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ABSTRACT
In this commentary we briefly summarize early work on circular RNAs derived from spliceosome mediated
circularization. We highlight how this early work inspired work on the basic mechanisms of nuclear RNA
splicing, the possible function of circular RNAs and the potential uses of circular RNAs as tools in
biomedicine. Recent developments in the study of circular RNAs, summarized in this volume, have
brought these questions back to the foreground.
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The 1977 discovery of pre-mRNA splicing (Berget et al., 1977;
Chow et al., 1977) immediately led to the realization that there
was an exon (or intron) definition problem: If an organism fails
to define exons stringently, RNA processing could result in (1)
exon skipping by ligation of a 50 splice site to a far-downstream
30 splice site and other forms of alternative splicing, (2) trans-
splicing by ligation of a 50 splice site to a 30 splice site in another
pre-mRNA, or (3) RNA circularization by ligation of a 50 splice
site to an upstream 30 splice site. Indeed, all of these are now
known to occur and to play critically important roles in provid-
ing plasticity to the coding capacity of genomes. Although
much attention was given to alternative pre-mRNA splicing
and some to trans-splicing, exon circularization was not appre-
ciated immediately and indeed remained woefully understudied
for decades. Acknowledging that several different mechanisms
are utilized to form circular RNAs, here we review the early his-
tory of circular RNAs formed from exon circularization or
‘back splicing’: circular RNAs that are the children of splicing.

About a decade following the discovery of self-splicing
introns (Cech et al., 1981), Puttaraju and Been (1992) showed
that a self-splicing group I intron, permuted by placing the 50
splice site downstream of the 30 splice site, yielded circular
RNAs in vitro. Indeed, this work confirmed observations by
Price et al. (1987), who detected an RNA circle believed to be
formed by the splicing of a cryptic 50 splice site downstream
from a canonical 30 splice site in a group I splicing substrate.
Ford and Ares (1994) showed that circular RNAs obtained by
group I splicing can be expressed in vivo in E. coli and yeast.
Circular RNAs were, and still are, believed to be more stable in
vivo than linear RNAs due to their resistance to end-dependent
degradation (Puttaraju et al., 1993). Importantly, by 1996
Puttaraju and Been, using the permuted group I intron method,
showed that trans-acting RNA enzymes (the hepatitis delta
virus ribozyme and B. subtilis RNase P RNA) can be expressed
in vivo as circular RNAs that retain catalytic activity.

The experiments involving RNA circularization by
permuted group I introns prompted the prediction of similar
mechanisms for group II and pre-mRNA exons. Consistent
with these predictions, splicing-mediated exon circularization
was observed with permuted group II introns (Jarrell, 1993).
The existence of spliceosome mediated RNA circularization,
however, went against the general view that splice sites were
used in the order in which they appeared in nascent transcripts
– the ‘first come, first served’ model (Aebi et al., 1986; Beyer
and Osheim, 1988). Nonetheless, RNAs with ‘scrambled exons’,
consistent with either exon circularization or trans-splicing,
were observed (Nigro et al., 1991; Cocquerelle et al., 1992),
although these events were rare. Importantly, Capel et al.
(1993) showed that transcripts of the testis-determining gene
Sry were efficiently circularized in mouse adult testis and that
this circularization prevented their translation. Capel et al., also
showed that unique inverted repeats in the Sry transcript
approximated the splice sites in a long exon and posited that
RNA circularization was mediated by the spliceosome.

Spliceosome-mediated RNA circularization was demon-
strated with single exon substrates in yeast extracts (Schinde-
wolf et al., 1996) and mammalian nuclear extracts (Pasman
et al., 1996). One difference between the yeast and mammalian
reactions was that the yeast system seemed to produce only the
spliced product, whereas the mammalian reactions produced,
in addition to the spliced circular exon, low levels of many
other non-linear RNAs. The significance of these products
remains unclear, but these could very well reflect the looser
definition of splice sites in mammalian pre-mRNAs and be the
products of cryptic reactions as proposed for group I introns by
Price et al. (1987).

The discovery of spliceosome mediated exon circulariza-
tion raised questions about the mechanism of splice site
approximation and about how the splicing machinery com-
mits to a specific pairs of splice sites in alternative splicing.
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Similar implications were suggested by earlier work of Konar-
ska et al. (1985), Solnick (1985), and Chiara and Reed (1995),
who showed that 50 and 30 splice sites on separate conven-
tional pre-mRNAs can be spliced, producing the expected lin-
ear product. These splicing reactions, termed trans-splicing,
were consistent with the idea that splicing does not require
continuous intron sequences between the splice sites
(although reaction kinetics were not yet addressed). These
experiments suggested a 3-dimensional diffusion model of
splice site approximation, which postulates that the splice
sites are brought into proximity via interaction of complexes
assembled at the splice sites sequences irrespective of the
intron sequences separating them. A scanning model, in con-
trast, postulates that, once assembled, complexes at the splice
sites are brought together in a process that involves one-
dimensional scanning of intron sequences. The scanning
model is reminiscent of the eukaryotic translation process
involving 50 RNA cap recognition followed by one-dimen-
sional scanning to the translation start codon. These two
models were tested directly by Pasman and Garcia-Blanco
(1996). Using several lines of evidence, including splicing pre-
cursors in which portions of the intron were replaced with a
flexible non-nucleic acid polymer, the results supported the 3
dimensional diffusion model. It should be noted that while
the splicing machinery does not bring the splice sites together
by scanning, subcomponents of this machinery piggyback on
the DNA dependent RNA polymerase II (RNAP II) that scans
splicing precursors as it synthesizes them (reviewed in Gold-
strohm et al., 2001). This may explain how splice sites that
are large distances away can be brought into close spatial
proximity, resulting in accurate and rapid splice site pairing
via a 3-dimensional diffusion mechanism.

It is clear that early studies of circular RNAs contributed to
the broad understanding of basic nuclear RNA splicing mecha-
nisms. Indeed, some of the questions raised by these early
experiments remain unanswered, particularly regarding the
commitment to different splice site pairs during alternative
splicing. Early studies also led to questions regarding the func-
tion of many circular RNAs – questions that awaited the devel-
opment of novel technologies. New insights into the function
of circular RNAs, which are eloquently presented in this vol-
ume, echo the very special function of Sry circularization in
gene expression, but now in trans on the function of other
RNAs. Finally, it should be pointed out that synthetic circular
RNAs were proposed to have special uses for biomedical
applications (Bohjanen et al., 1996) and this continues to be a
promise today.
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