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Abstract

Morphological design and the relationship between form and function have great influence on the 

functionality of a biological organ. However, the simultaneous investigation of morphological 

diversity and function is difficult in complex natural systems. We have developed a multiobjective 

optimization (MOO) approach in association with cluster analysis to study the form-function 

relation in vocal folds. An evolutionary algorithm (NSGA-II) was used to integrate MOO with an 

existing finite element model of the laryngeal sound source. Vocal fold morphology parameters 

served as decision variables and acoustic requirements (fundamental frequency, sound pressure 

level) as objective functions. A two-layer and a three-layer vocal fold configuration were explored 

to produce the targeted acoustic requirements. The mutation and crossover parameters of the 

NSGA-II algorithm were chosen to maximize a hypervolume indicator. The results were expressed 

using cluster analysis and were validated against a brute force method. Results from the MOO and 

the brute force approaches were comparable. The MOO approach demonstrated greater resolution 

in the exploration of the morphological space. In association with cluster analysis, MOO can 

efficiently explore vocal fold functional morphology.
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I. INTRODUCTION

Functional morphology investigates the relationship between anatomical form and behavior. 

In biology, innovation in design and the form-function relationship have great influence on 

the evolution of diversity in systems [1]. In medicine, the repair of a damaged mechanical 

structure and the form-function relationship impact the performance of the organ after 

recovery. Investigating morphological diversity and function simultaneously is especially 

difficult in complex systems, but computational simulations can provide new insights. Here, 

we used multiobjective optimization (MOO) [2] pp. 227–298] to investigate morphological 

variety and vocal function of vocal folds. Associating MOO with cluster analysis provides a 

new approach to evaluate trends generated by the utilized evolutionary algorithms.

Vocalization for singing and speaking is a highly complex behavior, intimately related to the 

process of energy conversion. The vocal fold oscillation rate determines the sound 

fundamental frequency (Fo), and their oscillation amplitude contributes to the sound 

amplitude (“sound pressure level,” SPL). Generating sound by vocal fold oscillations is 

complex (see Fig. 1): (a) lung pressure must be generated, (b) vocal fold mechanical 

properties determine their oscillation behavior, (c) neuromechanical properties of involved 

muscles determine active movements of larynx and vocal tract. The high dimensionality of 

the vocal system makes predictions of effects on voice quality generated by perturbations at 

a single point in the system very difficult.

Voice simulation used in this study was based on control in two domains: 1) flow-induced 

oscillation of collapsible tissue walls to produce sound, and 2) propagation of sound in 

airways [3] pp. 80–135]. Finite-element and finite-difference approaches are used to solve 

differential equations [4], that govern air and tissue movement. Similar approaches have 

been taken by others [5]–[11]. We utilize a modified Bernoulli flow calculation coupled with 

a few hundred finite elements for tissue vibration, striking a balance between a sufficient 

number of iterations (for accuracy and stability) and computation time.

The voice simulator and MOO are integrated by an evolutionary algorithm, the 

nondominated sorting genetic algorithm II (NSGA-II) [12]. The algorithm searches for 

optimal solutions that are diverse and globally distributed. It produces multiple generations 

of populations that contain alternative nondominated solutions. The MOO is more efficient 

than a brute-force search that explores space at a predefined resolution. The solutions are 

viable and characterized by different phenotypic features (here two acoustic parameters: , 

). The solutions of each new generation are closer to the predefined target objectives. 

The use of evolutionary algorithms to study functional vocal fold morphology has two 

advantages over other optimization techniques. First, multiple solutions are generated 

reflecting natural variation at the individual level. They also demonstrated that the vocal 

organ can facilitate very similar vocal features by multiple solutions. Second, for surgical 

repair, a compromise is sought between tissue reconstruction (targeting a predamage shape) 

and establishing a sufficient voice quality and long-term tissue survival.
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II. Problem Definition

The goal of this study was to develop a tool for obtaining alternate vocal fold morphological 

solutions that allow voice production within targeted ranges of voice features based on an 

evolutionary algorithm. The MOO technique operates with vocal fold morphology 
parameters as decision variables, and with voice acoustic requirements as objective 

functions. Constraints can be imposed on both, morphology and acoustic requirements. We 

developed a computational mapping procedure that delivers 20 alternative solutions per 

population. Each solution is viable, i.e., a sustained voice is produced. The algorithm is run 

for 500 generations, producing 10 000 solutions. Each new generation contains solutions 

that are closer to the target morphology than those from the previous generation.

Section III first outlines the voice simulator. Then, the evolutionary algorithm is explained, 

and finally details of the integration of the voice simulator with the evolutionary algorithm 

are presented.

III. Methods

A. Voice Simulator—A Vocal Fold Finite Element Model

Vocal fold dynamics includes fast and small amplitude oscillatory movements in which 

various layers of the vocal fold are vibrating. The implementation of vocal fold morphology 

is outlined in Fig. 2. Soft tissue of the vibrating portion of each vocal fold was divided into 

triangular elements in the coronal plane and into rectangular layers in the ventro-dorsal 

direction (along the length of the vocal folds) as shown in Fig. 2(c) and (d). The number of 

elements was chosen to capture two principal modes of oscillation [13], [14]. These modes 

are based on approximate half-wavelength standing waves in the dorso-ventral direction and 

half-wavelength standing waves in the caudo-cranial direction on the vocal fold surfaces. We 

used 12 elements in the caudo-cranial direction, which would be 24 elements per 

wavelength. In the dorso-ventral direction, the number of elements was 10.

Mammalian vocal folds consist of several layers of tissue [see Fig. 2(c)] each characterized 

by specific biomechanical properties. The current simulation investigated a vocal fold with 

two layers and a vocal fold with three layers. In the three layer vocal fold, the outermost 

layer is the mucosa. Underneath is the vocal ligament consisting of extracellular matrices of 

collagen and elastin proteins. All layers contain glycosaminoglycans like hyaluronan. 

Lateral to the lamina propria is a muscle (musculus thyroarytenoideus) which demonstrates 

passive and active stress response characteristics. In our model, the material is considered 

isotropic in a plane transverse to the dorso-ventral fiber direction. In essence, the tissue is an 

orthotropic fiber-gel compound.

Tissue vibration is solved with the planar viscoelastic equation of motion [13] p. 178],
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(1)

where x and z are space variables in the coronal plane, ξ and ζ are the corresponding 

displacements in the x and z direction, μ is the shear modulus in the coronal place, ν is the 

Poisson ratio, and μ′ is the shear modulus in any plane perpendicular to the coronal plane. 

The variable μ′ contains the tension in the tissue fibers that are imposed by moveable 

boundary conditions. Incompressibility of the tissue transverse to the fibers at sonic 

frequencies is expressed by the relation

(2)

and the planar Poisson ratio ν is taken to be as close to 1.0 as numerically feasible. The 

tissue density ρ is 1.04 g/cm3. This leaves only two elastic variables, μ and μ′, to be selected 

as control variables. By far the dominant one of these is μ′ for frequency of oscillation. μ′ 
describes the tension in the tissue fibers, and tension in the tissue fibers is the primary 

restoring force and largely determines F0 [43]. Hence, we chose μ′ for parameter variation. 

Amplitude of oscillation is controlled primarily by lung pressure. The constitutive equation 

for the fiber-gel substance is embedded in (1), defined by the shear elastic moduli and the 

poisson ratio. FEM solution includes a shear viscosity η.

There are six boundaries for the vibrating portion of each vocal fold. Tissue fibers originate 

or insert into these boundaries laterally, ventrally, and dorsally. Tissue oscillation is 

constrained to be zero on these surfaces because the boundary movement is postural, not 

oscillatory [see Fig. 2(d)]. In the study reported here, all postural movements occur prior to 

phonation, not during phonation. Aerodynamic and acoustic pressures apply cranially, 

caudally, and medially, and tissue vibration is unconstrained. The boundary conditions are 

formulated as displacements at the nodes of each finite element. Interpolation functions are 

derived to express displacements and velocities inside each element. More details on the 

implementation of the vocal system by finite element modeling can be found elsewhere 

(e.g., [13], [15], [16]).

The finite-element construct allows solution of the partial differential equations [13] pp. 

214–231]. The most important boundary for driving pressures is the medial surface of the 

vocal folds, which is parameterized as

(3)

where y and z are space variables in the mid-sagittal (glottal) plane, ξ01 and ξ02 are lower 

and upper abduction from the y-z plane, T is vocal fold thickness (in the z direction), and ξb 

is a bulging parameter that gives curvature to the medial surface.
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Oscillation of the vocal folds is self-sustained by airflow between the vocal folds. This 

airflow is computed by the equation

(4)

where

(5)

is the effective combined vocal tract area, made up of the subglottal area As and epiglottal 

area Ae. In the above, ad is the flow detachment area in the glottis, ke is a transglottal 

pressure coefficient (approximately 1.1), ρ is air density, c is sound velocity,  is the 

subglottal incident pressure (steady plus acoustic), and  is the supraglottal incident 

pressure (also steady plus acoustic). A wave reflection algorithm [13] pp. 319–334], [17], 

[18] is used to solve all the acoustic wave pressures in the vocal tract, which was modeled as 

uniform tube of 17.5 cm length and 2 cm diameter. Pressures in the glottis are solved with 

Bernoulli’s energy equation below flow detachment and with jet stream equations above 

flow detachment [13] pp. 270–279].

B. Optimization Algorithm

Given a set of decision variables x ∈ X, a generic multiobjective optimization problem is 

defined as maximizing or minimizing the objective functions F (x) ∈ Y, subject to the 

constraint information g (x) ≤ 0 and h (x) = 0. Here, X is the decision variable space, Y is 

the objective function space, which can be weighted according to objective priority function 

w (y) to determine the relevance of each objective function to the individual. The constraints 

determine the set of feasible solutions where g corresponds to inequality constraints and h 
corresponds to equality constraints.

There are several MOO techniques and their comparison studies available [12], [19]–[23]. A 

critical feature of MOO techniques is how they use constraints information [24]. The 

NSGA-II has been chosen for our purpose because of its elitist approach, low computational 

cost, handling of constraints, better spread of solutions, and better convergence to the true 

pareto-optimal front [12].

1) Nondominated Sorting Genetic Algorithm—The NSGA-II is a genetic algorithm 

that uses evolutionary strategies to generate populations of solutions in each generation. An 

arithmetic crossover and Gaussian mutation generate offspring population of individuals 

from parent population. Solutions are the optimal individuals that are the outcome of the 

optimization in each generation. The binary tournament selection method chooses 

individuals for next generation from a combined parent and offspring population. The 

NSGA-II algorithm uses nondominated sorting method [12] for sorting individuals into 
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different non-domination levels and crowding distance method [25] to sort individuals 

within the same level. An individual dominates another individual if it is strictly better in at 

least one objective and no worse in all the other objectives. All individuals that are not 

dominated by any other individuals in the objective space form the first nondomination level 

called pareto front 1. The individuals that are dominated only by individuals in pareto front 1 

form the pareto front 2 and so on. The step by step procedure of NSGA-II algorithm is 

provided in Fig. 3 as a flowchart.

2) Arithmetic Crossover Function—A crossover function generates two offsprings 

from two parent individuals [26]. The offsprings have the best characteristics of the two 

parent individuals. The arithmetic crossover function is given as

(6)

(7)

where P1 is parent 1, P2 is parent 2, O1 is offspring 1, O2 is offspring 2, r1 is a random 

number, and c is a scalar called crossover fraction. The crossover fraction controls the 

closeness of offsprings to the parents. A small number of c keeps the new solutions close to 

the old ones.

3) Gaussian Mutation—Mutation is used in optimization algorithms to maintain diversity 

in individuals from one generation to the next [27]. The Gaussian mutation function is given 

as

(8)

where O is the offspring, σ denotes standard deviation of the random number r2 generated, s 
is a scalar that decreases the mutation range as the optimization progress forward, Gi is the 

current generation number, Gm is the maximum number of generations, and bu and bl are the 

upper and lower bounds of the offspring, respectively.

4) Binary Tournament Selection—A binary tournament selects individuals for next 

generation. Individuals are chosen above others based on their pareto front number and 

crowding distance [28]. An individual with lower pareto front number is chosen if the two 

individuals are from different pareto fronts and the individual with larger crowding distance 

is chosen if the two individuals are from the same Pareto front. The crowding distance is 

computed on objective function values sorted in ascending order within the parent 

population. The crowding distance equation derived by Mehdipour [29] is given as
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(9)

where  is the crowding distance of jth individual, Ij in the sorted list, M is the number of 

objectives, fm is the mth objective function, j + 1 and j − 1 are the two nearest individuals on 

either side of the current individual in the sorted list, Min and Max are the minimum and 

maximum values of the objective function in the sorted list, respectively.

C. Applying the NSGA-II Algorithm to the Voice Simulator

One key morphology parameter of the vocal folds for fundamental frequency control μ′/μ 

was used as a decision variable. Acoustic output variables  and  were the objective 

functions. Restrictions on the morphology and acoustic variables were the constraints of the 

optimization algorithm. The acoustic priority weights were all set to 1. A single run of the 

finite element model to generate 0.4 s of voice signal requires about 11 s to complete. It took 

about 30 h to complete an optimization simulation with a population size of 20 and 500 

generations, yielding 10 000 solutions.

1) Morphology Parameters—Vocal folds demonstrate a species-specific layer structure 

(e.g., [30], [31]). Each layer is characterized by length L, thickness T, depth D, bottom ξ01, 

and top ξ02 x-position, bulging B, viscosity η, longitudinal μ′, and transverse μ shear 

modulus.

In our current experiment, subglottal pressure and longitudinal shear moduli μ′ of each 

vocal fold layer were varied during optimization (see Table I). The current presentation 

focuses on longitudinal shear modulus because it is the single most important parameter 

affecting . The left and right vocal folds were considered symmetric. In vector form, the 

morphological parameters were written as

(10)

where PL is the subglottal pressure,  is the longitudinal shear modulus of layer 1,  is the 

longitudinal shear modulus of layer 2, and so on. Layers are concatenated as needed.

2) Acoustic Requirements—Several acoustic parameters can be measured for simulated 

voice production. Investigators in human speech and voice research have established norms 

for mean fundamental frequency  and mean sound pressure level ( ). Similar data 

exist for some animals. Acoustic requirements alter with species, gender, age, etc. In vector 

form, the acoustic requirements considered here are given as a dot product

(11)
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where W is a priority vector that gives a weight to each acoustic parameter. Weights can 

range between 0 (assigning lowest importance to an acoustic parameter) and 1 (highest 

importance) such that the sum of all the weights will be equal to 1. In this study, W for both 

parameters was considered to be 1.

3) Constraints—Restrictions are imposed on both morphological and acoustic variables. 

These restrictions set ranges of each variable based on published values (see Table I). 

Constraints are also set on the ratio of transverse to longitudinal shear modulus μ′/μ of each 

layer. These restrictions will guide the optimization of morphological parameters in 

achieving the desired acoustic requirements.

D. Presentation of Results and Performance Assessment

The MOO algorithm was programmed to generate a population of 20 solutions in each 

generation. It is customary in studies using MOO techniques to present the solutions of the 

last generation, given that they are closest to the true pareto front among all generations. 

However, our concern is to explore the relationship between the morphology and the 

acoustic space. Hence, we chose to present all the individual solutions that were generated 

by the crossover and mutation algorithms during the optimization rather than just the 

optimal solutions of the final generation. This has the advantage of exploring the parameter 

space for viable solutions, similar to a brute force approach with random parameter 

variations. However, greater resolution and more rapid convergence are expected with 

predefined target morphology and acoustic spaces.

The performance of the NSGA-II algorithm is measured across generations as it gives an 

indication of how many generations are needed for the algorithm to converge to the true 

pareto front and the optimal mutation and crossover parameters needed [32]. The 

performance of the NSGA-II algorithm across generations has been measured using 

hypervolume indicator [32].

1) Cluster Analysis—The objective is to obtain multiple alternate solutions of 

morphology parameters for the desired acoustic output. Hence, the results from the 

optimization were presented as clusters of solutions between decision and objective spaces. 

The optimization algorithm was altered to store the generated individuals and their 

corresponding acoustic outputs across all generations. The combinations of each of the 

morphology and acoustic spaces were then analyzed using cluster analysis. The clusters are 

computed using Gaussian mixture models (GMM), which were formed by combining 

multivariate normal density components [33]. An expectation maximization algorithm 

assigned posterior probabilities to each component density with respect to each observation. 

Clusters were formed by selecting the component that maximizes the posterior probability.

2) Hypervolume Indicator—A hypervolume indicator is a measure of space covered by 

solutions in the objective space [32]. It measures this space with respect to a reference point 

that is dominated by all points in the objective space. Considering minimization of 

objectives to be the goal of the optimization, the point containing the maximum value of 

each objective function will be a good reference since it will be dominated by any other 
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point in the objective space. The hypervolume indicator can be measured on a single point or 

group of points. When a single point is considered, the hypervolume is the product of 

individual differences between the reference point and the point of interest (i.e., the volume 

of the hypercube between the point and the reference). When group of points is considered, 

the hypervolume is the union of all hypercubes between the reference point and the points in 

the group [25].

Here, we compute the hypervolume of each generation (i.e., group of 20 solutions) to see the 

progress of the NSGA-II algorithm across generations. The objective functions are 

normalized to their maximum values. So, the hypervolume will always lie between 0 and 1 

with 1 corresponding to the best solution. If better solutions are obtained in each generation 

of the optimization, the hypervolume will increase across generations.

E. Validation of MOO Simulation Results

1) Sound Output Validation—In order to test whether a simulation generated a sustained 

voice signal, i.e., resulted in a successful voice simulation, each simulation was investigated 

for its periodicity over time. We used simple peak detection which detects periodicity in the 

time-domain envelope by measuring the period of the envelope peaks. A sufficient number 

of consecutively matching periods (limiting the range of frequencies that are acceptable for a 

periodicity from 30 to 400 Hz) are interpreted as the presence of a periodic voice signal. A 

standard deviation of the peak values less than 0.01 was used as selection criterion for a 

sustained voice signal. The measure proofed to be robust in a subsample of 500 simulations 

for which the outcome was visually confirmed in a spectrogram.  is computed using 

standard autocorrelation method [34] and  is computed as a pressure measured at 30 cm 

from the mouth with reference to a standard pressure of 20 μPa [3] p. 221].

2) Brute Force Search—An alternative way to explore the relationship between two 

spaces is through brute force search by systematically varying the parameters in the input 

space and finding the corresponding values in the output space. But, there are inherent issues 

with the brute force search. The computational cost increases steeply with the increase in 

resolution and the number of variables in the input (morphology) space. The computational 

cost of brute force search is O(KN), where N is the number of decision variables and K is the 

number of points per decision variable. For simplicity, we assumed an equal number of 

points for each decision variable. The computational cost of the NSGA-II algorithm is O 
(MG2), where M is the number of objective functions and G is the number of generations 

[12]. Only two variables were explored in this study, but in future studies, cases might 

require up to 100 morphological parameters to be varied simultaneously [indicated by the 

compartmentalization in Fig. 2(c)], which is not practical for a brute force approach but can 

be easily handled by the MOO as the number of generations will not increase dramatically 

with morphology parameters. Furthermore, the number of objectives will remain low. There 

is also no means to impose constraints on the output (acoustic) space, leading to exploration 

of regions of no interest. These problems can be overcome by using MOO techniques which 

only explores regions of interest set by constraints and the resolution in the morphology 

space is controlled by mutation and crossover functions. Hence, we used coarse brute force 

search only to validate our results from MOO simulations.
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F. Two Case Studies—A Two-Layer and a Three-Layer Vocal Fold System

In order to test the applicability of MOO approach to optimize vocal fold morphology, we 

ran two test cases. Optimization was performed on fiber stress in a two layer and a three 

layer vocal fold system (see Table I). There are two reasons to use these two specific case 

studies. First, the number of layers represents an important distinctive feature in vocal fold 

design among mammals. Species-specific vocal fold design and vocal repertoire are linked 

[31], [35], [36], [40]. Second, the two-layer and the three-layer systems provide a contrast 

between human and tiger vocal fold design. Both have been studied in sufficient detail to 

facilitate the finite element model [30], [31], [37]. In this study, we implemented tiger data 

for the two layer vocal fold, and human data for the three layer vocal fold.

1) Parameters for Test Cases—The objective of the optimization was to produce  of 

130 Hz (three-layer vocal fold) and 80 Hz (2-layer vocal fold), respectively,  of 70 dB 

(three-layer vocal fold) and 110 dB (two-layer vocal fold) at a distance of 30 cm from the 

lips, respectively. The two layer system has been referred to as a body-cover system and the 

three layer system represents mucosa, ligament, and muscle. Left–right symmetry was 

imposed. Each parameter has lower and upper bounds for their respective cases. The 

parameters and their bounds are listed in Table I. The objective function for the three-layer 

vocal fold is written in terms of quadratic error functions

(12)

likewise for two-layer case as

(13)

The two errors were minimized with equal acoustic priority. In the decision space, the 

subglottal pressure was varied between 0.01–2 kPa for three-layer vocal folds and 0.01–3 

kPa for two-layer vocal fold system. The longitudinal shear modulus of each layer was 

varied between 5000 to 100 000dyn/cm2. There were no restrictions on the ratios of 

longitudinal shear modulus of different layers. The geometric parameters (L, T, D, B, ξ01, 

ξ02), the transverse shear modulus μ, and the viscosity η of the layers were kept constant at 

their nominal values throughout the optimization. The nominal values for (L, T, D, B, ξ01, 

ξ02, μ and η) for a three-layer system are (1.0 cm, 0.5 cm, 0.5 cm, 0, 0.01 cm, 0.01 cm, 5000 

dyn/cm2, and 2 poise), respectively, and for a two-layer system are (4 cm, 5 cm, 3 cm, 0, 

0.05 cm, 0.05 cm, 5000 dyn/cm2, and 3 poise), respectively. The vocal tract length of three-

layer system is considered as 17.5 cm and for two-layer system as 40 cm.

2) Parameters for NSGA-II Algorithm—The NSGA-II multiobjective optimization 

algorithm was implemented in MATLAB. The optimal solutions and the individuals 

considered in each generation were stored for later analysis. The parameters of the NSGA-II 

algorithm that needed to be set are the number of generations, population size, crossover 
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fraction, mutation scale, and shrink. The outcome of the optimization algorithm depended on 

the choice of these parameters. For a fixed population size and number of generations, we 

varied the crossover fraction (c), mutation scale (σ), and shrink (s) and ran the optimization 

on the three-layer vocal fold system. We considered eight combinations of these three 

parameters. The combination that gave the maximum Hyper-volume Indicator across 

generations was chosen as the optimal parameter set to run the optimization. The mean 

Hypervolume Indicator for every 50 generations of these eight combinations is shown in Fig. 

4. The set H (σ − 0.5, s − 0.2, c − 1.2) generates larger Hypervolume across all generations 

whereas the set G (σ − 0.5, s − 0.2, c − 0.7) generates larger Hypervolume in the last 50 

generations. Since we considered solutions from all generations for our analysis, we chose 

set H to be the optimal combination. These values are listed in Table II.

IV. Results

A. Two-Layer Vocal Fold

Fiber stress relations for a two layer system plotted against two acoustic variables are shown 

in Fig. 5(a) and (b). The density of solutions is illustrated by the contour lines in cluster 

maps [see Fig. 5(c) and (d)]. The acoustic priorities for the two layer system were low 

(80 Hz) and high  (110 dB). Results show high density clusters for  reaching between 

90 and 100 Hz [see Fig. 5(c)] and for  around 110 dB [Fig. 5(d)]. Both priorities are 

achieved with a translayer ratio  near and below 1, suggesting that a homogenous 

system (both layers equal), or a system with a slightly stiffer superficial layer, helps to 

obtain the desired low  and high  requirements.

Results demonstrated also that viable solutions are not limited to a single cluster [high 

density cluster in Fig. 5(c)]. For both  and , there are second clusters of lower density. 

The respective values for  and , are lower, and the associated translayer fiber tension 

ratio is increased.

The results from the optimization were validated against results from the brute force search 

[see Fig. 6(a)–(d)]. In the brute force search, the parameters in the morphological space are 

varied systematically without MOO convergence criteria and the corresponding values in the 

acoustic space are measured. The subglottal pressure PL is varied from 0.01 to 3 kPa in 

increments of 0.1 kPa and the longitudinal shear modulus is varied from 5000 to 100 000 

dyn/cm2 in increments of 5000 dyn/cm2. The density resolution is lower in the brute force 

approach [compare Fig. 5(a) and 6(a), or 5(b) and 6(b)]. Like in the optimization approach, 

two to three clusters were formed, associated with a shift in the location of the centroids of 

the clusters (see Table I). One implicit acoustic requirement imposed on both approaches is 

self-sustained oscillation, which governs the overall range of solutions.

B. Three-Layer Vocal Fold

For the three-layer system, we focus the graphic analysis on the translayer ratio ( ) 

because layers 1 and 2 are exposed and interacting with the passing air flow. The translayer 

ratio is again close to 1 for  and  (see Fig. 7(a) and (b); Table I). This indicates that, 
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like in the two layer system, the tissue is almost homogenous if the vocal fold is optimized 

for low . High  [see Fig. 7(b)] is also achieved if layer 2 is as or less stiff than layer 1.

Brute force results are shown in Fig. 8(a–d). Subglottal pressure (PL) was varied from 0.01 

to 2 kPa in increments of 0.1 kPa. Longitudinal shear modulus of the three layers was varied 

from 5000 to 100 000 dyn/cm2 in increments of 7500 dyn/cm2. Exploring the entire 

morphological space by brute force took five times longer than the MOO approach. Most 

viable solutions cluster at translayer ratios of 1.

There is good agreement between the optimization and brute force search results as can be 

seen from Figs. 7 and 8. This indicates that MOO acts as an alternative to the brute force 

search, but is more efficient and faster in searching for a relationship between the targeted 

objective and decision spaces.

V. Discussion

The use of the MOO technique to explore simultaneously a decision space (morphology) 

and an objective space (acoustic variables) provided two important insights that will help in 

future explorations of functional morphology of vocal folds. First, MOO is superior to single 

objective optimization algorithms because it generates multiple alternate solutions in a 

single run. The combination of MOO with cluster analysis provides the power to evaluate 

solutions simultaneously in both decision and objective spaces. Because of the use of 

mutation to generate populations, a good solution tends to generate more good solutions 

around it, forming clusters. Second, since there is considerable overlap in solutions between 

MOO and brute force search, both methods recognize spaces that are viable for voice 

production. One important implicit criterion common to both approaches is that self-

sustained oscillation must occur. This probably accounts for the similarities between 

solutions in the two approaches. The morphological parameter space that does not support 

sustained voice production will not show up in the results. The observation that cluster 

spaces for MOO solutions and for brute force solution overlap is therefore not surprising. 

The two approaches (MOO plus cluster analysis and brute force) generated similar results 

and were not too dramatically different in computation time. However, in the future, when 

we consider more than just two parameters, the faster computation time of the MOO 

approach will be apparent. Furthermore, resolution of MOO approach is higher, in particular 

near the optimal solutions. MOO will specifically explore the area around an optimal 

solution and ignore an area of inferior or no solution. In contrast, the brute force approach 

will explore each aspect of the morphology space with equal resolution.

A. Two Case Studies—A Low Pitched Voice is Well Generated With a Homogenous Vocal 
Fold

The interesting result here was that MOO suggests translayer ratios near and below 1 for 

both the two-layer and three-layer vocal fold. This corresponds with empirical data. First, 

the two layer system was modeled after the tiger vocal fold lamina propria which consists of 

two layers, a deep layer with relatively high fat content (not stiff), and a stiffer superficial 

layer with highly organized collagen fiber content [31], i.e., the translayer ratio ( ) is 
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smaller than 1. In the three-layer vocal fold, which was modeled after a human vocal fold, 

mechanical properties for low  vocalization also performs best with a translayer ratio 

close to 1. In other words, mucosa and ligament should be nearly homogenous. Low 

vocalization, as in speech, is easily produced when both mucosal and ligamental tissue is lax 

so that optimal energy transfer can occur from glottal airflow into the tissue [3]. For high-

pitched productions (not investigated here), the results may be very different, however. The 

ligament must become very stiff (tense), which means that the translayer ratio for μ′ may be 

quite different from 1.0.

B. MOO to Study Functional Morphology

Traditionally, studies using MOO techniques present results only in the objective space, but 

rarely in the decision space. Obtaining optimal solutions in the objective space is the 

primary goal in such studies. In contrast, the problem investigated here was to better 

understand the relationship between the decision space and the objective space. The larynx 

as a vocal organ can naturally produce a large range of sounds, yet there are specializations 

facilitating species-specific vocal behavior [35], and there is large interest in predicting what 

small changes to the integrity of the vocal folds will do to the voice of a person [38], [39]. 

The cluster analysis helps to relate morphological to acoustic spaces. Weights provide the 

possibility to evaluate parameters in the decision space differently. For example, SPL might 

be most important for one condition tolerating tradeoffs in F0 (WSPL > WF0). In the 

simulations presented here, we assigned equal priority to both parameters (W = 1). In the 

future studies, it will also be interesting to explore tradeoffs between various acoustic 

features and vocal fold morphology, i.e., between objective and decision space.

Furthermore, current data confirm that more than one solution is possible. High density 

clusters were close to target variables (  and ). However, additional clusters indicated 

that with different acoustic priorities, different morphologies may be favored. For example, 

trends were seen that higher pitches were associated with a larger translayer ratio [see Fig. 

7(c)]. The non-isotropic (fiber-gel) nature of the different layers within a human vocal fold 

would account for this shift in the translayer ratio.

The analysis of complex relationships between function and morphology is challenging in 

many fields of research [42]. The MOO approach in association with cluster analysis 

appears to provide a route to explore this relationship.
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Fig. 1. 
Vocal organ, the larynx, of humans. (a) The larynx is positioned in the upper neck area. It 

consists of a framework of cartilages, ligaments, and muscles. Inside the larynx are two 

vocal folds positioned. (b) Schematic of the enlarged left and right vocal folds. Active 

movements of larynx muscles narrow the space between the vocal folds (“glottis”) before 

voice is produced. Aerodynamic forces set vocal folds into self-sustained oscillations during 

expiration. The morphology of the vocal folds determines their oscillation behavior. Vocal 

folds in humans and many other mammals are multilayer structures. A deep layer (also 

called “body”) is the thyroarytenoid muscle. Three layers of connective tissue (“lamina 

propria”) and a layer of epithelium represent the tissue that is exposed to and interacting 

with the air flow (three arrows indicate air flow direction).
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Fig. 2. 
Compartmentalization of the vocal fold and implementation in a finite element model. (a) 

Differentially stained thin serial coronal sections are used to collect information about 

collagen and elastin content, fiber orientation, and hyaluronic acid content (e.g., [31], [35], 

[40], [41]). (b) The collagen fiber orientation is further investigated with greater detail using 

polarized light [36] (white arrows indicate collagen fibers). Mechanical tests are used to 

determine viscous and tensile strength of various compartments of the vocal fold [31], [35], 

[36]. (c) The vocal fold is discretized into compartments (superficial, intermediate, and deep, 

indicated here by three different colors; as well as upper, CR and lower, CA). A 

compartment is defined as a morphologically homogeneous portion of the vocal fold. It must 

not be smaller than what a surgeon can operate on (i.e., locate, manipulate, inject graft), but 

should be represented by enough finite elements to satisfy mesh requirements. 

Compartments are also created from anterior to posterior (not shown). Each compartment is 

characterized by geometry, fiber stress in the superficial , the intermediate , and 

deep layer .(d) Finally, the vocal fold structure is embedded into the laryngeal 

framework [13]. LV laryngeal ventricle; VF vocal fold; FF false fold; TA thyroarytenoid 

muscle; LG laryngeal glands; LP lamina propria; , ,  —shear modulus of respective 

layers.
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Fig. 3. 
Flowchart of step-by-step procedure of NSGA-II algorithm.
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Fig. 4. 
Hypervolume Indicator for eight combinations of mutation and crossover parameters on a 

three-layer vocal fold system. See (6) to (8) for details on these parameters. (A: σ = 0.1, s = 

0.5, c = 0.7; B: σ = 0.1, s = 0.5, c = 1.2; C: σ = 0.1, s = 0.2, c = 0.7; D: σ = 0.1, s = 0.2, c = 

1.2; E: σ = 0.5, s = 0.5, c = 0.7; F: σ = 0.5, s = 0.5, c = 1.2; G: σ = 0.5, s = 0.2, c = 0.7; H: σ 
= 0.5, s = 0.2, c = 1.2).
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Fig. 5. 
Solutions from 500 generations of NSGA-II for a two-layer vocal fold system. (a, b) Scatter 

plots of 10 000 solutions illustrating the relation between the translayer ratio and  and 

, respectively. (c, d) Cluster maps generated by Gaussian mixture models are based on 

the 10 000 solutions.
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Fig. 6. 
(a, b) Scatter plots of solutions generated by brute force approach illustrating the relation 

between the translayer ratio and two acoustic variables. (c,d) Cluster maps generated by 

Gaussian mixture models based on brute force solutions.
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Fig. 7. 

Exploring the relation between translayer ratio and  and  for a three layer vocal fold 

based on solutions from 500 generations of NSGA-II algorithm. (a, b) Scatter plots of , 

 across . (c, d) Cluster plots of ,  across .

Palaparthi et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 

Exploring the relation between translayer ratio and  and  for a three layer vocal fold 

based on solutions from brute force search. (a, b) Scatter plots of ,  across . (c, 

d) Cluster plots of ,  across .
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TABLE II

Parameters of NSGA-II Algorithm

NSGA-II (parameters) values

Number of generations 500

Population size 20

Crossover Fraction 1.2

Mutation Scale 0.5

Mutation Shrink 0.2
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