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Deletion of hepatic carhohydrate response
element binding protein (ChREBP) impairs
glucose homeostasis and hepatic insulin
sensitivity in mice
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ABSTRACT

Objective: Carbohydrate response element binding protein (ChREBP) is a transcription factor that responds to glucose and activates genes
involved in the glycolytic and lipogenic pathways. Recent studies have linked adipose ChREBP to insulin sensitivity in mice. However, while
ChREBP is most highly expressed in the liver, the effect of hepatic ChREBP on insulin sensitivity remains unknown. To clarify the importance of
hepatic ChREBP on glucose homeostasis, we have generated a knockout mouse model that lacks this protein specifically in the liver (Liver-
ChREBP KO).

Methods: Using Liver-ChREBP KO mice, we investigated whether hepatic ChREBP deletion influences insulin sensitivity, glucose homeostasis
and the development of hepatic steatosis utilizing various dietary stressors. Furthermore, we determined gene expression changes in response to
fasted and fed states in liver, white, and brown adipose tissues.

Results: Liver-ChREBP KO mice had impaired insulin sensitivity as indicated by reduced glucose infusion to maintain euglycemia during
hyperinsulinemic-euglycemic clamps on both chow (25% lower) and high-fat diet (33% lower) (p < 0.05). This corresponded with attenuated
suppression of hepatic glucose production. Although Liver-ChREBP KO mice were protected against carbohydrate-induced hepatic steatosis, they
displayed worsened glucose tolerance. Liver-ChREBP KO mice did not show the expected gene expression changes in liver in response to fasted
and fed states. Interestingly, hepatic ChREBP deletion also resulted in gene expression changes in white and brown adipose tissues, suggesting
inter-tissue communication. This included an almost complete abolition of BAT ChREBP3 induction in the fed state (0.15-fold) (p = 0.015) along
with reduced lipogenic genes. In contrast, WAT showed inappropriate increases in lipogenic genes in the fasted state along with increased
PEPCK1 in both fasted (3.4-fold) and fed (5.1-fold) states (p < 0.0001).

Conclusions: Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic

ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body’s response to different feeding states.
© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION increase uptake of glucose in muscle and adipose tissues. Impair-

ments in the action of insulin can lead to impaired fasting glucose or

The coordinated control to fasting and feeding to regulate energy
balance is vital in providing continual fuel for cellular processes. When
food is abundant, energy must be stored for later use, and, during
fasting, it must be mobilized and delivered throughout the body. Key
tissues involved in these processes are the liver, muscle and adipose
tissues. The reliance of various tissues in the body on glucose as a fuel
substrate means blood glucose concentration in particular must be
maintained. This means during periods of fasting the liver releases
glucose into the bloodstream. One of the key actions of insulin in the
fed state is to suppress this hepatic glucose production as well as

glucose intolerance which are key risk factors for the development of
diabetes [1]. Diabetes prevalence is increasing throughout the world
and represents a serious issue to both individual and society with
detrimental microvascular and macrovascular complications and sig-
nificant economic disease burden [1—4]. New insights into the control
of insulin sensitivity and glucose homeostasis are vital for potentially
uncovering new therapeutic targets and strategies.

A key transcription factor involved in coordinating the feeding response
is carbohydrate response element binding protein (ChREBP). ChREBP is
a transcription factor that regulates numerous genes in response to
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changes in cellular glucose concentration. Pathway analysis of ChREBP
target genes has revealed roles for ChREBP in lipid and carbohydrate
metabolism, cell motility, and insulin signaling [5,6]. Furthermore,
human association studies have linked ChREBP with insulin sensitivity,
plasma triglycerides, and coronary artery disease [7—16]. Increased
expression of ChREBP in adipose tissue is linked to improved insulin
sensitivity in humans [7,10,13]. Recently, investigations into the
function of ChREBP in adipose tissue revealed a novel class of lipids,
termed fatty acid esters of hydroxy fatty acids (FAHFAs), that have both
anti-inflammatory and insulin-sensitizing properties [16]. In contrast,
association studies have linked increased ChREBP expression in liver
to hepatic steatosis and insulin resistance [7,13]. As ChREBP regulates
genes involved in de novo lipogenesis, the association found with
hepatic steatosis is unsurprising. Selective over-expression of ChREBP
in the liver of mice worsens hepatic steatosis [17], and inhibition of
hepatic ChREBP in ob/ob mice reduces it [18]. However, the rela-
tionship of hepatic ChREBP with insulin sensitivity is less clear. Inhi-
bition of hepatic ChREBP in ob/ob mice improves insulin sensitivity and
glucose tolerance; yet, mice with hepatic over-expression of ChREBP
do not have impairments in insulin signaling and in fact have improved
insulin sensitivity and glucose tolerance when fed a high-fat diet
[17,18]. Clearly, ChREBP in liver, not only in adipose tissue, may play
an important role in lipid metabolism, glucose homeostasis, and insulin
sensitivity and therefore metabolic disease in humans.

We sought to clarify the role of hepatic ChREBP in glucose homeostasis
and insulin sensitivity using a novel mouse model of hepatic ChREBP
deletion. We describe the physiological consequences of specific liver
ChREBP deletion in mice and have identified an important role for
hepatic ChREBP in whole body glucose homeostasis and hepatic in-
sulin sensitivity.

2. METHODS

2.1. Animals and husbandry

Liver-specific ChREBP KO mice were created by breeding floxed mice
(ChREBP fl/fl in which loxP sites surround a critical exon in the mixipl
gene) to a line expressing the Cre recombinase specifically in liver (Alb-
cre). The resultant homozygous progeny (Liver-ChREBP KO) do not
show expression of ChREBP in the liver. Group housed animals were
kept on a 12-h light—dark cycle with free access to food and water,
with body weights recorded weekly. All conditions and experiments
were reviewed and approved by Monash University Animal Ethics
committee. Experimental diets were generated by Specialty Feeds
(Glen Forrest, Western Australia). High fat diet (SF04-001, 45% calo-
ries from lipids) was based on Research Diets D12451. High carbo-
hydrate diet (SF13-067, 70% calories from carbohydrates) was
created using SF04-001 as a template with similar vitamin and mineral
composition. Detailed comparison of the high-fat and high-
carbohydrate diets is given in Supplemental Table 1. A chow diet
(#12145) was used as a control chow in all experiments.

2.2. Body composition
Body composition was assessed by dual-energy X-ray absorptiometry
(DEXA) (Piximus, Lunar).

2.3. Indirect calorimetry

Mice were individually housed in metabolic chambers (CLAMS, Co-
lumbus Instruments) in order to assess metabolic activity. Mice were
acclimated for 48 h before data were collected. Mice had free access
to food and water for baseline recordings, or were subjected to a
fasting-refeeding protocol in which food was removed for 24 h at the
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beginning of the night period, and recordings were taken during
fasting, refeeding, and recovery. Oxygen consumption, carbon dioxide
production, and ambulatory activity were measured, and RER and
energy expenditure were calculated.

2.4. Glucose tolerance

To assess glucose tolerance, 18-hour fasted animals were dosed with
a 3 g/kg glucose solution P.0. and blood glucose was measured at 0,
30, 60, and 120 min via tail blood using a handheld glucometer (ACCU-
CHEK, Roche Diagnostics).

2.5. Hyperinsulinemic-euglycemic clamps and glucose uptake

Mice were subjected to jugular vein catheterization 5 days prior to
hyperinsulinemic euglycemic clamp studies. Mice were anesthetized
with isoflurane (2—3% in oxygen) while an indwelling silastic catheter
was inserted into the right internal jugular vein and exteriorized
through the back of the neck. The catheters were kept patent with
heparin sodium (1 IU/ml, Pfizer) and sealed with a stainless steel plug.
Mice were allowed 4—5 days postsurgical recovery. Food pellets were
placed at the bottom of the cage to facilitate recovery. Body weight was
recorded daily, and mice that had less than 5% weight loss were
subsequently studied.

Hyperinsulinemic euglycemic clamps followed by 2-deoxyglucose
uptake were performed on 6 h fasted, conscious, and unrestrained
mice as described previously [19]. Insulin infusion rate for chow fed
mice was 2 mU/kg/min, and for high-fat diet fed animals was 4 mU/kg/
min. Soleus, extensor digitorum longus, gastrocnemius, tibialis ante-
rior, kidney, liver, WAT (visceral, perigonadal and subcutaneous), BAT,
and heart were assessed for 2[14C]DG radioactivity.

2.6. Liver histology

For lipid staining, livers were frozen in liquid nitrogen-cooled iso-
pentane then embedded in OCT (4583, Tissue-Tek). Frozen blocks
were sectioned at 10 um, mounted and dried, and stained with Oil Red
0 or Hematoxylin & Eosin. For trichrome staining and periodic acid-
Schiff (PAS) staining, livers were preserved in 10% formalin (w/v) for
24—48 h followed by embedding in paraffin, sectioning at 4 um and
staining with Masson’s trichrome, PAS, or Hematoxylin & Eosin.

2.7. Liver glycogen

To measure liver glycogen, 200 mg frozen liver was homogenized in
20 mM Tris HCL with 0.1% Triton-X100. Samples were spun at
2700 x g at 4 °C for 20 min, and the supernatant was used for protein
BCA assay and glycogen assay. For glycogen assay, samples were
precipitated overnight at 4 °C with ethanol, reconstituted with 0.04 M
Na acetate buffer followed by incubation in Na acetate buffer either
with or without amyloglucosidase for 1 h at 37 °C. The hydrolyzed free
glucose concentration was measured with Glucose (HK) Assay Kit
(GAHK-20, Sigma).

2.8. Liver lipogenesis and fatty acid oxidation

For all experiments, a modified Kreb’s-Henseleit buffer was gassed for
40 min with 95% 02/5% C02. Glucose (5 mM) and fatty acid-free BSA
(4%) was added to the buffer immediately before experiments. All
experiments were conducted in a shaking water bath at 30 °C.

For hepatic lipogenesis d-[3-3H]Glucose (TRK239; Amersham,
Rydalmere, New South Wales, Australia) was added to the buffer to
give a final concentration of 0.5 pCi/ml. Liver was sliced into 1—2 mm
explants and incubated for 2 h, and the medium was removed. The
tissue was washed in PBS and then homogenized in 1 ml PBS. The
lipids were extracted in 2:1 chloroform-methanol, a 1-ml aliquot of the
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organic phase was removed, scintillation fluid was added, and
radioactivity was counted in a liquid scintillation analyzer.

For analysis of oxidation all experiments, liver was sliced into 1—2 mm
and explants were placed in warmed (30 °C) Krebs-Henseleit buffer pH
7.4 containing 2 mm pyruvate, 4% fatty acid-free bovine serum al-
bumin (Bovogen, VIC, Australia) and 1 mm palmitic acid (Sigma, St
Louis, MO, USA). After an initial incubation of 20 min, the incubation
buffer was replaced with the same buffer described above supple-
mented with 0.5 pCi mi~" of [1-14C]palmitate (Amersham Bio-
Sciences, Little Chalfont, UK).

2.9. Blood chemistry

Blood samples were obtained by retro-orbital bleeds under isoflurane
anesthesia. Plasma glucagon, ghrelin, GIP, GLP-1, insulin, leptin, PAI-
1, and resistin were determined by multiplexed bead assay (Bio-Plex
Pro mouse diabetes assay, Bio-Rad) using the MAGPIX instrument
(Luminex).

Serum triglyceride and fatty acid levels were determined by colori-
metric reaction (432-40201 & 279-75401, WAKO).

2.10. Gene expression

RNA was extracted from liquid nitrogen flash-frozen samples and pu-
rified using a column-based RNeasy 96 QlAcube HT Kit (74171, Qia-
gen). Extracted RNA was quantified and checked for purity using the
QlAxpert system (Qiagen). cDNA was generated from 1 pg RNA using
iScript Advanced cDNA Synthesis Kit for RT-qPCR (170-8843; Bio-Rad).
gPCR was run for ChREBP-a. (F; CGACACTCACCCACCTCTTC, R;
TTGTTCAGCCGGATCTTGTC), ChREBP-B (F; TCTGCAGATCGCGTGGAG,
R; CTTGTCCCGGCATAGCAAC) and 36B4 (F; GCGACCTGGAAGTCCAAC-
TAC, R; ATCTGCTGCATCTGCTTGG) (reference gene) using custom oli-
gonucleotides (MicroMon, Monash University) and SYBR Green PCR
Master Mix (4309155, Life Technologies). Amplifications were per-
formed using an Applied Biosystems 7900HT instrument, followed by a
melt curve analysis.

Additionally, gPCR was performed for other target genes using Tagman
assays (Table 1) and the Fluidigm Biomark HD system at MHTP
Medical Genomics Facility. Data were analyzed using Fluidigm Real-
Time PCR analysis software (V4.1.1).

2.11. Statistical analysis

All data are presented as mean 4 SEM, with a statistically significant
difference defined as p < 0.05. For the analysis of calorimetry data,
general estimating equation models were used to provide population
average effects to take into account the correlation across time.
Adjustment was undertaken to assess the effects of individual total
body weight, lean and fat mass. All graphs and statistical analyses
were completed using StataCorp 2015 software (Stata Statistical
Software: Release 14, College Station, TX; StataCorp LP). Additional
graphs and statistical analyses were completed using GraphPad Prism
(GraphPad Prism 6.0 for Mac OS X, GraphPad Software, Inc., San
Diego, CA) as indicated.

3. RESULTS

3.1. Liver-ChREBP KO mice display impaired glucose tolerance and
hepatic insulin resistance

Body composition and metabolic activity were assessed via DEXA
scanning and CLAMS metabolic cages in Liver-ChREBP KO mice and
WT or FI/FI control mice fed either a chow or high-fat diet. Liver-
ChREBP KO mice trended towards a lower body weight, had no sig-
nificant difference in lean body mass, and had reduced total and

MOLECULAR METABOLISM 6 (2017) 1381—1394 © 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com

I

MOLECULAR
METABOLISM

Table 1 — Gene expression targets for Liver-ChREBP KO mice.

Target Life tech code

SREBP1 MmO00550338_m1
MondoA Mm01202115_m1
RPLPO MmO00725448_s1

ACC MmO01304257_m1
SIRT1 Mm00490758_m1
SCD1 MmO00772290_m1
PEPCK MmO01247058_m1
HPRT MmO01545399_m1
GCGR MmO00433546_m1
TXNIP MmO01265659_¢g1

FAS Mm00662319_m1
TBP MmO00446971_m1
HNF4A Mm01247712_m1
IRF5 MmO00496477_m1
LXRot MmO00443451_m1
IL1B Mm00434228_m1

TRB Mm00437044_m1

FOXO01 Mm00490672_m1
GLUT4 MmO01245502_m1
PPARa. Mm00440939_m1
FGF21 Mm00840165_g1
GLUT2 MmO00446229_m1
TNFo Mm00443258_m1
PAI-1 Mm00435860_m1

percentage body fat compared to control mice (Supplemental Figure 6
A—C; p < 0.01). Although Liver-ChREBP KO mice started with less
body fat, after eight weeks on high-fat diet, there was no difference in
body weight, lean mass, total fat mass, or percentage fat with control
mice (Supplemental Figure 6D). There were no significant differences
in bone mineral density or bone mineral content with any diet (data not
shown). Liver-ChREBP KO mice had increased absolute oxygen con-
sumption and carbon dioxide production in the day and night periods
(p < 0.05), as well as increased energy expenditure at night (p < 0.05)
(Supplemental Figures 1—6). The increased energy expenditure in
Liver-ChREBP KO mice was present despite no significant difference in
activity levels. The increased RER suggests that these mice have
increased carbohydrate oxidation compared to control mice and may
reflect a change in substrate preference for energy production. In order
to further investigate the alterations in RER, mice underwent a fasting-
refeeding protocol in which mice were placed into metabolic cages for
five days and subjected to a 24-hour fast from 7pm to 7pm in the
middle of this period. As expected the RER greatly reduced during the
fast as mice switch to oxidizing more fats (Supplemental Figure 6E). At
the beginning of each night period, Liver-ChREBP KO mice display an
increased RER, and this effect is greatly exaggerated after refeeding
following the 24-hour fast (Supplemental Figure 6E).

In order to examine the effect of hepatic ChREBP deletion on the ability
to handle a glucose load, a glucose tolerance test (GTT) was per-
formed. Liver-ChREBP KO mice showed elevated blood glucose 30 min
post receiving a glucose load orally, suggesting an impairment in the
ability to clear glucose (Figure 1A) (p < 0.05). This effect was exag-
gerated when mice were placed on a high-fat diet for 12 weeks, where
Liver-ChREBP KO mice showed greatly impaired glucose tolerance
compared to control mice (Figure 1B) (p < 0.0001). This was despite
no differences in body composition in high-fat diet fed mice and
suggests that Liver-ChREBP KO mice are more susceptible to diet-
induced glucose intolerance. To assess whether the impairments in
glucose tolerance were due to problems in insulin sensitivity,
hyperinsulinemic-euglycemic clamps were performed on Liver-
ChREBP KO and control mice fed either a chow or high-fat diet.
Liver-ChREBP KO mice had a reduced glucose infusion rate to maintain
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Figure 1.: Liver-ChREBP KO mice display impaired glucose tolerance and hepatic insulin resistance. Oral glucose tolerance test (0GTT) in Liver-ChREBP KO and WT mice
(n= 5—7 per group) on chow (A) or HFD (B). Glucose infusion rate (GIR) over 120 min, GIR, Glucose disposal rate (GDR) and Hepatic glucose production (HGP) during a
hyperinsulinemic-euglycemic clamp (n=4 per group) on chow (C,E,G) or HFD (D,F,H). Results expressed as mean 4+ SEM. Statistical analysis by two-way ANOVA followed by

Tukey’s post-hoc test (*: p<0.05, **: p<0.01, ***: p<0.0001).

euglycemia during clamps on both chow (25% lower) and high-fat diet
(33% lower) (Figure 1C,D) (p < 0.05). This is suggestive of impaired
systemic insulin sensitivity. Interestingly, there were no significant
differences in glucose disposal rate on either diet, suggesting muscle
insulin sensitivity was not affected (Figure 1E,F). In support of this,
there were no significant differences in glucose uptake in skeletal
muscle (Supplemental Figure 7A). Strikingly, the ability of insulin to
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suppress hepatic glucose production was greatly impaired in both
chow (58% reduction compared to 100%) and high-fat (24% reduction
compared to 90%) conditions in Liver-ChREBP KO mice, suggesting
hepatic insulin resistance and explaining the difference in glucose
infusion rate (Figure 1G,H) (p < 0.05). The blood glucose and insulin
levels prior and during clamps on chow or HFD are given in
Supplemental Figure 7.
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3.2. Liver-ChREBP KO mice are protected from high-carbohydrate
diet induced hepatic steatosis

ChREBP is a lipogenic transcription factor that is known to be involved
in the development of hepatic steatosis. In order to determine the
effect of hepatic ChREBP deletion on hepatic steatosis development,
livers were histologically assessed for fat deposition via Oil Red O
staining in Liver-ChREBP KO and control mice fed either a normal
chow, a high-fat diet or a high-calorie high-carbohydrate diet. A
representative image from Liver-ChREBP KO and wildtype or FI/Fl
control mice fed a chow, high-fat or high-carbohydrate diet for 12
weeks is displayed in Figure 2. On a normal chow diet there was
minimal fat deposition in livers of mice of either genotype. When fed a
high-fat diet both control and Liver-ChREBP KO mice displayed he-
patic steatosis with increased fat deposition evident. However, when
fed a high-carbohydrate diet, Liver-ChREBP KO mice showed greatly
reduced hepatic lipid deposition when compared to control mice
(Figure 2). This suggests that ChREBP plays a role in the development
of hepatic steatosis in response to high carbohydrate diets. Inter-
estingly, this reduction in hepatic steatosis did not improve metabolic
health in these mice. In fact, further physiological assessment of
high-carbohydrate diet fed mice found Liver-ChREBP KO mice had
worsened glucose tolerance compared to control mice despite
reduced body weight and reduced body fat (Supplemental Figure 9D).
Interestingly, Liver-ChREBP KO mice display reduced adipocyte size in

Liver histology
WT/Floxed control
OilRed O H&E

Chow

HCD

HFD
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white adipose tissue when compared to WT control mice
(Supplemental Figure 10). This reduced adipocyte size fits with the
reduction in fat mass seen in Liver-ChREBP mice and suggests there
may be alterations in fatty acid flux in this tissue.

3.3. Liver-ChREBP KO mice have reduced hepatic fatty acid
oxidation and increased plasma inflammatory markers

In order to assess the effect of hepatic ChREBP deletion on liver
metabolic function, glycogen content, fatty acid oxidation, and lipo-
genesis were measured in chow-fed mice. There was no significant
difference in liver glycogen content between genotypes, suggesting no
impairments with glycogen synthesis and storage in Liver-ChREBP KO
mice (Figure 3A). This was confirmed with PAS staining in liver sec-
tions (Supplemental Figure 10). Liver fatty acid oxidation was reduced
by 23% in Liver-ChREBP KO mice (Figure 3B) (p < 0.05), which
supports a potential change in substrate preference as indicated by the
increase in RER seen in these mice. However, lipogenesis was unaf-
fected in Liver-ChREBP KO mice, suggesting compensation can occur
for lack of hepatic ChREBP (Figure 3C,D). Assessment of plasma
metabolic biomarkers in chow-fed Liver-ChREBP KO mice revealed a
69% reduction in leptin, which fits with the reduction in body fat in
these mice (Figure 4B) (p < 0.01). Liver-ChREBP KO mice also showed
a 46% increase in plasma ghrelin, which is likely an inappropriate
increase as blood was taken in the fed state when ghrelin levels should

Liver-ChREBP KO
OilRed O

H&E

Figure 2.: Liver histology in Liver-ChREBP KO mice. Liver histology showing representative Oil Red O and H&E stained liver sections from Liver-ChREBP KO and WT or FI/FI mice

fed either a chow, HCD or HFD for 12 weeks. Magnification = 20x.
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Figure 3.: Liver metabolism in chow-fed Liver-ChREBP KO mice. A. Liver glycogen content (n=4 per group). B. Fatty acid oxidation rate in isolated liver ex vivo (n=6 per
group). C. Lipogenesis of TAG and D. DAG in isolated liver ex vivo (n=6 per group). Results expressed as mean + SEM. Statistical analysis by unpaired t-test between each

genotype (*: p<0.05, **: p<0.01, ***: p<0.001, ***: p<0.0001).

be low (Figure 4A) (p < 0.001). Interestingly, Liver-ChREBP KO mice
had significantly elevated levels of the inflammatory markers plas-
minogen activator inhibitor-1 (PAI-1) (103% increase) and resistin
(35% increase), which is suggestive of a heightened inflammatory
profile (Figure 4B) (p < 0.001).

3.4. Selective deletion of ChREBP in liver alters ChREBP expression
in brown adipose tissue

Liver-ChREBP KO mice were confirmed to have a selective ChREBP
deletion in liver, with expression still evident in other tissues
(Supplemental Figure 11). As tissue cross-talk is an important factor in
the development of metabolic disease, the influence of hepatic ChREBP
deletion on the expression of ChREBP in other tissues was investi-
gated. Mice were either fasted overnight or left in the fed state and
tissues were collected for gene expression analysis. There were no
significant differences in ChREBPa. expression in WAT, BAT, gastroc-
nemius, or Kidney (Figure 5). Interestingly, there were also no signif-
icant differences in ChREBPa. expression between fasting states in any
tissue, supporting the notion that it is the ChREBP[3 isoform that is
more transcriptionally regulated in response to feeding. Correspond-
ingly, in control and Liver-ChREBP KO mice ChREBPJ expression
increased in WAT in the fed compared to the fasted state, although this
did not reach statistical significance (Figure 5B). In BAT, control mice
had a robust increase in ChREBP(B expression in the fed state
(Figure 5D) (p < 0.01). In contrast, this upregulation in the fed state
was almost abolished (0.15-fold of normal response) in Liver-ChREBP
KO mice (Figure 5D) (p < 0.05). There were no significant differences
in ChREBPP expression in gastrocnemius and a trend towards
increased kidney ChREBP[3 expression in the fasted state in Liver-
ChREBP KO mice (Figure 5F,H).
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3.5. Liver-ChREBP KO mice have altered expression of lipogenic
genes in liver and adipose tissues

ChREBP is a transcription factor that regulates various genes involved
in glycolysis, lipogenesis, and glucose metabolism. In order to look at
the effect of hepatic ChREBP deletion on the mRNA expression of these
genes, Liver-ChREBP KO and control mice were either fasted overnight
or left in the fed state, and various tissues were collected for gene
expression analysis. In addition to ChREBP target genes, other lipo-
genic transcription factors were measured to assess any potential
compensation occurring due to hepatic ChREBP deletion. Furthermore,
various genes can regulate ChREBP or are involved in feedback
pathways with ChREBP, and these genes were also measured. Finally,
as Liver-ChREBP KO mice seem to be in a heightened inflammatory
state, as demonstrated by their increased plasma resistin and PAI-1,
expression of various inflammatory markers was also measured.
Liver-ChREBP KO mice had various gene expression changes in the
liver. In the fasted state, Liver-ChREBP KO mice had elevated liver type
pyruvate kinase (L-PK) (2.3-fold) (p < 0.0001) as well a trend towards
increased acetyl-coA carboxylase 1 (ACC1) (1.5-fold) and fatty acid
synthase (FAS) (1.6-fold) (Figure 6A). In the non-fasted state there was
no significant difference in L-PK expression, but Liver-ChREBP KO
mice had increased ACC1 and FAS expression (2.3-fold) (Figure 6B)
(p < 0.05). These genes are only supposed to be upregulated in the
fed state, and the increases seen in both the fasted and fed states in
the Liver-ChREBP KO mice suggest dysregulation of the response to
glucose. Clearly, there is compensation occurring that allows upre-
gulation of ChREBP target genes despite hepatic ChREBP deletion, but
it seems this compensation cannot respond to glucose appropriately,
resulting in activation of target gene expression regardless of fasting
state. In support of this, Liver-ChREBP KO mice have greatly reduced
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Figure 4.: Plasma metabolic biomarkers in chow-fed Liver-ChREBP KO mice. A. and B. Concentrations of metabolic biomarkers in plasma of Liver-ChREBP KO and WT mice
(n=9 per group). Results expressed as mean + SEM. Statistical analysis by unpaired t-test between each genotype (**: p<0.01, ***: p<0.001, ***: p<0.0001).

expression of lipogenic genes when fed a high-fat diet (Supplemental
Figure 12). This suggests that adequate compensation by other tran-
scriptional regulators can no longer occur in the state of dietary
overload. GLUT2 expression was increased in the fasted state in Liver-
ChREBP KO mice (1.7-fold) (Figure 6A) (p < 0.05). Interestingly, FGF21
expression was decreased in the fasted state (0.6-fold) but increased
in the fed state (2.9-fold) in Liver-ChREBP KO mice (Figure 6A/B)
(p < 0.05). These hepatic gene expression changes corresponded to
changes in plasma FGF21, where Liver-ChREBP KO mice had a trend
towards increased FGF21 in the fed state and a significant decrease in
FGF21 levels in the fasted state (Figure 6C,D) (p < 0.05). Again, when
fed a high-fat diet, Liver-ChREBP KO mice in the fed state show an
opposite relationship where they have significantly reduced FGF21;
however, there was no detectable difference in serum FGF21 levels
(Supplemental Figure 12B and C). Unexpectedly, there was a decrease
in PAI-1 expression in the fasted state (0.3-fold) (Figure 6A) (p < 0.01).
There were no significant differences in any of the ChREBP regulators
or other genes measured.

The gene expression changes in WAT show inappropriate upregulation
of lipogenic genes in the fasting state in Liver-ChREBP KO mice.
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Expression of ACC1 (2.7-fold), SCD1 (2.0-fold) and thioredoxin inter-
acting protein (TXNIP) (2.1-fold) are all increased in fasted Liver-
ChREBP KO mice when compared to control mice (Figure 7A)
(p < 0.01). In response to a high-fat diet both WT and Liver-ChREBP
KO mice have the expected reduction in lipogenic gene expression
(Supplemental Figure 13A). Interestingly, phosphoenolpyruvate car-
boxykinase (PEPCK) expression is profoundly increased in WAT of
Liver-ChREBP KO mice in both fed (5.1-fold) and fasted (3.4-fold)
states (Figure 7A,B) (p < 0.0001). In WAT, PEPCK is responsible for
glyceroneogenesis and plays an important role in fatty acid cycling in
adipocytes. Strikingly, this increase in PEPCK is absent with high-fat
diet feeding (Supplemental Figure 13B). Unexpectedly, the expres-
sion of inflammatory marker tumor necrosis factor alpha (TNFa) was
decreased in Liver-ChREBP KO mice in the fasted state (0.3-fold)
(Figure 7A) (p < 0.05). There were no other significant changes be-
tween genotypes in other genes measured.

The gene expression changes seen in BAT were greatly different to
those seen in WAT. In the fasted state, there was a trend towards a
decrease in the ChREBP target genes ACC1, FAS, SCD1, and FGF21 in
Liver-ChREBP KO mice (0.3-fold) (Figure 8A). This reduction in
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Figure 5.: ChREBP expression in Liver-ChREBP KO mice. ChREBPo. gene expression in A. WAT, C. BAT, E. Gastrocnemius muscle and G. Kidney of Liver-ChREBP KO and WT
mice after overnight fasting (fasted), or without fasting (fed). ChREBPB gene expression in B. WAT, D. BAT, F. Gastrocnemius muscle and H. Kidney of Liver-ChREBP KO and WT
mice after overnight fasting (fasted), or without fasting (fed). Results were normalized to expression of the housekeeping gene 36B4, and expressed in arbitrary units using the
2/\(—0Ct) formula. Results are expressed as mean & SEM. Statistical analysis was by two-way ANOVA followed by Tukey’s post-hoc test. * denotes significance between
genotypes (within a fasting state), O denotes significance between fasting states (within a genotype) (3: p<0.05, **: p<0.01).

lipogenic genes was no longer present when mice were fed a high-fat
diet (Supplemental Figure 14A). There was also a significant reduction
in FGF21 expression in Liver-ChREBP KO mice in the fed state (0.2-
fold) (Figure 8B) (p < 0.05). In the fasted state, Liver-ChREBP KO
mice had increased expression of the glucagon receptor (2.1-fold)
(Figure 8A) (p < 0.01). Similar to in WAT, Liver-ChREBP KO mice had
increased expression of PEPCK in BAT in the fed state (2.6-fold)
(Figure 8B) (p < 0.001). Interestingly, FOX01 was upregulated in Liver-
ChREBP KO mice in both fed (2.3-fold) and fasted (1.8-fold) states
(Figure 8A,B) (p < 0.05). FOXO01 is a negative regulator of ChREBP and
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has also been shown to regulate energy expenditure in brown adipose
tissue. Interestingly, the changes in PEPCK, FGF21 and FOXO1
observed in the fed state were no longer detectable after high-fat diet
feeding (Supplemental Figure 14B).

4. DISCUSSION
In this study, we characterized a novel mouse model of hepatic

ChREBP deletion to investigate the importance of this factor in glucose
homeostasis and insulin sensitivity. We found liver ChREBP is essential
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p<0.0001).

for maintaining whole-body glucose homeostasis and hepatic insulin
sensitivity. Liver-ChREBP KO mice had reduced fat mass but gained
similar weight when fed a high-fat diet. Regardless of diet, these mice
displayed glucose intolerance and insulin resistance with specific
impairments in the suppression of hepatic glucose production. Along
with the reduced liver insulin sensitivity, hepatic ChREBP deletion
impaired the lipogenic transcriptional response to fasting and feeding
suggesting a lack of appropriate compensation by alternate lipogenic
transcription factors to glucose sensing. Apart from these effects on
the liver, there were also dramatic gene expression changes evident in
both white and brown adipose tissues. Finally, although ChREBP
deletion did protect against carbohydrate-diet induced hepatic
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steatosis this was not protective in terms of metabolic health. The
alterations in liver in response to ChREBP deletion have wide-ranging
effects on whole body glucose homeostasis and can induce specific
changes in WAT and BAT to affect lipid homeostasis.

Perhaps the most striking effect of hepatic ChREBP deletion was the
impairment of hepatic insulin sensitivity. Liver-ChREBP KO mice dis-
played glucose intolerance, which was most likely due to insulin no
longer being able to suppress hepatic glucose production (HGP)
effectively. Importantly, this impairment was also seen after high-fat
diet feeding, despite no differences in body composition. This sug-
gests that ChREBP action in the liver is important in maintaining he-
patic insulin sensitivity. This contradicts human association studies
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showing an association of insulin resistance with increased liver
ChREBP [7,10] and suggests that the increase seen in obesity is most
likely compensatory. Furthermore, it contradicts suggestions that
ChREBP deletion is beneficial in states of lipid overload as has previ-
ously been suggested [18,20]. Hyperglycemia and poor blood glucose
control contribute to various microvascular and macrovascular com-
plications in diabetes and so are important processes to understand.
How ChREBP influences insulin sensitivity is unclear, but one potential
mechanism could be production of insulin-sensitizing lipid mediators.
Recent studies have shown ChREBP synthesizes a novel class of
insulin-sensitizing and anti-inflammatory lipids, FAHFAs, in adipose
tissue [16]. These FAHFAs were shown to increase insulin-stimulated
glucose transport in adipocytes via activation of the G-protein coupled
receptor GPR120 [16]. Whether liver-derived FAHFAs could influence
hepatic insulin sensitivity in a similar way remains to be tested.
However, activation of GPR120 using an agonist does improve insulin
sensitivity in liver [21], which suggests hepatic ChREBP synthesized
FAHFAs could act in a similar way. It must be noted that there are
numerous other transcription factors that can induce transcription of
glycolytic and lipogenic genes, including upstream stimulatory factors
(USFs), sterol regulatory element-binding protein 1¢ (SREBP1c), liver X
receptors (LXRs), hepatocyte nuclear factor 4 (HNF4c), and c-myc
[22—24]. For instance, both ¢c-myc and HNF4o can bind to the L-PK
promoter [22,23]. However, although these factors are recruited to the
L-PK promoter, they are not transactivated by glucose. Therefore,
although alternate transcription factors likely compensate for the
deletion of ChREBP, as suggested by the mRNA expression of the
supposed ChREBP-specific target gene L-PK, it is likely that these
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transcription factors cannot respond appropriately to glucose. This is
supported by ChREBP target gene expression being induced in Liver-
ChREBP KO mice inappropriately in the fasting state. Furthermore,
previous studies have shown ChREBP deletion completely reverses the
elevation in FAHFAs seen in mice with adipose tissue over-expression
of GLUT4 [16]. Additionally, high-fat diet Liver-ChREBP KO mice have
reduced target gene expression, suggesting compensation can no
longer occur with dietary overload. This includes reductions in lipo-
genic genes as well as FGF21, which is a known ChREBP target gene
that can influence insulin sensitivity [25,26]. This suggests that Liver-
ChREBP KO mice cannot respond appropriately to feeding, thus
impairing hepatic lipid homeostasis, potentially impairing hepatic in-
sulin action via lack of a favorable autocrine signal, resulting in
elevated HGP and impaired glucose homeostasis.

Deletion of hepatic ChREBP may also affect indirect mechanisms of
HGP regulation. It is known that insulin can directly suppress HGP
through hepatic Akt signaling resulting in inhibition of FOXO1. Yet,
studies have shown insulin acts through direct and indirect pathways
in humans to suppress HGP [27]. Various mouse models have shown
that if the insulin receptor or Akt is deleted, along with FOX01, insulin
is still able to regulate HGP through indirect mechanisms [28,29]. This
can be centrally mediated by hypothalamic neurons that can respond
to glucose to regulate HGP [30,31]. Furthermore, insulin’s ability to
suppress HGP has been shown to be at least partly dependent on its
inhibition of lipolysis in WAT [32]. In fact, recently Perry et al. have
shown that the main mechanism by which insulin suppresses
gluconeogenesis is by suppressing lipolysis of WAT. This reduces fatty
acid flux thereby reducing hepatic acetyl-coA and decreasing pyruvate
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Figure 8.: Gene expression in brown adipose tissue of chow-fed Liver-ChREBP KO mice. (A) Gene expression in BAT of Liver-ChREBP KO and WT control mice after overnight
fasting, or (B) without fasting. Results were normalized to expression of one of 3 housekeeping genes; 36B4, Hprt or Pgk1; and then shown as fold change versus either the WT
fasted group (A), or the WT non-fasted group (B). Results are expressed as mean + SEM. Statistical analysis was by two-way ANOVA followed by Tukey’s post-hoc test.

(*: p<0.05, **: p<0.01, ***: p<0.001).

carboxylase activity, resulting in reduced conversion of pyruvate to
glucose [33]. The authors show that diet induced obesity impairs this
pathway due to increased inflammatory mediators in adipose and
serum [33]. Interestingly, Liver-ChREBP KO mice have increased
serum inflammatory markers PAI-1 and resistin, suggestive of a
heightened inflammatory state. This may be due to a reduction in anti-
inflammatory mediators from liver, such as FAHFAs or another
metabolite, acting in an endocrine manner to increase inflammation
and interfere with insulin action on adipose tissue. However, it must
be noted that we did not see an increase in the mRNA expression of
inflammatory markers in adipose tissue. Perhaps, in Liver-ChREBP KO
mice, the reduction in hepatic insulin-sensitizing lipids can result in a
reduced efficacy of insulin to suppress lipolysis in WAT. On a chow
diet, Liver-ChREBP KO mice have a reduced fat mass and smaller
adipocyte size. Furthermore, on a high-fat diet Liver-ChREBP KO mice
have elevated serum non-esterified fatty acid levels (Supplemental
Figure 15). This is suggestive of increased lipolysis in these mice.
Liver-ChREBP KO mice show a striking elevation in PEPCK mRNA in
WAT. In WAT, PEPCK is important in glyceroneogenesis and therefore
re-esterification of fatty acids. It has previously been shown that
PEPCK is controlled at the level of transcription [34], thus the
increased expression seen is a reliable measure of increased activity.
Importantly, re-esterification of fatty acids increases with increased
lipolysis as free fatty acids are recycled back to triglycerides. It has
been shown that the fraction of free fatty acids released during
lipolysis that are recycled remains relatively constant and it is the rate
of triglyceride/fatty acid cycling that changes during fasting and fed
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states [35]. Therefore, the dramatic increase in PEPCK seen in Liver-
ChREBP KO mice in both fed and fasted states is likely due to
increased fatty acid cycling due to increased lipolysis. Whether this is
causing the impairment in hepatic insulin sensitivity, or is a conse-
quence of it, remains to be determined. Regardless of the specific
mediator responsible it is clear that specific deletion of hepatic
ChREBP can induce metabolic changes not only in the liver but also in
white adipose tissue.

Hepatic ChREBP deletion resulted in profound alterations in brown
adipose tissue gene expression. Strikingly, the induction of BAT
ChREBPJ expression in the fed state was almost completely abolished
in Liver-ChREBP KO mice. This was accompanied by a trend towards
decreased lipogenic gene expression in both fed and fasted states. The
role of ChREBP in BAT is not completely understood, but it has been
shown to induce lipogenesis and is involved in a feedback loop with
PPARa. to coordinate appropriate lipogenesis and lipolysis [36]. This
may be important in thermogenesis as de novo lipogenesis in brown
adipose tissue increases supply of fatty acid substrates. In fact,
although acute activation of $3-adrenoceptors, which mediate sym-
pathetic activation of thermogenesis, suppresses de novo lipogenic
genes chronic administration increases them [37]. In the short term
[3-adrenoceptor activation increases lipolysis and promotes fatty acid
oxidation and uncoupling but chronic stimulation will simultaneously
increase lipid synthesis allowing continual substrate supply [37].
Therefore, the impairment in BAT ChREBP may impair the coordination
of lipolysis and lipogenesis resulting in decreased substrate availability
and therefore decreased uncoupling and thermogenesis. What is

1391


http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

causing the reduction in ChREBP is unclear but may be due to impaired
insulin action in BAT. It is plausible that reductions in favorable me-
tabolites from liver would also influence BAT. In support of this, there is
increased expression of FOX01 in both the fed and fasted states in
BAT. Insulin is known to inhibit FOXO1 so the elevation seen may be
due to reduced efficacy of insulin. Furthermore, FOXO1 can inhibit
ChREBP activity and protein stability in hepatocytes and pancreatic 3
cells [38,39]. Whether FOX01 also plays a role in regulation of BAT
ChREBP remains to be seen. Insulin also inhibits the transcriptional
repressor Oct-1, which has been shown to inhibit ChREBP mRNA and
protein expression in a liver cell line [40]. Therefore, the reduction seen
in ChREBP could be due to decreased insulin action at BAT resulting in
elevated FOX01 and Oct-1. Liver-ChREBP KO mice also had decreased
expression of FGF21 in BAT. Interestingly, activation of thermogenesis
induces FGF21 mRNA expression in brown adipose tissue followed by
release from brown adipocytes [41,42]. This again suggests that
thermogenesis may be decreased in Liver-ChREBP KO mice and
further highlights a potential role for ChREBP in regulating BAT FGF21.
It will be important to investigate whether thermogenesis is altered in
Liver-ChREBP KO mice and future investigations into the role ChREBP
in BAT thermogenesis would be beneficial.

Although hepatic ChREBP deletion can protect mice from
carbohydrate-diet induced hepatic steatosis this is not protective in
terms of metabolic health. Despite reductions in liver triglyceride,
Liver-ChREBP KO mice fed a high-carbohydrate diet display worsened
glucose tolerance and increased serum PAI-1 and resistin
(Supplemental Figures 9 and 15). This supports the view that hepatic
steatosis is not necessarily detrimental, and, in fact, increasing hepatic
de novo lipogenesis may be beneficial [17,43]. Adenoviral-mediated
over-expression of ChREBP in liver of mice improves insulin sensi-
tivity when fed a high-fat diet despite worsened hepatic steatosis [17].
Whether this is due to increased favorable lipids or decreased harmful
lipids is unclear and may depend on the nutritional context. Although
control and Liver-ChREBP KO mice both display similar liver triglyc-
eride deposition on chow and high-fat diets the KO mice have impaired
glucose tolerance and hepatic insulin resistance. A lipidomic analysis
of Liver-ChREBP KO mice on chow, high-carbohydrate, and high-fat
diets would be insightful.

By examining the effects of hepatic ChREBP deletion, a complex inter-
tissue communication network to maintain metabolic homeostasis can
be observed. Deletion of ChREBP in liver impairs the normal response
to fasting and feeding as observed by the lipogenic gene expression
profiles. Furthermore, Liver-ChREBP KO mice have reduced hepatic
fatty acid oxidation, suggesting alterations in substrate utilization. This
is seen at a whole body level with changes in the respiratory exchange
ratio reflecting increased oxidation of carbohydrates, particularly after
fasting. The liver is the central organ of glucose and lipid metabolism,
so it is unsurprising that alterations here would impact other metabolic
tissues. Although adipose tissue and adipokines have recently
garnered the most attention in their ability to influence whole body
insulin and glucose homeostasis, the liver undoubtedly plays a role as
well. In fact, this has been shown previously where lipids from the liver
can regulate de novo lipogenesis and fatty acid oxidation in WAT [44].
Furthermore, FGF21 is released by the liver in the fasting state to
regulate the appropriate response in other tissues including WAT,
where it stimulates lipolysis [45], and BAT, where it increases glucose
uptake [26]. Cycling between FGF21 and hepatic ChREBP has been
shown to be important in coordinating the appropriate central and
peripheral responses to carbohydrate and fructose feeding in mice
[46,47]. Interestingly, Liver-ChREBP KO mice have decreased FGF21 in
the fasted state but increased FGF21 in the fed state again reflecting
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the impairment in an appropriate glucose response in these mice.
These impairments influence both white and brown adipose tissues.
Liver-ChREBP KO mice have reduced WAT mass as well as inappro-
priate upregulation of lipogenic genes in the fasted state and increased
PEPCK indicative of increased fatty acid cycling. Whereas in BAT, Liver-
ChREBP KO mice show reduced ChREBP and FGF21 expression and
increased FOX01 expression. Furthermore, after high-fat diet feeding,
Liver-ChREBP KO mice have a reduction in hepatic FGF21 mRNA
expression. These alterations in liver FGF21 may play a role in the
worsened metabolic homeostasis seen with high-fat diet feeding in
these mice. The liver is vital in conveying information about the
metabolic state of the body to other tissues in order to coordinate
tissue responses. Impairments in the appropriate glucose-sensing
response due to hepatic ChREBP deletion lead to impairments in
lipid and glucose homeostasis. This may be due to impaired synthesis
of FAHFAs but may also be due to altered expression of various other
metabolites. A comprehensive metabolomic screening of Liver-
ChREBP KO mice could help identify novel mediators and is a focus
for future studies.

In conclusion, we have characterized a novel mouse model to examine
the importance of hepatic ChREBP on whole body glucose homeostasis
and insulin sensitivity. Liver ChREBP is vital in maintaining hepatic
insulin sensitivity and coordinating the appropriate responses to fasting
and feeding through glucose sensing. Future investigations to identify
the mediators of these responses may reveal novel pathways that
could be exploited for therapeutic development for hyperglycemia and
diabetes.
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