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Background: Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-
inducible factor 1 a (HIF-1a) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer
progression, and resistance to therapy. However, the effect of genistein on HIF-1a and glycolysis in hepatocellular carcinoma
(HCC) is still unclear.

Methods: Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein
incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1a were used to test
the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its
combination with sorafenib.

Results: Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor
overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1a reversed the effect of genistein,
genistein no longer has effects on HIF-1a siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of
sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice.

Conclusions: Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1a, therefore
inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis
may help identify effective treatments for HCC patients at advanced stages.

Hepatocellular carcinoma (HCC) is associated with high mortality
rates and its malignance is highly related to the metabolic change in
HCC cells (Iansante et al, 2015). Glucose metabolism in HCC cells is
characterised by two major biochemical events: increased glucose
uptake and aerobic glycolysis. The former is strongly dependent on
the upregulated expression and activity of glucose transporters
(GLUTs), which are 10–12-fold higher in tumours than in healthy

cells (Mueckler and Thorens, 2013). GLUT1, the expression of which
is regulated by hypoxia-inducible factor 1 a (HIF-1a), is considered
the main overexpressed isoform in a wide range of human cancers
(Barron et al, 2016). Hexokinase (HK) 2, which catalyses the first rate-
limiting step of glycolysis (Vander Heiden et al, 2009), is the only one
that retains catalytic capacity in both C- and N-terminal portions to
double the rate of glycolysis (Lis et al, 2016). In addition, instead of
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being free in the cytosol, HK2 is frequently located strategically within
the outer mitochondrial membrane and binds to transmembrane
voltage-dependent anion channels (VDACs; Mazure, 2017), to block
the release of cytochrome c (Cyt c) from mitochondria, thus
protecting cancer cells from apoptosis. These features may explain
why the overexpression of HK2 or/and GLUTI can be considered as a
typical feature of the malignant phenotype. Agents targeting these
molecules may provide a potential therapeutic option for advanced
HCC.

Genistein (Gen), a soybean-derived isoflavonoid compound,
produced almost exclusively in leguminous species, has been
studied extensively for its health benefits (Jeong et al, 2004; Xu
et al, 2009). The blood concentration of Gen in individuals varies
markedly depending on soy consumption: it is 100–1000 times
higher in high-soy-diet Asian consumers than in low-soy-diet
Western consumers, and the differences have been linked to
various clinical outcomes (Adlercreutz et al, 1993). Population-
based studies suggest that the plasma Gen level is inversely
associated with the risk of several types of cancers, especially
breast, endometrial, and prostate neoplasms (Kurahashi et al, 2008;
Shike et al, 2014). Gen exhibits antitumour activities through
various mechanisms, such as oestrogenic activity (Gertz et al,
2012), antioxidant (Zhou and Liu, 2013; Wang et al, 2017), anti-
migration (Dai et al, 2015a), and metabolism regulation (Vera et al,
1996). Studies have shown its apoptosis induction effect in aerobic
glycolytic HCC cells (Wang et al, 2014). However, the mechanism
underlying the effect of Gen, especially its role in glucose
metabolism, is not fully understood.

In the present study, we showed that Gen inhibited glycolysis
and induced apoptosis in HCC cells. Further investigation showed
that Gen inhibited the expression and activity of HIF-1a to
suppress GLUT1/HK2. In addition, Gen improved the sensitivity
to sorafenib (Sora) in Sora-resistant HCC cells with activated
glycolysis in vitro and in vivo, providing evidence for its potential
clinical application in the treatment of HCC.

MATERIALS AND METHODS

Reagents. Gen, glucose, 3-bromopyruvate (3-BP), roxadustat (FG-
4592), and cytochalasin B (CB) were purchased from Sigma-
Aldrich (St Louis, MO, USA). Sora tosylate was purchased from
Selleck (Selleck Chemicals, Shanghai, China), and dissolved in
dimethyl sulfoxide (Sigma-Aldrich).

Cell culture. Five human HCC cell lines (HCC-LM3, SMMC-
7721, Hep3B, Bel-7402, and Huh-7) and a normal hepatic cell line
(LO2; Dai et al, 2014) were purchased from Chinese Academy of
Sciences Committee Type Culture Collection cell bank and
cultured in high-glucose Dulbecco’s modified Eagle’s medium
(Hyclone, Logan, UT, USA) supplemented with 10% foetal bovine
serum, 100 U ml� 1 penicillin, and 100 mg ml� 1 streptomycin at
37 1C in a humidified atmosphere of 5% CO2.

Cell viability test. CCK-8 solution (10 ml; Peptide Institute Inc.,
Osaka, Japan) was added to cells in a 96-well plate. The plate was
maintained in a dark incubator (37 1C, 5% CO2) for 2 h, and then
absorbance was measured at 450 nm using a microplate reader for
further half maximal inhibitory concentration (IC50) analysis.

Apoptosis analysis and JC-1 staining. Cells were stained with
propidium iodide (PI)-Annexin V/fluorescein isothiocyanate or
phycoerythrin-Annexin V/7-amino-actinomycin (BD BioSciences,
San Jose, CA, USA) according to the manufacturer’s instructions.
JC-1 (10 mg ml� 1; BD BioSciences) was used to measure
mitochondrial membrane potential. Cells were then analysed using
a flow cytometer (Cytomics FC500; Beckman Coulter, Fullerton,
CA, USA).

Cell cycle analysis. Cells were treated with Gen and were fixed
with cold 70% ethanol overnight. After washing once with PBS,
cells were stained with PI (BD BioSciences) and analysed on a flow
cytometer.

Biochemical assays. To measure 2-DG uptake, cells were washed
with uptake buffer twice, cultured in 1 mCi ml� 1 [3H]-2-DG at
37 1C for 30 min, and solubilised with 0.1% sodium dodecyl sulfate
(SDS). The radioactivity was calculated using a liquid scintillation
counter, normalised to the protein content, and corrected for the
zero-time uptake per mg protein. Lactate levels were measured
using a fluorometric assay (BioVision, Milpitas, CA, USA). O2

consumption was tested using the 110 Fiber optic oxygen monitor
(Instech, Plymouth Meeting, PA, USA) and expressed as nmol O2

per million cells per min. ATP content was measured with an ATP
detection kit according to the manufacturer’s instructions
(Promega, Madison, AL, USA). HK, PFK, PK activity, and
NADPH/NADP Quantitation were measured using detection kits
according to the manufacturer’s instructions (Sigma-Aldrich).
Transcription activity of HIF-1a was detected using TransAM
HIF-1 Transcription Factor ELISA Kits (Active Motif, Carlsbad,
CA, USA) according to the manufacturer’s protocol.

Reverse transcription PCR and quantitative real-time–PCR.
The TRIzol reagent was used to extract total RNA. cDNA was
synthesised using SuperScript II reverse transcriptase with Oligo
(dT; Invitrogen, Carlsbad, CA, USA). The real-time PCR
experiment was performed following the protocol of the real-time
PCR kit (Takara, Dalian, China). The levels of the target genes
were normalised to b-actin.

Protein extraction and western blotting. The cytosolic and
mitochondrial fractions were separated and purified using a
Mitochondrial Isolation Kit (Pierce, Rockford, IL, USA) according
to the manufacturer’s protocol. Total cellular proteins were
extracted using radioimmunoprecipitation assay buffer (Sigma-
Aldrich) containing protease inhibitors. The samples were then
resolved by SDS-polyacrylamide gel electrophoresis and trans-
ferred to polyvinyl difluoride membranes. The membranes were
sequentially blocked in PBS containing 0.1% Tween 20 (PBST)
with 5% non-fat milk for 1 h and probed with primary antibodies
(Cell Signaling Technology, Danvers, MA, USA), and then washed
with PBST three times and incubated with appropriate secondary
antibodies for 1 h at room temperature. Finally, the membranes
were washed again and scanned using the Odyssey two-colour
infrared laser imaging system (LI-COR Biosciences, Lincoln, NE,
USA). b-actin was used as an internal control.

Plasmid construction, lentivirus packaging, and infection. Full-
length cDNAs encoding the GLUT1 or HK2 or GLUT1/HK2
sequence were amplified from 293 T cDNA and then cloned into
the pCDH-CMV-MCS-EF1-GFP vectors (System Biosciences,
Mountain View, CA, USA). Empty lentiviral vector was used as
control. HCC-LM3 cells were infected with empty vector or
lentivirus-expressed target genes in the presence of 8mg ml� 1

polybrene (Sigma-Aldrich) overnight.
HIF-1a expression in HCC-LM3 cells was ablated with siRNAs.

Scramble siRNA (scRNA) was used as control. All plasmid
sequences were confirmed by DNA sequencing. The siRNAs were
transfected into cells using Lipofectamine 2000 (Invitrogen). The
transduction efficiency was measured by real-time PCR and
western blotting.

Animal experiments. Four-week-old male athymic BALB/C nu/
nu mice with free access to water and food were housed in a
standard animal laboratory with a 12-h light–dark cycle and
constant environmental conditions. All experiments were per-
formed in accordance with ethical standards and in compliance
with the Declaration of Helsinki, and according to the national and
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international guidelines. The study was approved by the Animal
Care and Use Committee of Shanghai Tongji University. Serum-
free culture medium (200ml) containing HCC-LM3 cells (5� 106)
was subcutaneously injected into the upper flank region of 24 mice.
When the tumour volume was B100 mm3, the animals were
randomly divided into four groups: normal control (NC), and Gen
(20, 40, and 80 mg kg� 1) according to previous publications (Qin
et al, 2015). Saline or Gen was given by oral gavage once a day for
21 days. Tumour volume was calculated using the following
formula: volume (mm3)¼ (width)2� length/2. Body weight of
mice was measured every 4 days. Mice were killed 24 h after the last
treatment. Tumours were resected and imaged using a high-
definition digital camera. Haematoxylin and eosin (HE) were used
to stain the nuclear region and cytoplasm to observe histopathol-
ogy changes. The terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labelling (TUNEL) assay was used to measure the
extent of tumour cell apoptosis, and the percentage of TUNEL-
positive cells was determined by counting the average number of
cells under four high-power fields. Protein expression of GLUT1
and HK2 was detected using immunohistochemistry.

For the combination treatment, another 24 mice that received
upper flank injection of HCC-LM3 cells were divided into four
groups: NC, Sora alone (10 mg kg� 1), Gen alone (40 mg kg� 1),
and combination treatment (Sora 10 mg kg� 1þGen
40 mg kg� 1; Dai et al, 2015b; Li et al, 2016). Both Sora and Gen
were given by oral gavage once a day for 30 days. Measurements
were performed as described above.

Statistical analysis. All results are expressed as means±s.d.
Statistical analysis was performed using a two-tailed unpaired
Student’s t-test and SPSS 17.0 software (IBM, Armonk, NY, USA).
Quantitative data are representative of at least three independent
experiments. Values of *Po0.05, **Po0.01, and ***Po0.001 were
considered statistically significant.

RESULTS

Gen inhibited proliferation, caused cell cycle arrest at the G2/M
phase, and induced apoptosis and autophagy in HCC cells
in vitro. Gen inhibited cell viability in a time- and dose-dependent
manner in all HCC cell lines (Figure 1A and B). The IC50 of Gen
for cell proliferation inhibition in HCC-LM3, Bel-7402, Huh-7,
Hep3B, SMMC-7721, and LO2 cells was 67.31, 71.44, 103.53,
92.71, 86.47, and 161.41mM, respectively, at 48 h. The protein
expression of proliferating cell nuclear antigen (PCNA) confirmed
the effect of Gen on inhibiting cell growth (Figure 1C). The normal
liver cell line LO2 was barely affected at a certain concentration
range of Gen (Figure 1A and B), suggesting that Gen can inhibit
cancer cells without markedly affecting normal cells.

Gen causes cell cycle arrest at the G2/M phase in various types
of cancer cells (Fang et al, 2016). Incubation with Gen significantly
increased the proportion of cells in the G2/M phase in HCC-LM3
and Bel-7402 cells, concomitant with a decrease in the number of
cells in the G0/G1 phase (Figure 1D).

Treatment with Gen significantly induced apoptosis in HCC-
LM3 cells (Figure 1E). In Bel-7402 cells, the apoptosis rate with
Gen treatment at 40 mM was slightly higher than that in untreated
cells, although the difference did not reach statistical significance
(P¼ 0.061). Gen at 60 and 80 mM significantly induced apoptosis in
Bel-7402 cells (Figure 1E). Consistent with the apoptosis staining
results, there was a significant increase in protein expression of
active caspases 3 and 9 and a decrease in cleaved poly ADP-ribose
polymerase (PARP) in both HCC cell lines treated with Gen
(Figure 1C). These results indicated that Gen induced apoptosis in
HCC cells in vitro.

In addition, Gen at 60 and 80 mM induced the expression of
biomarkers of autophagy, LC3-II and Beclin1 (Figure 1C),
indicating that, besides apoptosis, Gen also induced autophagy in
aerobic glycolytic HCC cells.

Gen inhibited HCC cell growth in vivo. Mice treated with Gen at
40 and 80 mg kg� 1 showed a significantly smaller tumour size
than those treated with saline (Figure 1F). Mice treated with Gen at
20 mg kg� 1 did not differ significantly from the control group,
showing a small reduction in tumour size (0.462±0.036 vs
0.891±0.195, P¼ 0.074). The results of dynamic observations of
the antitumour effects of Gen treatment for 21 days showed the
same pattern (Supplementary Figure S1A).

Nuclear fragmentation in HE staining with Gen treatment
suggested a considerable degree of necrosis (Figure 1G). No
significant body weight loss or liver, kidney, lung, and spleen
damage were observed during the 21 days of treatment
(Supplementary Figure S1B and C), demonstrating the safety of
Gen in vivo.

Gen inhibited glycolysis in aerobic glycolytic HCC cell lines.
HCC-LM3 and Bel-7402 possess higher glycolysis rate and higher
expression of GLUT1 and HK2 (Supplementary Figure S2),
consistent with previous report (Dai et al, 2015b), can be viewed
as typical high-glycolytic cells. Gen decreased lactate concentration
in HCC-LM3 and Bel-7402 cells in a dose-dependent manner, and
the pattern of glucose uptake was similar to that of lactate
production (Figure 2A and B), indicating that Gen inhibited
aerobic glycolysis in HCC cells. With Gen treatment at 40mM for
24 h, ATP generation from glycolysis has already been inhibited in
HCC-LM3 and Bel-7402 cells, whereas the slightest inhibition on
oxidative phosphorylation did not happen until the drug
concentration reached 120 mM (Supplementary Figure S3), suggest-
ing that Gen suppressed energy production mainly depending on
the inhibition of glycolysis.

Gen treatment at 80 mM for 12 h caused an B50% reduction in
the glycolysis rate compared with that in untreated cells
(Figure 2A). However, cell proliferation was not obviously affected
under the same conditions (Figure 1B). A similar decrease in the
glycolysis rate without an obvious inhibition of cell proliferation
was observed in response to Gen at 40 mM for 24 h (Figures 1A and
2B). These results indicated that the effect of Gen on suppressing
glycolysis occurs before its effect on cell growth inhibition (earlier
time and smaller dosage).

Among all tested key glycolytic enzymes, HK2 was the most
downregulated enzyme at the mRNA level in both HCC cells
treated with 60 mM Gen for 24 h (Figure 2C), closely followed by
GLUT1. Western blot analysis showed that Gen treatment for 24 h
significantly downregulated the protein expression of HK2 (both
total and mitochondria-bound HK2) and GLUT1 in a dose-
dependent manner (Figure 2D). Immunohistochemical staining
showed that Gen treatment downregulated GLUT1 and HK2 in
xenograft tumours in vivo (Figure 2E), suggesting that the
cytotoxicity of Gen correlates with decreased expression of GLUT1
and HK2.

What is noteworthy is that Gen treatment impaired the
activities of HK, PFK, and PK (Supplementary Figure S4A–C),
albeit to varying degrees, although the mRNA expression of PFKs
and PKM2 was not inhibited significantly. In addition, the elevated
ratio of NADPH/NADP suggested a shunt to the pentose
phosphate pathway (Supplementary Figure S4D), indicating that
with the aerobic glycolysis pathway suppressed, the biosynthetic
pathway (i.e., pentose phosphate pathway) was motivated to
generate nucleotides, amino acids, and so on.

GLUT1 and HK2 are not directly involved in the effect of Gen
on HCC cells. Treatment with 50 and 100 mM glucose

BRITISH JOURNAL OF CANCER Inhibiting aerobic glycolysis in HCC

1520 www.bjcancer.com | DOI:10.1038/bjc.2017.323

http://www.bjcancer.com


24 h 48 h 72 h
120

A C

B

E

F

G

D

HCC-LM3
Bel-7402
Huh-7
Hep3B

LO2
SMMC-7721

HCC-LM3
Bel-7402
Huh-7
Hep3B

LO2
SMMC-7721

HCC-LM3
Bel-7402
Huh-7
Hep3B

LO2
SMMC-7721

HCC-LM3
Bel-7402
Huh-7
Hep3B

LO2
SMMC-7721

C
el

l v
ia

bi
lit

y 
(%

) 100

80

60

40

20

0

120
80

HCC-LM3 Bel-7402
NC

Gen 80 �M
Gen 60 �M
Gen 40 �M

NC

Gen 80 �M
Gen 60 �M
Gen 40 �M

**
***

**

60

40

20

0

G0/
G1 

ph
ag

e

G0/
G1 

ph
ag

e

G2/
M

 p
ha

ge

G2/
M

 p
ha

ge

S p
ha

ge

S p
ha

ge

C
el

l v
ia

bi
lit

y 
(%

)

C
el

l c
yc

le
 d

is
tr

ib
ut

io
n 

(%
)

80

0 40 60

HCC-LM3 Bel-7402

80 0 40 60 80

60

40

20

0

C
el

l c
yc

le
 d

is
tr

ib
ut

io
n 

(%
)

100

80

60

40

20

0

Time

105

104

103

102

–101

–102

–102100 102 103

FITC-A

104 105 –102 100 102 103

FITC-A

104 105

P
I-

A

105

104

103

102

–101

–102

P
I-

A

H
C

C
-L

M
3

B
el

-7
40

2

1.36% 2.93% 4.55%

6.43%86.09%

–102 100 102 103

FITC-A

104 105

105

104

103

102

–101

–102
P

I-
A

3.54% 8.18%

9.04%79.24%

–102 100 102 103

FITC-A
104 105

105

104

103

102

–101

–102

P
I-

A

3.74% 9.54

13.72%73.01%

4.76%

1.31%92.56%

105

104

103

102

–101

–102

–102 100 102 103

FITC-A

104 105

P
I-

A

2.69% 4.76%

2.66%85.78%

NC

NC

Gen40 �M

Gen40Gen20

Gen60 �M Gen80 �M

Gen80

1.5

*
**

**

***
**

1.0

0.5

Tu
m

ou
r 

vo
lu

m
e 

(m
m

3 )

N
ec

ro
si

s 
ar

ea
 (

%
)

0.0

0

20

40

60

80

NC

Gen
 2

0

Gen
 4

0

Gen
 8

0

NC

Gen
 2

0

Gen
 4

0

Gen
 8

0

NC

100 �M 100 �M 100 �M 100 �M

Gen40Gen20 Gen80

105

104

103

102

–101

–102

–102 100 102 103

FITC-A

104 105

P
I-

A

7.34% 11.67%

3.44%77.55%

105

104

103

102

–101

–102

–102 100 102 103

FITC-A

104 105

P
I-

A

4.68% 18.28%

4.93%72.11%

105

104

103

102

–101

–102

–102 100 102 103

FITC-A

104 105

P
I-

A

2.28% 12.63%

20.07%65.01%

120 PCNA

LC3 I-16 kd
II-14 kd

116 kd
89 kd

Beclin1

Cleaved
Caspase3

Cleaved
Caspase3

Cleaved
PARP

�-actin

Gen (�M)

C
el

l v
ia

bi
lit

y 
(%

) 100

80

60

40

20

0

120

C
el

l v
ia

bi
lit

y 
(%

) 100

80

60

40

20

0

10
0

12
0

14
00

0

6 
h

12
 h

24
 h

48
 h

72
 h

20 40 60

Genistein (�M)

80 10
0

12
0

14
00 20 40 60

Genistein (�M)

80 10
0

12
0

14
00 20 40 60

Genistein (�M)

80

Figure 1. Genistein inhibits HCC cell growth in vitro and in vivo. (A, B) Cell viability of LO2 and five HCC cells treated with genistein (Gen,
0–80mM) for 24, 48, or 72 h (A), or genistein 80mM for 6–72 h (B). (C) The protein levels of PCNA, LC3, Beclin1, cleaved-caspase 3/9, and PARP in
HCC cells treated with genistein for 48 h. b-actin was used as a loading control. (D) Genistein incubation for 48 h induced cell cycle arrest in HCC-
LM3 and Bel-7402 cells. (E) Genistein incubation for 48 h induced apoptosis in HCC-LM3 and Bel-7402 cells. (F, G) In a xenograft mouse model,
mice were treated with genistein (0, 20, 40, or 80 mg kg� 1) for 21 days. At the time points indicated, the following measurements were
performed: diameter of tumours (F), and the per cent of HE-positive tumour cells (G). Plotted values represent the mean±s.e of three independent
experiments. *Po0.05, **Po0.01, ***Po0.001.

Inhibiting aerobic glycolysis in HCC BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2017.323 1521

http://www.bjcancer.com


significantly reversed the Gen-induced suppression of cell
proliferation and apoptosis induction in HCC-LM3 cells
(Figure 3A–C), suggesting that glucose transport was involved in

Gen-induced HCC-LM3 cell death. However, CB, a glucose
transporter inhibitor (Wu et al, 2009), had no effect on the
inhibition of cell proliferation or activation of apoptosis induced by
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density (IOD) for HK2 and GLUT1 in tumours in the xenograft mouse model. Plotted values represent the mean±s.e. of three independent
experiments. *Po0.05, **Po0.01, ***Po0.001.
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Gen (Figure 3D and E). In addition, 3-BP, a direct HK2 inhibitor
(Guo et al, 2016), did not enhance or abolish the proliferation-
inhibitory effect of Gen (Figure 3F and H). A similar pattern

was observed in glucose uptake, lactate production, and mitochon-
drial HK2 expression in aerobic glycolytic HCC cells (Figure 3G
and H).
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Inhibitors of HK2 or GLUTs did not enhance or alleviate the
effect of Gen, which led us to speculate that this phenomenon may
be attributed to one of the two following reasons: first, when 3-BP
inhibits HK2 activity and CB binds to GLUT1, there is no target for
Gen, and its inhibitory effect on glycolysis and cell growth is
abolished; second, GLUT1 and HK2 are not directly involved in
the antitumour effect of Gen.

To test which hypothesis was correct, we overexpressed GLUT1
or/and HK2 in HCC-LM3 cells (Supplementary Figure S5A). All
clones grew at similar rates with Gen treatment (Supplementary
Figure S5B). No statistically significant differences in the rate of
inhibition of glucose uptake or lactate production by Gen were
observed among the four clones (Supplementary Figure S5C).
Overexpression of GLUT1 and/or HK2 did not affect Gen-induced
cell growth or glycolysis inhibition, indicating that the second
hypothesis was correct: GLUT1 and HK2 are not directly involved
in the antitumour effect of Gen.

Gen-inhibited glycolysis and HCC cell growth are dependent on
the suppression of HIF-1a. Among all 26 tested metabolic
regulation pathways, HIF-1a showed the greatest alteration
(decreased by 84%; Figure 4A) with Gen treatment. Protein
expression and transcription activity of HIF-1a was also inhibited
by Gen in a dose-dependent manner (Supplementary Figure S6).
Roxadustat, a prolyl-4-hydroxylase inhibitor and HIF-1a stabiliser
(Hoppe et al, 2016), reversed the glycolysis inhibitory effect of Gen
(Figure 4B) and attenuated Gen-inhibited HCC cell proliferation
(Figure 4C). These results suggested that HIF-1a is involved in the
Gen-suppressed HCC glycolysis and proliferation.

Glucose uptake and lactate production were decreased in HIF-
1a siRNA knockdown HCC-LM3 cells (Figure 4D and
Supplementary Figure S7), and this effect was not enhanced by
treatment with Gen, suggesting that without the target HIF-1a the
effect of Gen on glycolysis was abolished. In addition, the
downregulated expression of the GLUT1 and HK2 proteins in
HIF-1a siRNA knockdown cells was not decreased further with the

addition of Gen (Figure 4E), indicating that the Gen-induced
inhibition of GLUT1 and HK2 was dependent on the suppression
of HIF-1a. By contrast, HIF-1a siRNA knockdown cells showed no
obvious changes in the expression of phosphofructokinase (PFK) 1
and lactate dehydrogenase A (Figure 4E), suggesting that in the
process of glycolysis regulation the specific downstream targets of
HIF-1a were GLUT1 and HK2, but not other glycolytic enzymes.

Moreover, the apoptosis rate in HIF-1a siRNA knockdown cells
was significantly increased compared with that in scRNA cells
(Figure 4F). The addition of Gen in HIF-1a siRNA cells did not
enhance the effect on apoptosis. The results of western blot analysis
of PCNA, caspases, and PARP were consistent with the changes in
apoptosis (Figure 4G), suggesting a direct involvement of HIF-1a
in Gen-induced glycolysis inhibition and cell death.

In addition, Gen also reduced hypoxia-induced HIF-1a
expression and enhanced hypoxic-cell death (Supplementary
Figure S8), indicating this natural compound takes effect under
both normal and hypoxic conditions.

Crosstalk between Gen-induced metabolic regulation and cell
death machinery. Gen decreased the mitochondrial inner trans-
membrane potential (Dcm) in a concentration-dependent manner
(Supplementary Figure S9A), indicating an alteration of mitochon-
drial outer membrane permeabilisation (MOMP). It results in the
release of apoptogenic factors such as Cyto c and apoptosis-
inducing factor (Supplementary Figure S9B), which causes caspase
3/9 activation, leading to mitochondrial apoptosis.

Bcl-2 homology domain 3 proteins, such as truncated Bid, which
are inhibited by HIF-1a (Guo et al, 2015), promote apoptosis by
activating Bax/Bak (transferred from the cytosol to mitochondria)
and inactivating Bcl-2/Bcl-xL to increase MOMP (Supplementary
Figure S9B). Gen effectively blocked this process (Figure 5 and
Supplementary Figure S9). Moreover, oxidative phosphorylation was
inhibited by Gen at 80 and 120mM (Supplementary Figure S9C),
suggesting that energy deprivation (reduced ATP production) may
also contribute to mitochondrial apoptosis. In addition, Gen induced
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the dissociation of HK2 from VDAC (Figure 2D), causing
mitochondrial apoptosis through a different process.

Gen enhances Sora-induced cell growth inhibition in Sora-
resistant HCC cells. HCC-LM3 and Bel-7402 cells, as typical
Sora-resistant HCC cell lines (Dai et al, 2015b), showed IC50 values
for Sora of 15.78 and 12.17 mM at 24 h, respectively (Supplementary
Figure S10), and were used for the combination treatment study. In
HCC cells treated with Gen at 60 mM for 24 h, glycolysis was
inhibited significantly, whereas cell proliferation was not obviously
altered; treatment with Sora at 10 mM for 24 h significantly inhibited
cell proliferation but not glycolysis rate (Figure 6A and B).
However, combination treatment suppressed both proliferation
and glycolysis rate, indicating an enhancement of both glycolysis
and proliferation inhibition.

After 30 days of treatment with Gen (40 mg kg� 1) or/and Sora
(10 mg kg� 1), tumour size in a mouse xenograft model was
significantly smaller in the combination treatment group than in
the Sora-alone or Gen-alone group (Figure 6C and Supplementary
Figure 11A). Apoptosis rates in the TUNEL assay showed the
opposite pattern (Figure 6D), without a significant effect on body

weight or vital organ function (Supplementary Figure 11B and C).
HIF-1a, GLUT1, and HK2 expression was downregulated by
combination treatment in vivo (Figure 6E), further indicating that
Gen inhibited glycolysis and restored the sensitivity of Sora-
resistant HCC cells to Sora treatment.

DISCUSSION

In the present study, we showed that Gen had a significant
inhibitory effect on the growth of HCC cells, whereas it had little
effect on normal liver cells (Figure 1). Gen induced apoptosis in
aerobic glycolytic HCC cells, especially mitochondrial apoptosis, by
regulating the Bcl-2 family proteins to increase MOMP and
activate caspases (Supplementary Figure S9). In addition, Gen
inhibited glycolysis in aerobic glycolytic HCC cells (Figures 2 and
5). Gen treatment at 40 mM for 24 h or 80 mM for 12 h significantly
inhibited glycolysis, whereas there was no significant suppression
of cell proliferation or apoptosis promotion, suggesting that
glycolysis inhibition by Gen in high-glycolytic HCC cells occurs
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before the inhibition of cell growth and apoptosis induction
(smaller dose and earlier time).

Despite the fact that GLUT1 and HK2 showed the greatest
reduction in response to Gen treatment, neither GLUT1 nor HK2
was the direct target of Gen. Evidenced by: first, the inhibitors of
HK2 or GLUTs did not enhance or alleviate the inhibitory effect of
Gen on glycolysis and apoptosis (Figure 3); and second, over-
expression of GLUT1 or/and HK2 did not affect Gen-induced
growth and glycolysis inhibition (Supplementary Figure S5).

Therefore, we identified the direct target of Gen. Among 26 cell
growth and metabolic regulatory molecules, HIF-1a showed the
greatest decrease in response to Gen treatment (Figure 4). The HIF-
1a stabiliser reversed the glycolysis and viability inhibitory effect of
Gen, and Gen had no obvious effect on HIF-1a-siRNA knockdown
HCC cells, suggesting a direct involvement of HIF-1a in the effect of
Gen on the inhibition of HCC cell growth and glycolysis.

HIFs are essential for tumour cells to adapt to a low-oxygen
environment, as the oxygen supply is usually insufficient for the
excessive growth of tumour cells (Semenza, 2013). Activated HIF-
1a in tumour cells promotes cell survival through several
mechanisms: first, it increases the expression and activity of
glycolytic enzymes such as GLUT1 and HK2 to accelerate the
glycolytic rate (Jain et al, 2016), thus meeting the energy demand of
rapidly growing tumour cells; second, HIF-1a prevents tumour cell
apoptosis by regulating Bcl-2 family proteins such as Bax and Bid
(Erler et al, 2004), or stabilising the HK2/VDAC complex to avoid
apoptosis; third, HIF-1a regulates autophagy by activating the Bcl-
2/E1B-19K interacting protein 3 (Bnip3) gene (Chinnadurai et al,
2008); and fourth, the interaction of HIF-1a and mutant onco- or
anti-oncogenes such as P-53 and c-Myc also suppresses cell death
(Zhang et al, 2007). Because HIF-1a mediates metabolic alterations
and tumour cell death through many processes, our finding that
the direct inhibition of HIF-1a by Gen results in suppressed
glycolysis and enhanced apoptosis is not a surprise.

The role of aerobic glycolysis as a potential predictive biomarker
of Sora resistance in HCC cells has been reported extensively (Shen
et al, 2013; Li et al, 2016). Given the unique characteristics of Gen
observed in the present study, including the inhibition of glycolysis
at low doses and earlier times without an obvious effect on
apoptosis, we therefore investigated whether Gen can be used to
overcome Sora resistance. Combination treatment markedly sup-
pressed both proliferation and glycolysis rate (Figure 6). Further-
more, Gen enhanced the ability of Sora to reduce the size of tumours
and increase the apoptotic area in hepatoma-bearing nude mice
through the inhibition of HIF-1a/GLUT1/HK2. These findings are
in agreement with previous studies showing that Gen can enhance
the sensitivity to tamoxifen in mammary cancer (Zhang et al, 2017),
cisplatin in ovarian cancer (Arzuman et al, 2015), and methotrexate
in leukaemia cells (Liu et al, 2015), providing preclinical evidence of
the potential value of Gen for the treatment of HCC.

To the best of our knowledge, the present study is the first to
investigate the mechanism underlying the effect of Gen on
glycolysis mediated by the inhibition of HIF-1a/GLUT1/HK2 in
HCC cells both in vitro and in vivo. In addition, this study is the
first to demonstrate the enhancing effect and safety of combination
treatment with Gen and Sora, providing a potential treatment
strategy for Sora-resistant HCC patients. Further clinical trials are
necessary to determine the drug dose, application start time, and
duration in HCC patients.
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