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ABSTRACT
Circular (circ)RNAs have recently become a subject of great biologic interest. It is now clear that they
represent a diverse and abundant class of RNAs with regulated expression and evolutionarily conserved
functions. There are several mechanisms by which RNA circularization can occur in vivo. Here, we focus on
the biogenesis of tRNA intronic circular RNAs (tricRNAs) in archaea and animals, and we detail their use as
research tools for orthogonal, directed circRNA expression in vivo.
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Background

Recent growth in the study of circular (circ)RNA processing
and function has been propelled largely by advances in high-
throughput sequencing technology and refined bioinformatic
pipelines.1,2 CircRNAs in eukaryotes were once thought of as
rare molecules resulting from aberrant mRNA splicing.3 It has
since become clear that circRNA biogenesis in many eukaryotes
proceeds through several diverse and evolutionarily conserved
biochemical pathways,4-7 resulting in an abundant class of
RNA molecules with a host of proposed functions.8,9 CircRNAs
have been shown to be remarkably stable in living cells,10-12

potentially due to their unique structure and lack of free ter-
mini on which the exonucleolytic RNA turnover machinery
relies. Along with being generally abundant,2 circRNAs can be
differentially expressed in a tissue-dependent manner and can
have expression profiles that differ from their parental
mRNA,13 suggesting regulated expression and diversity of func-
tion. CircRNAs are enriched in mammalian and Drosophila
brains,14-18 are positively correlated with aging,16 and can be
associated with disease risk.19 The most well-known example of
circular RNA function is their ability to act as molecular
“sponges,” competing for binding of molecules that affect gene
regulation. For example, the human circular transcript
CDR1as/ciRS-7 contains approximately 70 seed target sequen-
ces for microRNA-7 (miR-7) and associates with exosomal
Argonaute proteins in vivo in a miR-7 dependent manner.17,18

CDR1as/ciRS-7 represents a striking example of the controver-
sial “competing endogenous RNA” theory, which posits that
transcripts can “compete” for binding of miRNAs and other
molecules to affect gene expression.20-22 This transcript has
overlapping expression patterns with miR-7 in mouse brains,
suggesting a potential in vivo regulatory interaction.17,18

Interestingly, either inhibition of miR-7 or ectopic expression
of CDR1as causes midbrain development defects in zebrafish18,
indicating that disruption of this type of regulation could have
significant consequence.

In addition to miRNAs, circRNAs can also bind and seques-
ter proteins. In human, mouse, and Drosophila, the RNA-bind-
ing protein Muscleblind (Mbl) has been shown to promote
circularization of several transcripts, including the second exon
of the Mbl pre-mRNA itself.23 In all 3 species, circMbl RNA
contains conserved Mbl protein binding sites, and pulldown
experiments in Drosophila S2 cells revealed an in vivo interac-
tion between Mbl protein and circMbl,23 suggesting a possible
feedback mechanism by which Mbl protein and circMbl inter-
act to control splicing of the parent transcript. The relative
stability of circRNAs could perhaps contribute to a unique
cellular role in initiating and maintaining these types of regula-
tory interactions.s.

The most common pathway for RNA circularization occurs
via a process termed “back-splicing.” Back-splicing proceeds
via a canonical 2-step transesterification reaction, except that a
downstream splice donor sequence becomes ligated to an
upstream splice acceptor site, resulting in a non-canonical
alternative splicing event (Fig. 1A). Importantly, back-splicing
has been shown to compete with forward splicing of certain
pre-mRNA transcripts.23,24 RNA elements that promote juxta-
position of splice sites close to one another in physical space
are thought to promote back-splicing. For example, back-splic-
ing of circular transcripts is associated with the presence of
repetitive elements (e.g. Alu repeats in humans or different
repetitive elements in other species) that flank the circularized
region.2,25,26 Additionally, back-splicing can be facilitated by
RNA-binding proteins such as the aforementioned Mbl, QKI
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(quaking), hnRNPs and serine/arginine (SR) proteins.23,25,27 In
the following sections, we detail another conserved mode of
RNA circularization occurring in archaea and eukaryotes, in
which tRNA introns are spliced to form circles.

Splicing and circularization of tRNA introns in archaea

Despite the absence of the spliceosomal machinery in Bacteria
and Archaea, intron-containing genes have been observed in all
3 domains of life.28 Bacterial introns are of the self-splicing
variety (for a review see Ref. 29). In Archaea, however, introns
are fairly common among tRNA and rRNA genes, and their
removal is catalyzed by a conserved splicing endonuclease com-
plex.30,31 Interestingly, archaeal RNA splicing typically produ-
ces a circularized intron following its removal from the
primary transcript.32 Splicing of pre-tRNAs is a 2-step process
wherein the transcript is first cleaved at defined positions by
the archaeal splicing endonuclease complex, which recognizes a
bulge-helix-bulge (BHB) sequence motif (Fig. 1B).33,34 The
exon halves are then ligated together to form a mature tRNA,
while the intron termini are also joined to form a circle
(Fig. 1B). Although the 2 ligation events appear to use the same
processing factors, the reactions can occur independently.32

Circular RNAs derived from multiple tRNA isodecoder
transcripts have been detected,35 though it is not known if sta-
ble circles are made from every tRNA intron. To distinguish
these circRNAs from their back-spliced cousins in eukaryotes,
we use the term tRNA intronic circular RNAs, or tricRNAs.
In the archaeon Haloferax volcanii, a tricRNA was detected in
vivo from tRNATrp by RT-PCR and Northern blot analysis.32

In this same study, introns derived from elongator tRNAMet

appear to undergo end-joining that would be characteristic of
circularization, but tricRNA expression could not be con-
firmed by blotting. This lack of detectability could be due to
differences in overall parental tRNA expression: in Haloferax
volcanii, there is only one tRNATrp gene, whereas there are 3
elongator tRNAMet genes, and only one of them contains an
intron.35 Thus, reduced expression of the parent tRNAMet

gene might lead to lower amounts of its tricRNA that are
detectable only by RT-PCR. In certain archaeal species, tricR-
NAs are highly expressed and/or are quite stable. For exam-
ple, a whole-genome sequencing approach in Sulfolobus
solfataricus revealed that among circRNAs, only those gener-
ated from 16S and 23S rRNA were more abundant than tricR-
NAs.36 Circles were only detected for 5 of the 19 intron-
containing tRNAs, but this is most likely due to an ascertain-
ment bias, as the remaining 14 introns are quite small and
would thus require specific methods of library preparation to
enrich for them.

Several groups have speculated on the functions of circular-
ized introns in archaea. Circularized rRNA introns have been
found to contain putative open reading frames, and it is possi-
ble that these encode peptides.11,12,37 Additionally, a functional
C/D box RNA is contained in the tRNATrp intron of H. volca-
nii, responsible for 20-O-methylation of its parent tRNA,
though both circular and linear excised introns are capable of
guiding this modification.38. Similarly, the tRNATrp intron of S.
solfataricus contains regions of sequence complementarity to
its parent tRNA, suggesting a role for the excised intron in
tRNA modification.36 Whether tricRNAs from other parental
tRNAs and other species also function in RNA modification
remains to be determined.

Splicing and circularization of tRNA introns in eukarya

Eukaryotic pre-tRNA cleavage is slightly different from archaeal in
that it is performed by a complex of 4 proteins rather than one.39

The heterotetrameric eukaryotic tRNA splicing endonuclease
(TSEN) complex is functionally homologous to the archaeal pro-
tein; however, the RNA elements that define the sites of cleavage
are different.34 Many eukaryotic pre-tRNAs indeed contain a
BHB-like motif, and the eukaryotic endonuclease complex has
been shown to be capable of recognizing and splicing pre-tRNAs
with archaeal features,40 implying conservation of the structural
elements underlying substrate recognition by TSEN. However, the
currently accepted model of splicing by eukaryotic TSEN relies on
recognition of the tRNA body, independent of a BHB, and splicing
is dictated by a “ruler”mechanism whereby splice sites are chosen
based on distance from the recognized tRNA body.41,42 Unlike
archaeal tRNA introns, which can be found at several positions in
the tRNA, eukaryotic introns are nearly always found between the
canonical positions 37 and 38 of the mature tRNA, adjacent to the

Figure 1. Two in vivo RNA circularization pathways. (A) Intron base-pairing and/or
RNA-binding proteins facilitate pairing of a downstream splice site and an
upstream splice site, bringing them into close proximity. Non-canonical “back-
splicing” of these sites results in a circularized exon. (B) The tRNA splicing endonu-
clease (TSEN) complex cleaves an intron-containing pre-tRNA at the bulge-helix-
bulge (BHB) motif. The exon halves are ligated, and the intron termini are also
ligated to form a circle.
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anticodon.35 This difference in intron positioning is thought to
result from co-evolution of introns and their processing enzymes.31

After cleavage by TSEN, tRNA halves are ligated to form a
mature tRNA. There are 2 distinct ligation pathways in eukar-
yotes. The 50-ligation pathway involves the multifunctional
Trl1 protein and is considered to be the predominant one in
fungi and plants.43-45 Also known as the “healing and sealing”
pathway, this process incorporates an external phosphate for
use as the splice junction phosphate.34 In vertebrates as well as
archaea, tRNAs are ligated by the RtcB enzyme (called
HSPC117 in humans) in the 30-ligation or “direct ligation”
pathway, where an external phosphate is not incorporated.46,47

In RtcB knockdown experiments in Drosophila, tricRNA levels
decreased significantly, indicating that tricRNA ligation is
indeed dependent upon ligase activity of RtcB.10

In at least one case, ligation of mRNA splice products by
tRNA processing enzymes can also result in intron circulariza-
tion in vitro.48 The unfolded protein response in metazoans
and yeast causes stress signaling, triggering an unconventional
splicing of XBP1 (HAC1 in yeast) mRNA. The transcript is
cleaved by IRE1 and ligated by RtcB in metazoans49-51 or Trl1
in yeast.52 In vitro reconstitution of these elements resulted in a
circularized intron following human XBP1 splicing, and inter-
estingly a circular intron was produced upon addition of either
RtcB or the yeast Trl1 ligase,48 which has homologues in some
animal species. It is unclear whether this circularization occurs
in vivo, if there are other mRNAs whose splicing is dependent
upon tRNA ligase activity, and whether the removed introns
have any cellular function.

Sequence conservation could indicate an important functional
property for certain tricRNAs. In Drosophilid species, many tRNA
introns are highly conserved at the sequence level. One tricRNA
(tric31905) even displays compensatorymutation and preservation
of base-pairing motifs, indicating a conserved secondary struc-
ture.10 Additionally, small RNA sequencing analysis indicates that
this circular RNA is further processed into microRNA-sized frag-
ments.10 It is currently unclear whether these small RNAs have a
function in the cell or are merely degradation intermediates.
Inspection of sequence and secondary structure of other Droso-
philid introns does not reveal common sequence motifs or ele-
ments, suggesting that processing of tric31905 is not necessarily
applicable to all tricRNAs.

Methods of ectopic circRNA expression and detection

To date, few tools exist to direct generation of RNA circles in
vivo. Several groups have constructed mini-gene vectors that
contain complementary sequences flanking the region of inter-
est, designed to facilitate its circularization in a mechanistically
similar fashion to endogenous exonic back-splicing.17,25,53

Effective circularization has been achieved using both endoge-
nous and designed elements, or some combination thereof.
Such engineered mini-genes have also shed light on cis-acting
sequences that either promote or inhibit circularization.25,26,53

These ectopic circRNAs are capable of serving as a template for
protein translation following inclusion of an internal ribosomal
entry site (IRES) in the circularized transcript.53

Back-spliced circRNA expression systems are typically
driven by an RNA pol II promoter such as the one present in

human cytomegalovirus (CMV).25,53 Ectopic expression of
tricRNAs, in contrast, relies on an RNA pol III promoter to
drive transcription (Fig. 2A). Robust expression can be
achieved with an external pol III promoter, such as the one
from the U6 snRNA gene.10,54 Pol III transcription can exceed
that of pol II, and produces more consistent levels of expression
across cell types as compared with the CMV promoter.55,56

Accurate characterization of circRNA expression can be dif-
ficult, however, due to a wide variety of circRNA sizes. Diver-
gent primers are used to specifically amplify circRNA-derived
cDNA (Fig. 2A-C). During cDNA preparation, reverse tran-
scriptase (RT) is capable of rolling circle cDNA synthesis on a
circular template RNA, resulting in concatemerized cDNA
(Fig. 2B-C) that could lead to exaggerated measurement of
circRNA levels by sequencing or RT-PCR. Indeed, concate-
meric reads containing multiple copies of a tRNA intron were
detected in Drosophila and C. elegans RNA-seq data sets.10

For larger circles, concatemerization is less likely due to the
limited processivity of reverse transcriptase. However, RT-PCR
of a short circRNA can produce concatemers that are many
times longer than the original transcript.54 Thus, circRNA
length must be carefully considered when using RT-based
methods to quantify transcript abundance, and direct measure-
ment of circRNA abundance by fluorescence or northern blot-
ting may be preferred. We have successfully expressed
‘designer0 tricRNAs greater than 800 nt in length (Fig. 2D), the
primary transcript of which is well over 900 nt. To our knowl-
edge, this is the longest known pol III-based transcription unit
in eukaryotes. Hence, pol III processivity should not be a limit-
ing factor for many applications aimed at expression of engi-
neered tricRNAs in vivo.

To directly compare the 2 circRNA expression systems, we gen-
erated reporter constructs using the Broccoli fluorescent RNA
aptamer system (Fig. 3A).57 Each construct is designed to express
an equivalently-sized aptamer-containing circle (see Methods for
details). To differentiate between the 2 systems, we refer to the pol
II/back-spliced Broccoli reporter as circBroc, and to the tRNA-
spliced Broccoli reporter as tricBroc. Following transient transfec-
tion in human HeLa and HEK293T cells, RNA was extracted and
analyzed using a convenient and powerful in-gel staining assay
(Fig. 3B).54,57,58 RT-PCR (which is more sensitive, but less quantita-
tive) was also performed (Fig. 3C). As shown, the circBroc back-
splicing reporter RNA is detectable by RT-PCR but not by in-gel
fluorescence, whereas tricBroc was robustly detected by bothmeth-
ods. The in-gel fluorescence assay allows for detection of as little as
100 pg of Broccoli-containing RNA;58 thus, we can conclude that
circBroc is expressed at levels below this detection threshold. In
agreement with these data, only tricBroc was detectable by RNA
gel blot analysis in 293T cells (Fig. 3D).We note that the size of the
circBroc exon used here is smaller than those used in previous
circRNA expression vectors (76bp compared with 300–
1500 bp),25,26,53 although it is certainly on par with the size of many
endogenous exons (roughly 80% of human exons are shorter than
200 bp).59 However, back-spliced exons average 690 bp in humans2

and so it remains unclear whether back-splicing efficiency depends
on exon size. Nevertheless, our results show that the pol III-based
expression system provides more robust expression of circular
RNAs (at least for smaller sized ones) than does the pol II-based
system. Thus, the tricRNA expression system described here
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provides a compact and powerful method for in vivo expression of
circular RNAs.

Concluding remarks

Despite their conservation across great evolutionary distances, the
function of tRNA introns has, for the most part, yet to be eluci-
dated. Many interesting questions remain regarding their role in
tRNA biosynthesis (as DNA elements), as well as their fate and
function in the cell (as tricRNAs) following removal during proc-
essing. As with many non-coding RNAs, characterization of circu-
lar RNAs has been greatly aided by the progress of detection
technologies and molecular genetic approaches. As detailed here,
tricRNA vectors provide an effective means for the orthogonal
expression of a wide variety of genetically engineered circRNAs.

Materials and methods

Cloning circBroc reporter constructs

Annealed oligonucleotides were ligated into the pCircGFP plas-
mid (Zefeng Wang, PICB Shanghai) following digestion with
BamHI and SacII to generate a new vector, called pCircBroc.
Top oligo: ggtctctttcttccagGAGCGGCCGCGAGACGGTCGG
GTCCAGATATTCGTATCTGTCGAGTAGAGTGTGGGCTC
GTGGCCGCGGTGTTGAGgtaagtctcgacg, bottom oligo: gatcc
gtcgagacttacctcaacaccgcggccacgagcccacactctactcgacagatacgaatat
ctggacccgaccgtctcgcggccgctcctggaagaaagagaccgc. For the top
strand oligo, the exon is shown in uppercase letters and the

intronic sequence is in lower case. The nucleotides corre-
sponding to Broccoli are underlined.

Cell transfection and RNA isolation

All cells were grown at 37�Cwith 5% CO2 in DMEM (Gibco) sup-
plemented with 10% fetal bovine serum and 1% penicillin and
streptomycin. One million HEK293T or HeLa cells were plated in
T-25 flasks and incubated at 37�C. After 24 hours, cells were trans-
fected with equimolar amounts of either circBroc or tricBroc
expression vector using Fugene HD transfection reagent (Promega
cat#E2311). After 72 hours, total RNAwas isolated from cells using
Trizol reagent (Thermo Fisher Scientific cat#15596026).

RT-PCR

Total RNA was treated with Turbo DNase (Thermo Fisher Sci-
entific cat#AM2238) and used to prepare cDNA using Super-
Script III (Invitrogen cat#18080051) with random hexamer
primers. Divergent primers used for circBroc PCR amplifica-
tion were as follows: F-GTCGAGTAGAGTGTGGGCTCGT,
R-GATACGAATATCTGGACCCGACCGTC.

In-gel fluorescence imaging

Ten micrograms of total RNA from transfected cells was run on
a Novex 10% TBE-Urea gel (Thermo Fisher Scientific cat#-
EC68572BOX) for 40 minutes at 300V. After washing 3 times
with ddH20, the gel was stained with DFHBI-1T staining

Figure 2. tricRNA expression can be detected by RT-PCR. (A) Schematic of the tricRNA expression construct, showing the PCR primer binding sites (red arrows) in the
intron and an external pol III promoter (blue arrow). Exon A and Exon B represent the sequences present in the mature tRNA. The dotted line indicates a variably-sized
intronic region. (B) Reverse transcriptase can transcribe around a tricRNA template many times, resulting in a concatameric cDNA with numerous tandem repeats. (C) RT-
PCR primers can bind to multiple sites along the cDNA concatamer, resulting in a ladder of potential PCR products. The formula for the sizes of the bands is: [size of the
circle] – [distance between the divergent primers] C [size of circle]n, where n is the number of tandem repeats. (D) The ladder of PCR products can be seen for circles of
several different sizes. In this experiment, the distance between the divergent primers is 105 nt, and the sizes of the circles are listed above the gel. For the 259 nt circle,
the formula for the ladder is therefore: 259–105C259n. The bands detected on the gel are at 154, 413, 672, and 931 nt.
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solution (40 mM HEPES pH 7.4, 100 mM KCl, 1 mM MgCl2,
10 mm DFHBI-1T [Lucerna cat#410–1 mg]) and fluorescence
imaged using a GE Typhoon Trio variable mode imager. To
visualize total RNA, the gel was then stained with ethidium
bromide and fluorescence imaged.

Northern blotting

Ten micrograms of total RNA was run on a 10% TBE-Urea gel for
40 minutes at 300V and transferred to a nylon membrane at
10 mA overnight. The membrane was dried and UV-crosslinked,
followed by pre-hybridization in Rapid-hyb Buffer (GE Healthcare
Life Sciences cat#RPN1635) at 42�C for 30 minutes.

Oligonucleotide probes were radiolabeled using T4 PNK (NEB)
and then purified using Illustra Microspin G-50 columns (GE
Healthcare Life Sciences cat#27–5330–71). They were then boiled
for 5 minutes and cooled on ice for 2 minutes, and then added to
the Rapid-hyb Buffer. The membrane was hybridized at 42�C for
one hour with rocking, and then washed at ambient temperature
twice for 15 minutes with 2X SSC with 0.1% w/v SDS and twice for
15 minutes with 0.1X SSC with 0.1% w/v SDS at 42�C before over-
night PhosphorImager screen exposure. The blot was then imaged
using a GE Typhoon Trio variable mode imager.

Probe sequences: anti-Broccoli-50-gagcccacactctactcgacaga-
tacgaatatctggacccgaccgtctc-30, anti-5S rRNA- 50-ccctgcttagcttcc-
gagatcagacgagat-30.

Figure 3. Testing in vivo methods of RNA circularization using the Broccoli RNA aptamer as a reporter. (A) Schematic of the 2 constructs, where the bright green box indi-
cates the placement of the Broccoli aptamer sequence. The dotted arcs indicate the splice junctions. The U6� promoter includes the first 27 nucleotides of U6 snRNA in
the transcriptional unit. This promotes 50 capping60 and enhances stability of the expressed RNA, resulting in a higher yield of tricRNAs.10 (B) In-gel imaging following
transient transfection of the reporter constructs into HeLa and 293T cells. The left hand image is the DFHBI-1T stain, which binds to all Broccoli-containing RNAs. In this
image, the top band is the pre-tRNA and the lower band is the circular RNA. The doublet of bands in the first lane is most likely due to transcription beginning from both
the external U6 promoter, which has a longer 50 leader sequence, and the internal tRNA promoter. The right hand image is the ethidium bromide stain of the same gel,
which marks total RNA. (C) RT-PCR was performed on cDNA generated from the RNA used in Fig. 3B. Diverging PCR primers were used (similar to Fig. 2A), such that they
only generate products of the appropriate size from a circularized template (see also Fig. 2D). In this experiment, the lengths for tricBroc and circBroc are 77 nt and 76 nt,
respectively. (D) Northern blot analysis was performed to quantitatively assess circRNA expression in 293T cells.
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