emission-scanning system, the variable levels of sensitivity, and the 

correction needed to achieve NIST-traceable response, target endmember levels added and 

detection thresholds were multiplied by a factor of 8.6 for the emission scanning images (8.6 

was the ratio of the mean intensity of autofluorescence within the region for emission 

scanning divided by the mean autofluorescence intensity within the region for excitation 

scanning).

Results from the theoretical sensitivity analysis methodology using the LU algorithm 

demonstrate that the excitation-scanning system greatly outperforms the emission-scanning 

system (Figure 5). TSC results indicate that the standard deviation of detected intensities is 

8–9 times higher in emission scanning than in excitation scanning. This is to be expected, as 

the acquisition time required to acquire comparable emission scanning images was 5 times 

higher than with excitation scanning. Investigation of the TPPC shows that, for comparable 

thresholding levels, the excitation-scanning system resulted in fewer false positive pixels 

(indicated by Figure 5, TPPC, by the positive pixel count at a value of 0 target endmember 

spectrum added). The ROC confirmed this result, showing that excitation scanning was 

much more effective at discriminating negative and positive pixels (AUC = 0.857) than 

emission scanning (AUC = 0.595).

3.4. Effects of Region of Interest Selection

The selection of the region of interest can play a large role in theoretical sensitivity analysis 

methodology. To demonstrate this, the excitation-scanning image from Figure 5 was further 

investigated to assess the effects of selecting regions with low, medium, and high AF for 

analysis using the LU algorithm (Figure 6). When a region with high AF was selected 

(Figure 6, top row), the theoretical sensitivity analysis methodology produced degraded 

results as compared to when a region with low AF was selected (Figure 6, bottom row). The 
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TSC indicated large standard deviation in the detected intensities of the target endmember. 

Similarly, the TPPC produced a low slope for discriminating among pixels with high and 

low target endmember signals, while the ROC produced a lower AUC (AUC = 0.857). When 

a region with low AF was selected, the TSC displayed reduced standard deviation, the TPPC 

slope was higher (allowing enhanced discrimination between high and low target 

endmember pixels) and the ROC curve was improved (AUC = 0.920). These results indicate 

that the placement of the region within an image can be used to provide additional 

information characterizing the effectiveness of the spectral imaging process as a whole. For 

example, what detection threshold is needed if the autofluorescence is low compared to if 

the autofluorescence is high?

The analysis shown in Figure 6 was also performed using the SAM algorithm and the same 

regions (Figure 7). Interestingly, TSC analysis using the SAM algorithm produced a 

standard deviation of intensities of the target endmember that was smaller for the region 

with high AF than the region with low AF, when using low levels of target endmember 

added. When high levels of target endmember were added, the standard deviation for the low 

AF region became very small. This is likely due to the fact that SAM calculates a spectral 

angle based on normalized intensities (regardless of the magnitude of spectra being 

compared). Hence, for background pixels that are very weak, the main signal contributor 

will be instrument noise. When normalized, the instrument noise creates a widely varying 

spectral signature and the corresponding spectral angle between the target endmember 

(GFP) and the background pixels will also have high variance. When sufficient GFP signal 

was added to the pixels in the low autofluorescence region, the effects of background signal 

became negligible and the spectral angle decreased sharply, with a corresponding decrease 

in standard deviation. However, for the region with high AF, even high levels of GFP signal 

added produced a spectral angle of 0.4–0.6 radians, indicating that the AF signal played a 

role in limiting the minimum spectral angle that could be achieved.

TPPC analysis showed that a large increase in target endmember signal was required to 

discriminate between negative and positive pixels for the regions with high and mid AF. 

However, for the low AF region, detection of positive pixels could be made at a much lower 

level of target endmember added, while still maintaining a low number of false positive 

pixels. ROC analysis confirmed the TPPC results with the curve for the low AF region 

displaying the best response (AUC = 0.963) while the high AF region had a reduced 

response (AUC = 0.906).

The theoretical sensitivity analysis methodology can also be “looped” or re-run to cover a 

range of possible scenarios. This allows for parameters to be tested for each analysis 

algorithm, hardware configuration, etc., or for optimization of specific parameters used in a 

spectral imaging assay (e.g., the threshold for discriminating positive and negative pixels). 

As an example, the image from Figure 5B was used and the theoretical sensitivity analysis 

methodology performed for a range of settings. The TPPC was evaluated at 6 threshold 

values for discriminating positive from negative pixels and the ROC was evaluated at 7 

levels of target endmember added. Of note, a value of 0 target endmember added was also 

evaluated in the ROC response to assess ROC performance when the pixels within the region 

(defined as positive) do not contain the target endmember signature. Although a 
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nontraditional use of the ROC, this allowed visualization of the classifier results and their 

dependence on high background signal within the region – and hence, the effect that this 

background signal had on subsequent trials with sequential levels of target endmember 

present. This was repeated for 4 different analysis algorithms: LU, SAM, CEM, MF.

Results from the TPPC show that a change in the global threshold level had varying effects 

in differentiating negative from positive pixels. For example, for thresholds that were 

sufficiently high as to result in 0 false positive pixels (number of positive pixels is 0 for a 

value of 0 endmember added), LU and MF both resulted in a shift of the positive pixel 

detection curve, but little change in the slope of the curve. This indicates that a thresholding 

decision based on LU or MF data will require the same approximate increase in unmixed 

signal detected, regardless of where the threshold cut-off is placed. By contrast, the TPPC 

for SAM changed in both horizontal and vertical position with even the least stringent 

threshold (0.6 radians) not detecting 100% of the pixels within the region for the highest 

scaling factor. This indicates that SAM had difficulty detecting all positive pixels due to the 

high tissue autofluorescence in the region. CEM presented a response that was intermediate 

of LU and SAM – for the lowest threshold tested, CEM detected >80% of the pixels in the 

region, and with a sufficiently high level of target endmember added would result in 100% 

detection.

Results from the ROC also showed a wide variation in algorithm sensitivity and specificity 

(all algorithms were assessed at identical levels of target endmember added). As in the TPPC 

results, LU and MF provided similar, though not identical, results. CEM performance was 

degraded, as compared to LU and MF. SAM produced the smallest change in ROC response 

as a function of change in target endmember added. Interestingly, the performance for SAM 

with 0 target endmember added is improved over that of the other 3 algorithms. This 

indicates that many of the pixels within the region (selected for high background 

autofluorescence) were classified as positive, even when no target endmember signature was 

present. The incremental improvements in SAM ROC performance for scenarios with 

increasing target endmember added were marginal, with only the highest level of target 

endmember added resulting in a large improvement in ROC performance. From this 

observation, it is likely that SAM provided improved ROC performance for low levels of 

target endmember added simply because the target endmember (GFP) spectrum was 

sufficiently similar to the tissue autofluorescence spectrum as to result in a low spectral 

angle when high levels of autofluorescence were present, and sufficiently dissimilar to the 

background (stray light + noise) signal as to result in a high spectral angle when low levels 

of autofluorescence were present. Hence, by selecting a region with high autofluorescence 

for the theoretical sensitivity analysis methodology, the ROC performance may be 

artificially biased towards a particular response (this observation is also supported by data 

shown in Figure 7).

3.5. Summary of Results and Impact on End Users

The theoretical sensitivity analysis methodology described here has high potential for 

improving the performance and experimental design of spectral imaging studies. The 

rationale for applying this methodology prior to conducting a full set of spectral imaging 
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studies is that the results of the methodology can be used to inform and optimize several 

aspects of a study: the imaging platform selected, the equipment parameters used, and the 

analysis algorithm and threshold settings used. These parameters can be optimized with 

minimal reagent and instrument use costs, as only a simple set of single label controls needs 

to be run. The potential utility of the theoretical sensitivity analysis, and the results we have 

observed in applying it to detection of weak GFP signals in the midst of strong tissue 

autofluorescence is summarized in Table 2. Each of the outcomes of the sensitivity analysis 

(each type of curve) can be used to inform the user as to specific aspects of the spectral 

analysis detection sensitivity. We have summarized the responses that we have observed for 

four common spectral analysis algorithms, although this approach could easily be applied to 

a wide range of algorithms, equipment configurations, and instrument settings. We have also 

outlined a series of guidelines for applying this methodology to a generic spectral imaging 

study (Figure 8).

The theoretical sensitivity analysis methodology starts with a set of basic single label control 

samples (Figure 8), which would be required to be run for most standard spectral imaging 

studies in order to perform spectral unmixing or analysis. Spectral image data acquired from 

each of the single label samples is used to construct a spectral library. An additional control 

sample should also be run that contains all of the fluorescent labels except for the label of 

interest. This control sample should be imaged using identical equipment settings as those of 

the final study. In addition, images over a range of acquisition settings (acquisition times, 

detector gains, illuminator intensities, number of wavelength bands, etc.) could be acquired 

to determine which settings optimize the detection performance. Two regions within the 

control sample should then be identified for conducting the sensitivity analysis: a region 

with low background signals (for characterizing the detection performance under “best case” 

conditions) and a region with high background signals (for characterizing the “worst case” 

or likely real-world detection performance). The theoretical sensitivity analysis is then run, 

allowing evaluation of the detection performance and comparison of different spectral 

analysis algorithms.

We suggest several error-checking steps during the theoretical sensitivity analysis process 

(indicated as diamonds in Figure 8). The first error check is to ensure that the range of 

scaling factors tested covers a range that allows positive identification of all pixels within the 

region for the TPPC. If all pixels are not identified as positive at the highest scaling factor 

tested, then the range of scaling factors should be increased, and possibly the detection 

threshold should be decreased. The second error check is to ensure that the TPPC does not 

produce a very high level of false positive pixels. If the number of false positive pixels is 

high (2–5× the number of pixels within the region may be considered high), this is an 

indication that the detection threshold for the TPPC is set too low, and the detection 

threshold should be increased and the analysis re-run. The third error check is to ensure that 

the ROC response is smooth. A discontinuous or highly discretized ROC curve likely 

indicates that a sufficient number of thresholds were not tested to obtain the ROC. If this is 

the case, then the threshold increment for the ROC, and possibly the upper-bound threshold 

value, should be increased so as to obtain a smooth ROC response. The fourth error check is 

to ensure that the target endmember pixels can be detected satisfactorily, as predicted using 

the ROC. In this case, the AUC of the ROC should be satisfactory. While the value of the 
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AUC that is defined as satisfactory may vary, depending on the variation and nature of 

signals in a particular study, we have found that an AUC of ≥ 0.9 is desirable and that an 

AUC of ≥ 0.95 produces very good results. If the AUC is low, it is an indication that the 

detection sensitivity is poor for the scaling factor (amount of target endmember signal) used. 

In this case, the scaling factor should be increased so as to provide an adequate AUC, 

indicating that the minimum detectible signal is likely higher than was first thought. 

Alternatively, additional spectral analysis algorithms or varied equipment settings should be 

tested to optimize the ROC AUC. Once satisfactory settings have been achieved, the results 

of the theoretical sensitivity analysis should be run iteratively to optimize the study. This 

optimization could be used to select fluorescent labels to ensure ability to discriminate 

similar spectra and/or remove autofluorescence, select equipment parameters, select analysis 

algorithms, or evaluate the useable dynamic range of the assay, providing a wealth of 

valuable data prior to embarking on a set of biological spectral imaging experiments.

As described above, each type of curve can be used to evaluate a range of theoretical and/or 

experimental conditions to further optimize the study. As an example, we have iterated the 

TPPC and ROC curves over a range of threshold and scaling factor values to assess the 

range of responses (Figure 9). Interestingly, the TPPC for LU and MF shifts from left to 

right but maintains relatively constant slope with increasing threshold for cases when the 

threshold value is above the level needed to mitigate false positive pixels (a value of 250 for 

this example). This indicates that the step increase in analyzed pixel intensity required for all 

pixels to be detected as positive remains approximately equal at each threshold. When the 

threshold falls below this level, the curve shifts both left and vertically, indicating a rise in 

false positive pixels. By contrast, both the SAM and CEM algorithms display a horizontal 

and vertical shift in the TPPC for changes in threshold, indicating that a change in threshold 

will likely cause changes in both the detection sensitivity and the false positive detection 

rate. The ROC curve is perhaps most revealing as a characterization of each detection 

approach. ROC analysis indicates that all analysis algorithms have satisfactory performance 

for detecting high levels of target endmember (in this case, scaling factors ≥200). However, 

for weak levels of the target endmember, linear unmixing and SAM provided improved 

results over CEM and MF.

4. Discussion

Spectral imaging technologies have been widely used by the remote sensing, aerial 

surveillance, and space exploration communities for many years. More recently, these 

technologies have been applied to biomedical imaging, where they have provided new 

possibilities for molecular analysis of cells and tissues. However, it has been difficult to 

objectively compare analysis approaches and hardware implementations, due to the high 

variability of biological samples and the limited ability to measure ground truths or to 

construct test samples.

The theoretical sensitivity analysis presented here is a methodology for characterizing the 

effectiveness of a biomedical spectral imaging assay for detecting a specific molecular 

signature. The advantages of this methodology are two-fold. First, it uses real image data 

acquired from biological control samples, thereby incorporating the biological variability, 

Leavesley et al. Page 18

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



background signals, and noise properties of the spectral imaging assay. Second, the 

methodology has global applicability, in that the same characterization can be performed to 

compare different analysis algorithms, different equipment settings, or different hardware 

and system configurations. This standardized methodology could be used for a wide range of 

tasks: selecting an appropriate analysis algorithm, optimizing acquisition settings, 

optimizing the number and location of wavelength bands acquired[108], selecting a 

sufficient acquisition time, comparing the effectiveness of different spectral imaging 

platforms, comparing the effects of pre-analysis procedures (smoothing, de-noising, 

dimensionality reduction, etc.), and others. Without a standardized methodology, these tasks 

are difficult to perform. For example, selecting the optimal spectral microscopy platform for 

a given cellular experiment can be very difficult if based solely off of manufacturer 

specifications or prior “gut” experience. Questions such as “Does the 32 channel detector on 

a spectral confocal microscope provide comparable sensitivity to the AOTF-based system if 

I bin wavelength bands and open the confocal pinhole?” could require months of optical 

measurements and some system disassembly to answer. The methodology presented here 

offers an alternative approach to answer these questions, requiring only a few control 

samples to be imaged on the system(s) of interest, using the range of parameters of interest, 

and providing a consistent set of metrics that can easily be used to compare algorithm, 

setting, or system performance.

Experimental validation of the theoretical sensitivity analysis methodology demonstrated 

that the theoretical results can correlate well with experimental conditions, but for very high 

(saturating) signal intensities, it is necessary to estimate that useable dynamic range of the 

spectral imaging system, which is often less than the manufacturer-specified bit-depth of the 

detector. This experimental validation demonstrated that with appropriate constraints of 

dynamic range, the theoretical sensitivity analysis methodology can accurately reproduce 

nonlinear behavior of a spectral imaging assay. Another case to be considered is how a 

spectral imaging study would perform if excitation or emission wavelength bands were 

selected inappropriately, as this could lead to low or even negligible sensitivity of the 

spectral imaging system to a target endmember. In this case, for a system with greatly 

reduced sensitivity for a target endmember or reduced ability to excite fluorescence in a 

target endmember, the range of scaling factors representing the amount of target endmember 

signal added should be correspondingly reduced, resulting in reduced performance for a 

spectral detection algorithm. To verify such a case, the intensity of the target endmember as 

measured in the single label control experiment should be assessed, as it is likely that even 

for a single label sample, the intensity would be low with incorrect selection of excitation 

and emission wavelength bands.

The theoretical sensitivity analysis methodology could likely be extended to allow even 

more in-depth characterization of a spectral imaging assay, system, etc. For example, by 

evaluating regions with varying autofluorescence or other background signal levels (as 

demonstrated in Figure 6 and Figure 7), it may be possible to develop a correlation between 

the minimum target endmember signal that must be present for detection (minimum 

detectable signal) and the tissue autofluorescence or background signal present. This could 

be highly useful in characterizing the sensitivity of an imaging system for detecting a 

specific molecular signature across a range of environments or tasks – for example, the 
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sensitivity for detecting indocyanine green (ICG)-labeled lymph nodes across a range of 

tissues or detecting NADH fluorescence in the upper versus lower esophagus. In this 

manner, the methodology described here could be useful in determining minimum detectable 

limits in a tissue-specific or location-specific manner, or as a function of the false positive 

detection rate that could be tolerated. This methodology could also be combined with a set 

of benchmark standards in order to fully maximize the dynamic range of the measurement 

while ensuring that the signal is not over-saturated and that a specified minimum detectible 

signal is achieved. Finally, this methodology could be extended to account for thick sample 

preparations and 3-dimensional spectral confocal image data. In this case, a 3-dimensional 

region would need to be specified, and the sensitivity analysis performed on all voxels 

within the region.

The advantage of the theoretical sensitivity methodology may also include some limitations, 

in that there is a requirement for a simple series of single label control samples to be imaged. 

It should be noted, however, that most standard spectral analysis algorithms such as linear 

unmixing or spectral angle mapper, require knowledge of the pure component spectra. 

Hence, single label samples must be run in most cases anyways. The theoretical sensitivity 

analysis might prove most advantageous for cases where it is very difficult to obtain a 

sample or to preserve a sample for imaging with two or more different settings or systems. 

In this case, the spectrum of the target endmember would only need to be imaged once, and 

then a series of optimization studies performed theoretically, using background or other label 

samples that were imaged under a range of equipment settings. A potential limitation could 

arise if a sample is used where there is no a priori information of the target endmember 

signature. This could be the case when attempting to analyze molecular composition of 

tissues from spectral autofluorescence image data or to classify tissue type based on overall 

autofluorescence spectrum. This case could also arise if the spectral properties of a 

fluorescent label or molecule were altered due to changes in environment, photobleaching, 

or other interactions. In such cases, a possible strategy could be to use this methodology to 

test the ability to detect one or a range of hypothetical target endmembers, assuming that one 

of them will be of interest. However, further work would likely need to be performed to 

confirm which of the hypothetical target endmembers is the real endmember of interest (e.g., 

the representative spectral signature of a specific unknown autofluorescence component, or 

of a pathologic region of tissue). Hence, this methodology would still be of utility, but would 

need to be run iteratively to evaluate different mixture scenarios.

5. Conclusion

Hyperspectral imaging approaches have been successfully translated to the research 

microscopy field and show great promise for clinical and other biomedical imaging systems. 

However, it has been difficult to quantitatively assess the effectiveness of biomedical 

spectral imaging approaches or to compare the response of one spectral imaging platform to 

another. This is likely due to the compounding factors of high biological variability and 

limited ability to construct biological samples that contain specific “known” concentrations 

or distributions of molecules (e.g., test scenarios where the ground truth is fixed). Here, we 

have presented an alternative methodology for performing a theoretical sensitivity analysis 

of biomedical spectral image data. This methodology has allowed us to compare the 
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performance of different spectral analysis algorithms, system settings, or even different 

spectral imaging systems. We have validated this methodology using experimental data and 

shown that the theoretical sensitivity predictions track closely with experimental 

measurements. We then demonstrated the power of this approach using a classical 

biomedical imaging problem: detecting a desired fluorescence signal (target endmember 

signal) in the presence of high background autofluorescence. We have further demonstrated 

that this approach can be used to quantitatively compare different spectral imaging systems – 

here we have compared a system that scans the fluorescence emission spectrum with one 

that scans the fluorescence excitation spectrum. This methodology could be of high utility 

for any of the following tasks: selecting an optimal spectral analysis algorithm, optimizing 

equipment and acquisition settings, or selecting an optimal imaging platform.

In future work, this theoretical sensitivity analysis methodology could be extended to a wide 

range of spectral imaging scenarios, such as for minimizing the number of wavelength bands 

acquired while achieving a specified detection performance, resulting in increased imaging 

speed and data reduction. Similarly, the approach could be used as part of the system design 

process in order to assure system optimization for completing a specified biomedical image 

detection task.

Acknowledgments

The authors would like to acknowledge support from NIH grants P01 HL066299, UL1 TR001417, S10 RR027535, 
S10 OD020149, and the Abraham Mitchell Cancer Research Fund. The authors would like to thank Dr. T. Thomas 
(Electrical and Computer Engineering, University of South Alabama) for discussion of some of the theoretical 
sensitivity principles described. Drs. Leavesley and Rich disclose part ownership of a start-up company founded to 
commercialize hyperspectral imaging technology.

References

1. Fink DJ. Technology Review. 1973; 75:32–41.

2. Goetz AFH, Vane G, Solomon JE, Rock BN. Science. 1985; 228:1147–1152. [PubMed: 17735325] 

3. Kruse F, Lefkoff A, Boardman J, Heidebrecht K, Shapiro A, Barloon P, Goetz A. Remote sensing of 
environment. 1993; 44:145–163.

4. Yesou H, Besnus Y, Rolet J. ISPRS journal of photogrammetry and remote sensing. 1993; 48:23–36.

5. Landgrebe D. PE & RS- Photogrammetric Engineering & Remote Sensing. 1997; 63:859–867.

6. Landgrebe D. IEEE Transactions on Geoscience and Remote Sensing. Mar.2005 43

7. Landgrebe D. A brief history of the laboratory for applications of remote sensing (LARS). Mar 
15.2007 

8. Dickinson M, Bearman G, Tille S, Lansford R, Fraser S. Biotechniques. 2001; 31:1272–1279. 
[PubMed: 11768655] 

9. Zimmermann T, Rietdorf J, Pepperkok R. FEBS letters. 2003; 546:87–92. [PubMed: 12829241] 

10. Harris AT. Cytometry A. 2006; 69:872–879. [PubMed: 16969808] 

11. Li Q, He X, Wang Y, Liu H, Xu D, Guo F. Journal of biomedical optics. 2013; 18:100901–100901. 
[PubMed: 24114019] 

12. Lu G, Fei B. Journal of biomedical optics. 2014; 19:010901–010901.

13. Wachman ES, Niu W, Farkas DL. Biophysical journal. 1997; 73:1215. [PubMed: 9284289] 

14. Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, Garner HR. Cytometry. 2001; 43:239–247. 
[PubMed: 11260591] 

15. Hiraoka Y, Shimi T, Haraguchi T. Cell structure and function. 2002; 27:367–374. [PubMed: 
12502891] 

Leavesley et al. Page 21

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Ecker RC, de Martin R, Steiner GE, Schmid JA. Cytometry Part A. 2004; 59:172–181.

17. Forest S, Grothaus J. Microsc. Microanal. 2004; 10:1304–1305.

18. Papadakis A, Stathopoulos E, Delides G, Berberides K, Nikiforidis G, Balas C. Biomedical 
Engineering, IEEE Transactions on. 2003; 50:207–217.

19. Zuzak KJ, Schaeberle MD, Lewis EN, Levin IW. Analytical Chemistry. 2002; 74:2021–2028. 
[PubMed: 12033302] 

20. Ntziachristos V, Bremer C, Weissleder R. Eur.Radiol. Jan.2003 13:195–208. [PubMed: 12541130] 

21. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. Nat. Biotechnol. 2004; 22:969–976. [PubMed: 
15258594] 

22. Vo-Dinh T. Engineering in Medicine and Biology Magazine, IEEE. 2004; 23:40–49.

23. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM. Journal of biomedical optics. 2005; 
10:041207–041207.

24. Leavesley SJ, Jiang Y, Patsekin V, Rajwa B, Robinson JP. Rev. Sci. Instrum. Feb.2008 79:023707–
023710. [PubMed: 18315305] 

25. Leblond F, Davis SC, Valdés PA, Pogue BW. Journal of photochemistry and photobiology B: 
Biology. 2010; 98:77–94.

26. Chwirot BW, Chwirot S, Redzinski J, Michniewicz Z. European Journal of Cancer. Oct.1998 
34:1730–1734. [PubMed: 9893661] 

27. Yaroslavsky AN, Neel V, Anderson RR. Journal of Investigative Dermatology. 2003; 121:259–266. 
[PubMed: 12880416] 

28. De Beule P, Dunsby C, Galletly N, Stamp G, Chu A, Anand U, Anand P, Benham C, Naylor A, 
French P. Review of scientific instruments. 2007; 78:123101. [PubMed: 18163714] 

29. Akbari H, Halig LV, Schuster DM, Osunkoya A, Master V, Nieh PT, Chen GZ, Fei B. Journal of 
Biomedical Optics. 2012; 17:0760051–07600510.

30. Leavesley SJ, Wheeler M, Lopez C, Baker T, Favreau PF, Rich TC, Rider PF, Boudreaux CW. 
Hyperspectral imaging fluorescence excitation scanning for detecting colorectal cancer: pilot 
study. presented at the SPIE BiOS. 2016:970315–970315.

31. Harsanyi JC, Chang C-I. IEEE Transactions on Geoscience and Remote Sensing. 1994; 32:179.

32. Richards, JA. Remote sensing digital image analysis: An introduction. 5. Springer-Verlag; 1999. 

33. Chang, C-I. Hyperspectral data processing: algorithm design and analysis. John Wiley & Sons; 
2013. 

34. Schowengerdt, RA. Remote sensing: models and methods for image processing. Academic press; 
2006. 

35. Schott, JR. Remote sensing. Oxford University Press; 2007. 

36. Keshava N. Lincoln Laboratory Journal. 2003; 14:55–78.

37. Keshava N, Mustard JF. Signal Processing Magazine, IEEE. 2002; 19:44–57.

38. Boardman J, Kruse F, Green R. Mapping target signatures via partial unmixing of AVIRIS data. 
presented at the Summaries of JPL Airborne Earth Science Workshop. 1995

39. Keshava N, Mustard JF. IEEE Signal. Process. Mag. 2002; 19:44–57.

40. Keshava N. Lincoln Laboratory Journal. 2003; 14:55–78.

41. Benediktsson J, Swain P, Ersoy O. IEEE Transactions on Geoscience and Remote Sensing. 1990; 
28:540–552.

42. Atkinson PM, Tatnall A. International Journal of remote sensing. 1997; 18:699–709.

43. Shafri HZM, Suhaili A, Mansor S. Journal of Computer Science. 2007; 3:419–423.

44. Huang X, Jensen JR. Photogrammetric engineering and remote sensing. 1997; 63:1185–1193.

45. Melgani F, Bruzzone L. IEEE Transactions on geoscience and remote sensing. 2004; 42:1778–
1790.

46. Pal M, Mather P. International Journal of Remote Sensing. 2005; 26:1007–1011.

47. Mountrakis G, Im J, Ogole C. ISPRS Journal of Photogrammetry and Remote Sensing. 2011; 
66:247–259.

48. Holden H, LeDrew E. Remote Sensing of Environment. 1998; 65:217–224.

Leavesley et al. Page 22

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Li X, Yeh A. International Journal of Remote Sensing. 1998; 19:1501–1518.

50. Harsanyi, JC. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image 
Sequences. UMI; 1993. 

51. Chang, CI. Hyperspectral imaging: Techniques for Spectral Detection and Classification. New 
York, NY: Kluwer Academy, Plenum Publishers; 2003. 

52. Shafri HZM, Suhaili A, Mansor S. Journal of Computer Science. 2007; 3:419–423.

53. Jia S, Qian Y. Geoscience and Remote Sensing, IEEE Transactions on. 2009; 47:161–173.

54. Teillet P. International Journal of Remote Sensing. 1986; 7:1637–1651.

55. Chavez PS. Remote sensing of environment. 1988; 24:459–479.

56. Kaufman Y, Tanré D, Gordon H, Nakajima T, Lenoble J, Frouin R, Grassl H, Herman B, King M, 
Teillet P. Journal of Geophysical Research: Atmospheres. 1997; 102:16815–16830.

57. Gu Y, Di W, Kelsell D, Zicha D. J. Microsc. 2004; 215:162–173. [PubMed: 15315503] 

58. Chorvat D Jr, Kirchnerova J, Cagalinec M, Smolka J, Mateasik A, Chorvatova A. Biophysical 
journal. 2005; 89:L55–L57. [PubMed: 16227502] 

59. Leavesley S, Ahmed W, Bayraktar B, Rajwa B, Sturgis J, Robinson JP. Multispectral imaging 
analysis: spectral deconvolution and applications in biology. Proceedings of SPIE. 2005; 5699:121.

60. Coghlan L, Utzinger U, Drezek R, Heintzelman D, Zuluaga A, Brookner C, Richards-Kortum R, 
Gimenez-Conti I, Follen M. Optics express. 2000; 7:436–446. [PubMed: 19407895] 

61. Fox DJ Jr, Velde HT, Preza C, O’Sullivan JA, Smith WH, Woolsey TA. Applied optics. 2006; 
45:3009–3021. [PubMed: 16639449] 

62. Liu L, Nie Y, Lin L, Li W, Huang Z, Xie S, Li B. Photodiagnosis and Photodynamic Therapy. 2012

63. Mansfield JR, Sowa MG, Payette JR, Abdulrauf B, Stranc MF, Mantsch HH. Medical Imaging, 
IEEE Transactions on. 1998; 17:1011–1018.

64. Ahmed WM, Leavesley SJ, Rajwa B, Ayyaz MN, Ghafoor A, Robinson JP. Proceedings of the 
IEEE. 2008; 96:512–531.

65. Annamdevula NS, Sweat B, Favreau P, Lindsey AS, Alvarez DF, Rich TC, Leavesley SJ. Sensors. 
2013; 13:9267–9293. [PubMed: 23877125] 

66. Favreau P, Hernandez C, Lindsey AS, Alvarez DF, Rich T, Prabhat P, Leavesley SJ. Journal of 
biomedical optics. 2014; 19:011017–011017. [PubMed: 24077519] 

67. Favreau PF, Hernandez C, Heaster T, Alvarez DF, Rich TC, Prabhat P, Leavesley SJ. Journal of 
biomedical optics. 2014; 19:046010–046010. [PubMed: 24727909] 

68. Thaler C, Vogel SS. Cytometry Part A. 2006; 69:904–911.

69. Sirkeci-Mergen B, Keralapura M, Coelho S, Leavesley SJ, Rich TC. Linear unmixing of 
hyperspectral images for analysis of fluorescently-labeled cellswith imperfect endmember spectra. 
presented at the 2013 IEEE 10th International Symposium on Biomedical Imaging. 2013:173–176.

70. Gupta N, Dahmani R, Gottlieb MS, Denes LJ, Kaminsky B, Metes P. Hyperspectral imaging using 
acousto-optic tunable filters. presented at the AeroSense’99. 1999:512–521.

71. Yuanlong Y, Yanming Y, Fuming L, Yufen L, Paozhong M. Lasers in surgery and medicine. 1987; 
7:528–532. [PubMed: 3431331] 

72. Hung J, Lam S, Leriche JC, Palcic B. Lasers in surgery and medicine. 1991; 11:99–105. [PubMed: 
2034016] 

73. Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Photochemistry and 
photobiology. 2003; 77:550–555. [PubMed: 12812299] 

74. Rocheleau JV, Head WS, Piston DW. Journal of Biological Chemistry. 2004; 279:31780–31787. 
[PubMed: 15148320] 

75. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM. J. Biomed. Opt. Jul.2005 10:41207. 
[PubMed: 16178631] 

76. Billinton N, Knight AW. Analytical biochemistry. 2001; 291:175–197. [PubMed: 11401292] 

77. Geddes, CD., Lakowicz, JR. Reviews in fluorescence. Springer; 2006. 

78. Rich TC, Webb KJ, Leavesley SJ. J. Gen. Physiol. 2014; 143:17–27. [PubMed: 24378904] 

79. Lin H-J, Szmacinski H, Lakowicz JR. Analytical biochemistry. 1999; 269:162–167. [PubMed: 
10094788] 

Leavesley et al. Page 23

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



80. Berezin MY, Achilefu S. Chemical reviews. 2010; 110:2641–2684. [PubMed: 20356094] 

81. Alfano R, Tata D, Cordero J, Tomashefsky P, Longo F, Alfano M. Quantum Electronics, IEEE 
Journal of. 1984; 20:1507–1511.

82. Richards-Kortum R, Sevick-Muraca E. Annu. Rev. Phys. Chem. 1996; 47:555–606. [PubMed: 
8930102] 

83. Tuchin VV, Utz SR, Yaroslavsky IV. Optical Engineering (Bellingham, Washington). 1994; 
33:3178–3188.

84. Tuchin, VV. Tissue optics: light scattering methods and instruments for medical diagnosis. 2. SPIE 
press; Bellingham: 2007. 

85. Chen X, Vierling L, Rowell E, DeFelice T. Remote Sensing of Environment. 2004; 91:14–26.

86. Favreau PF, Deal JA, Weber DS, Rich TC, Leavesley SJ. Feasibility for detection of 
autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging 
system. presented at the SPIE BiOS. 2016:971113–971113.

87. Lu D, Moran E, Batistella M. Remote sensing of environment. 2003; 87:456–469.

88. Sohn Y, Morán E, Gurri F. Photogrammetric engineering and remote sensing. 1999; 65:947–958.

89. Metz CE. Basic principles of ROC analysis. presented at the Seminars in nuclear medicine. 
1978:283–298.

90. Reach G. Diabetes Care. 2001; 24:803–804. [PubMed: 11347733] 

91. Du Q, Ren H, Chang C-I. IEEE Trans. Geosci. Remote Sens. 2003; 41:1525–1529.

92. Manolakis D, Shaw G. Signal Processing Magazine, IEEE. 2002; 19:29–43.

93. Boardman JW, Kruse FA. IEEE Transactions on Geoscience and Remote Sensing. 2011; 49:4138–
4152.

94. Williams P, Hunt A, R E Jr. Remote Sens. Environ. 2002; 82:446–456.

95. Manolakis D, Shaw G. Signal Processing Magazine, IEEE. 2002; 19:29–43.

96. Leavesley SJ, Annamdevula N, Boni J, Stocker S, Grant K, Troyanovsky B, Rich TC, Alvarez DF. 
J. Biophotonics. 2012; 5:67–84. [PubMed: 21987373] 

97. Favreau PF, Hernandez C, Lindsey AS, Alvarez DF, Rich TC, Prabhat P, Leavesley SJ. Journal of 
biomedical optics. 2014; 19:011017–011017. [PubMed: 24077519] 

98. Sullivan L, Favreau P, Leavesley S, Alvarez D, Stringfellow A. Am J Respir Crit Care Med. 2012; 
185:A3663.

99. Chang IC. IEEE Transactions on Sonics and Ultrasonics. 1976; 23:2–21.

100. Wachman ES, Niu W, Farkas DL. Biophysical journal. 1997; 73:1215–1222. [PubMed: 9284289] 

101. Romier J, Selves J, Gastellu-Etchegorry J. Rev. Sci. Instrum. 1998; 69:2859.

102. Bei L, Dennis GI, Miller HM, Spaine TW, Carnahan JW. Progress in Quantum Electronics. 2004; 
28:67–87.

103. Hall H, Bridges M, Leavesley S, Robinson JP. Design of a wavelength-tunable light source using 
an acousto-optic tunable filter. Proceedings of SPIE. 2007; 6668:66680W.

104. Favreau PF, Rich TC, Prabhat P, Leavesley SJ. Tunable thin-film optical filters for hyperspectral 
microscopy. presented at the SPIE BiOS. 2013:85890R–85890R.

105. Janesick JR. CCD transfer method: standard for absolute performance of CCDs and digital CCD 
camera systems. presented at the Electronic Imaging’97. 1997:70–102.

106. Janesick, JR. Scientific charge-coupled devices. Vol. 83. SPIE press; 2001. 

107. Halter M, Bier E, DeRose PC, Cooksey GA, Choquette SJ, Plant AL, Elliott JT. Cytometry Part 
A. 2014; 85:978–985.

108. Gruninger J, Sundberg R, Fox M, Levine R, Mundkowsky W, Salisbury M, Ratcliff A. Automated 
optimal channel selection for spectral imaging sensors. Algorithms for Multispectral, 
Hyperspectral and Ultraspectral Imagery VII. 2001; 4381:68–75.

Leavesley et al. Page 24

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of the Theoretical Sensitivity Curve procedure for determining the sensitivity of 

detecting a single endmember of interest. A) A raw spectral image that contains all 

endmembers except for the endmember of interest is acquired. For this example, a lung 

tissue slice that did not contain GFP-expressing cells (e.g., from a control animal) was 

imaged using the AOTF-based microscope system described in the Methods (instrument 

configuration #1). Spectral image data were acquired sequentially from 450–700 nm, in 5 

nm increments. The false-colored image (left) displays the 610 nm (Red), 515 nm (Green), 

and 480 nm (Blue) bands as an RGB composite image. To visualize total fluorescence 

emission intensity, all wavelength bands are summed and a region of interest (ROI) is 

selected, as outlined shown in red. The spectral library used for analysis is also shown – in 

this case containing fluorescence emission spectra for green fluorescent protein (GFP), lung 

tissue autofluorescence (AF), and nonspecific instrument background (BG). These spectra 

were measured from single-label control samples: unlabeled lung tissue, GFP-expressing 

cells grown on coverslip, and a blank slide, respectively. B) The spectrum of the endmember 

of interest – in this case GFP – is added to the ROI in varying levels, where the number for 

GFP Signal Added indicates the intensity of the peak wavelength. The effect of adding the 
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endmember signal can be visualized in the summed intensity image (the summed intensity 

across all wavelength bands) and in the spectrally analyzed image – in this case as analyzed 

using non-negatively constrained linear unmixing. C) The output of the theoretical 

sensitivity analysis methodology consists of 3 plots: the Theoretical Sensitivity Curve 

(TSC), the Thresholded Positive Pixel Curve (TPPC), and the Receiver Operator 

Characteristic Curve (ROC). These plots allow the user to assess the performance of the 

spectral imaging assay – including the sample characteristics, hardware configuration, and 

spectral analysis algorithm. The TSC is used to assess the linearity of response and to 

visualize the standard deviation of the analyzed (in this case, unmixed) spectral data. The 

TSC is generated by plotting the intensity of each pixel within the ROI after performing 

spectral analysis, for each amount of endmember signal added. Pixel intensities are shown as 

black squares, a linear regression to all pixel intensities is shown as a black line, and the red 

error bars indicate the standard deviation of pixel intensities. D) The TPPC is used to 

calculate the false positive detection rate at a given detection threshold, as well as to 

visualize the detection response slope (more vertical indicates increased ability to 

discriminate negative and positive pixels) and the detection range (which should equal the 

number of pixels within the detection region for a sufficiently high level of target 

endmember). The TPPC is generated by selecting a threshold for classifying positive pixels 

– in this case GFP-containing pixels. The number of pixels within the ROI above the 

threshold are counted and plotted as a function of endmember signal added. The ROC is 

used as an overall characterization of detection performance, where an area under the curve 

(AUC) of 1 represents an ideal discrimination between all positive and negative pixels. The 

ROC is also generated by assuming that any positive pixels detected within the ROI are true 

positive and that any positive pixels detected outside the ROI are false positive.
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Figure 2. 
Experimental validation of the theoretical sensitivity analysis methodology was performed 

by measuring Calcein Green uptake in HEK293 cells labeled with NucBlue (nuclear marker) 

using a Nikon A1R spectral confocal microscope. A) Transmitted light image to visualize 

cellular outlines. B) Spectral library used for linear unmixing. C) Merged, false-colored 

composite of unmixed images for 3 selected time points: 0, 1050, and 1800 seconds. 

NucBlue labeling is shown as blue, non-specific NucBlue labeling as red, and Calcein Green 

as green. Note that by the final time point, several nuclear regions exhibit a bright yellow 

color, indicating pixels that are oversaturated on at least one wavelength band.
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Figure 3. 
The theoretical sensitivity analysis methodology provides similar signal response as 

experimental studies. A) Experimental time lapse image data of HEK293 cells labeled with 

NucBlue and Calcein Green (added at t = 60 seconds). The unmixed Calcein Green 

abundance is shown to visualize the increase in Calcein Green signal over time. 

Concentration and time-lapse parameters were adjusted so as to intentionally oversaturate 

the image data at later time points in order to evaluate the sensitivity response at saturated 

conditions. B) Theoretical sensitivity analysis of the initial time point from the same image 

set (t = 0 seconds). The spectrum of Calcein Green was added at varying scaling factors (SF) 
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to a small region within the image prior to unmixing. The unmixed Calcein Green signal was 

then assessed, best visualized at a scaling factor of 2000 (SF = 2000). C) False-colored 

merged composite image of the 3 signals from the spectral library using experimental data 

from a time point mid-way through the experiment (t = 1050 seconds). NucBlue labeling is 

shown as blue, non-specific NucBlue labeling as red, and Calcein Green as green. Three 

regions of interest were selected to account for areas with high NucBlue intensity (cyan 

region), high Calcein Green intensity (green region), or a region with high intensities of both 

that became oversaturated at selected wavelength bands during later time points (yellow 

region). D) Experimental unmixed Calcein Green signal response from the 3 regions shown 

in Panel C. Note that the oversaturated region produced a highly nonlinear response 

indicating approach to a maximum achievable unmixed signal intensity (red dotted line). E) 

Theoretical unmixed Calcein Green signal response from the same 3 regions. Note that all 3 

regions eventually reach a saturating signal level for very high Calcein Green scaling factors. 

F) Comparison of the experimental and theoretical responses using a 12-bit detector 

threshold in the theoretical sensitivity analysis demonstrated that the response curves are 

similar in shape, but that the theoretical response saturates at a higher unmixed Calcein 

Green signal intensity, as indicated by the blue dashed line and values on the secondary y-

axis. E) Comparison of the experimental and theoretical responses using a 11.5-bit detector 

threshold in the theoretical sensitivity analysis demonstrated a greatly improved match of 

theoretical and experimental curves, as indicated by both the shape and magnitude of both 

responses.
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Figure 4. 
The theoretical sensitivity analysis methodology can be used to compare the performance of 

different spectral analysis algorithms for endmember detection, and to select an optimal 

algorithm. The raw spectral image, region of interest (ROI), and spectral library from Figure 

1 were evaluated with 4 analysis algorithms: Linear Unmixing (LU), Spectral Angle Mapper 

(SAM), Constrained Energy Minimization (CEM), and Matched Filter (MF). For each 

analysis algorithm, the Theoretical Sensitivity Curve (TSC), Thresholded Positive Pixel 

Curve (TPPC), and Receiver Operator Characteristic Curve (ROC) were calculated. To 

generate comparable results for the TPPC, a threshold for each analysis algorithm was 

selected that resulted in approximately 100–200 false-positive pixels detected (shown as the 

value of the TPPC at 0 added endmember spectra). Results from the TPPC curve show that 

LU, SAM, and MF algorithms provide similar response functions for detecting positive 

pixels. These results can be visualized in the spectrally analyzed target endmember image, 

generated at a scaling factor of 60 and identical threshold value (pixels above the threshold 

are false-colored red). Consistent with the TPPC results, a large percentage of pixels within 

the target region were identified as positive for the LU, SAM, and MF algorithms, but not 

for CEM. Note that the threshold value for SAM was 0.43 radians. Results from the ROC 

curve show that SAM provided the best ROC response, as measured by area under the ROC 

curve (AUC = 0.899), followed by LU (0.742), then CEM (0.564), then MF (0.537). These 

results were also visualized in the spectrally analyzed target endmember image, generated at 
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a scaling factor of 10 and a threshold value of 30 (a threshold of 0.5 radians was used for the 

SAM algorithm). As can be seen for this very low level of target endmember added, SAM 

and LU were the only algorithms that identified even a subset of pixels within the region.
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Figure 5. 
Theoretical Sensitivity Curve analysis can be used to compare the performance of different 

spectral imaging hardware or systems. Here, two different microscope configurations were 

compared: one which used a thin film tunable filter to scan the fluorescence emission 

spectrum[97, 104] and one which used a similar thin film tunable filter to scan the excitation 

spectrum[67]. A sample similar to that used in Figure 1 was used and the ability to detect 

green fluorescent protein (GFP) was assessed. A) The emission-scanning image was 

acquired using 1 s acquisition time per wavelength band. B) The excitation-scanning image 

was acquired using 200 ms acquisition time per wavelength band. By visual inspection of 

the wavelength-summed image data alone, it is clear that the excitation scanning system 

provides enhanced performance. This is likely due to the fact that the excitation scanning 

system has fewer optical elements to filter the emitted fluorescence, and thus allows a higher 

percent transmission of emitted fluorescence and corresponding higher detection sensitivity. 

Results from a theoretical sensitivity analysis methodology provide a quantitative metric for 

measuring the enhancement in performance – specifically the reduced false positive rate and 

the enhanced receiver operator characteristic performance. The theoretical sensitivity curve 

(TSC) and additional curves were calculated using a non-negatively constrained linear 

unmixing algorithm. The threshold for the thresholded positive pixel curve (TPPC) and the 

intensity of endmember added for the Receiver Operator Characteristic Curve (ROC) were 

scaled by the ratio of acquisition times to provide comparable results. Comparison of the 

TSC shows that both imaging modalities provide a linear response for detecting GFP. 

However, comparison of the TPPC for both images shows that detection of GFP-positive 

pixels is possible with fewer false positive pixels when using excitation scanning. 

Comparison of the ROC for both images shows that excitation scanning has a much higher 

area under the curve (AUC = 0.851) vs. emission scanning (AUC = 0.595).
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Figure 6. 
Comparison of theoretical sensitivity curve analysis performed in 3 regions of interest using 

non-negatively constrained linear unmixing analysis. A) Regions of interest correspond to 

high tissue autofluorescence (AF) – indicated by the red region, medium autofluorescence – 

green region, and low autofluorescence – blue region. In each case the endmember signal for 

GFP was added incrementally to each pixel in the region. B) Results from the theoretical 

sensitivity analysis show that incremental additions of GFP signal produce a linear response 

for all regions, shown by the Theoretical Sensitivity Curve (TSC). However, the standard 

deviation for detecting GFP signal is highest in the high AF region and decreases with 

decreasing AF, as shown by the red error bars. The Thresholded Positive Pixel Curve 

(TPPC) shows improved performance for detecting low GFP positive pixels in the low AF 

region. The high AF region resulted in a TPPC with a higher number of false positive pixels 

and a shallower slope. By contrast, the low AF region resulted in a TPPC with 0 false 

positive pixels and a steep slope, indicating that it is easier to discriminate between positive 

and negative pixels when AF is low. Finally, the Receiver Operator Characteristic Curve 

(ROC) produced increasing area under the curve (AUC) for decreasing autofluorescence, 

with AUC = 0.857 for the high AF region and AUC = 0.920 for the low AF region. 

Interestingly, the mid AF region resulted in AUC = 0.830, indicating reduced performance in 

the mid AF region.
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Figure 7. 
Comparison of theoretical sensitivity curve analysis performed in 3 regions of interest using 

spectral angle mapper analysis. A) Regions of interest correspond to high tissue 

autofluorescence (AF) – indicated by the red region, medium autofluorescence – green 

region, and low autofluorescence – blue region. In each case the endmember signal for GFP 

was added incrementally to each pixel in the region. B) Results from the theoretical 

sensitivity analysis show that incremental additions of GFP signal produce a non-linear and 

decreasing response for all regions, shown by the Theoretical Sensitivity Curve (TSC). The 

standard deviation for detecting GFP signal shows no immediate correlation to the level of 

AF in each region, as shown by the red error bars. Similar to linear unmixing analysis 

(Figure 6), the slope of the Thresholded Positive Pixel Curve (TPPC) becomes more vertical 

with decreasing AF, indicating that it is easier to discriminate between positive and negative 

pixels when AF is low. For the high AF region, the maximum value of the TPPC is 1243 and 

the minimum is 47, giving a range of 1196 positive pixels. For the mid AF region, the 

maximum value is 1768 and the minimum is 47, giving a range of 1721 positive pixels. For 

the low AF region, the maximum value is 1937 and the minimum is 47, giving a range of 

1890 positive pixels, which is equal to the total number of pixels within the region (45×42 

pixel region). Also similar to linear unmixing analysis, the Receiver Operator Characteristic 

Curve (ROC) produced increasing area under the curve (AUC) for decreasing 

autofluorescence, with AUC = 0.901 for the high AF region, AUC = 0.911 for the mid AF 

region, and AUC = 0.963 for the high AF region.
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Figure 8. 
Flowchart for applying the theoretical sensitivity analysis methodology to optimize a 

hyperspectral imaging study. The process begins with a simple set of single-label control 

experiments, from which the spectrum of each label is extracted and stored in a spectral 

library. A target endmember is then selected and a region within which to evaluate the 

detection sensitivity is also selected. It is recommended to select 2 regions, one with a low 

level of other signals (autofluorescence or other labels) and one with the highest level of 

signals, so as to challenge the detection algorithm. The theoretical sensitivity analysis is then 

run and the parameters of the analysis adjusted to ensure that an appropriate range of scaling 

factors and thresholds are evaluated. The results of the sensitivity analysis are then used to 

select the analysis algorithm, equipment settings, equipment platform, and/or fluorescent 

labels that maximize detection performance.

Leavesley et al. Page 35

J Biophotonics. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Theoretical sensitivity analysis can be run for a range of scenarios, allowing optimization of 

image acquisition and analysis settings. The image from Figure 5B was used. Multiple 

Thresholded Positive Pixel Curves (TPPC) were constructed for different threshold values 

for each of 4 analysis approaches non-negatively constrained linear unmixing (LU), spectral 

angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF). 

TPPC analysis shows that, for decreasing threshold values, LU and MF allow weaker GFP 

endmember signals to be detected with no increase in false positives until a very low 

threshold is reached. However, decreasing the threshold in SAM analysis resulted in weaker 
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endmember signals being detected at the expense of increasing false positive pixels, while 

CEM displayed decreased overall sensitivity in detecting positive pixels. ROC analysis 

shows that LU and MF also yield similar results, with CEM displaying reduced performance 

and SAM displaying only marginal improvements in performance with increasing levels of 

target endmember added.
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Table 1

Nomenclature used in this manuscript

Term Description

Endmember A spectral component of an image. This is often either an exogenously added dye, a fluorescent protein, or tissue 
autofluorescence.

Target Target refers to a specific endmember of interest. This could be one fluorescent label, for which a particular study was 
designed to detect.

Signature, fingerprint Both of these terms refer to the spectral shape of a given endmember.

Symbol Variable

k Image width (pixels)

l Image height (pixels)

m Number of endmembers

n Number of spectral bands

w Noise

I Intensity

r⃗ Endmember spectrum

r Spectral library

x⃗ Measured pixel spectrum

x⃗′ Measured pixel spectrum for modified pixel within a region of interest (contains pixel + target endmember spectrum)

x Spectral image

a Abundance

Rcorr Sample correlation matrix

U Undesired spectra (spectral library with target endmember spectrum removed)

P MTMF rejection operator

q⃗ MTMF filter operator

J Biophotonics. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Leavesley et al. Page 39

Table 2

Summary of the effects of 4 common spectral analysis algorithms on the outcomes of the theoretical 

sensitivity analysis methodology, as applied to the example of detecting a weak fluorescence signal among 

strong background autofluorescence. The utility of each curve for providing information to the end user is 

summarized in the 2nd row. Each curve provides different information for examining the response and 

performance of the analysis algorithm.

Measured Outcome TSC
(Theoretical Sensitivity Curve)

TPPC
(Thresholded Positive Pixel
Curve)

ROC
(Receiver Operator
Characteristic Curve)Algorithm

Utility of Outcome Valuable in visualizing the sensitivity 
linearity of the combined biological 
sample + imaging hardware + analysis 
algorithm, as well as potential error 
associated with measuring the target 
endmember. High standard deviation 
(error bars) indicates a high biological 
variability and potential for 
misclassification and false-positive 
detection.

Valuable in assessing the ability to detect 
positive pixels for a specified detection 
threshold. This is highly relevant to most 
biomedical spectral imaging assays, as 
the end result is often a quantified count 
(# of expressing cells, # of dividing cells, 
% of tissue that is pathogenic, etc.). For 
the majority of scenarios a global 
threshold is used to make the count, and 
the TPPC can be used to measure the 
number of false positive detections and 
the increase in target endmember signal 
that is required to detect all true positive 
pixels.

Valuable as a classical 
“gold-standard” approach 
for visualizing the 
sensitivity and specificity 
of a spectral imaging 
assay. The ROC 
characterizes the spectral 
imaging classification 
performance for one 
specified level of target 
endmember.

LU (Linear Unmixing) Linear behavior Standard deviation 
insensitive to scaling factor

Reasonable detection slope indicates the 
ability to detect weak signals in high 
autofluorescence regions if the spectra of 
all endmembers are known a priori

SAM (Spectral Angle 
Mapper)

Highly nonlinear behavior Standard 
deviation decreases with increasing 
scaling factor (as the angle between test 
pixels and the target endmember 
decreases) Standard deviation is very 
high for low background and low signal

Lower detection slope, especially for 
regions with high autofluorescenec, 
hence a higher scaling factor may be 
needed for accurate detection Threshold 
specified in radians

Improved performance, but 
may be skewed because 
SAM is insensitive to 
intensities

CEM (Constrained 
Energy Minimization)

Nonlinear behavior Standard deviation 
increases with increasing scaling factor

Much lower detection slope than LU and 
MF, hence a higher scaling factor will 
likely be needed for accurate detection 
and the threshold may need to be 
increased to compensate

Poor performance for weak 
signals

MF (Matched Filter) Linear behavior Standard deviation 
insensitive to scaling factor

Similar detection slope as LU, but right-
shifted, indicating a reduced ability to 
detect very weak signals

Poor performance for very 
weak signals
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