Skip to main content
. 2017 Nov 9;7:15162. doi: 10.1038/s41598-017-15389-3

Table 4.

Partial least squares regression (PLSR) models for the quantification of offal using FT-IR spectroscopies.

model Na nb factors RMSECc R 2 RMSECVd R 2-CV RMSEPe R 2-P
FT-IR spectroscopy quantification of offal 425 180 11 0.07 0.96 0.07 0.96 0.11 0.75
quantification of beef offal 245 90 9 0.05 0.98 0.06 0.97 0.06 0.97
quantification of pork offal 245 90 8 0.07 0.96 0.06 0.96 0.14 0.58
quantification of beef honey comb tripe 75 30 6 0.03 0.99 0.04 0.98 0.05 0.96
quantification of beef liver 75 30 6 0.03 0.99 0.03 0.99 0.03 0.95
quantification of beef omasum 75 30 5 0.04 0.99 0.04 0.96 0.03 0.95
quantification of pork heart 75 30 10 0.04 0.99 0.07 0.96 0.1 0.45
quantification of pork kidney 75 30 9 0.03 0.99 0.04 0.98 0.07 0.94
quantification of pork liver 75 30 6 0.03 0.99 0.04 0.99 0.07 0.81
quantification of beef honey comb tripe & omasum 135 60 5 0.04 0.99 0.04 0.98 0.04 0.95
quantification of pork heart & kidney 135 60 9 0.05 0.98 0.06 0.97 0.14 0.67

aN, number of spectra for calibration. bn, number of spectra for prediction. cRMSEC, root mean squares error of calibration. dRMSECV, root mean squares error of cross-validation (9-fold). eRMSEP, root mean squares error of prediction.