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Abstract

Mitochondrial function is critical for health, as demonstrated by the effects of mitochondrial 

toxicity, mutations in genes encoding mitochondrial proteins, and the role of mitochondrial 

dysfunction in many chronic diseases. However, much basic mitochondrial biology is still being 

discovered. Furthermore, the details of how different environmental exposures affect 

mitochondria, how mitochondria respond to stressors, and how genetic variation affecting 

mitochondrial function alters response to exposures are areas of rapid research growth. This 

Special Issue was created to highlight and review cutting-edge areas of research into chemical 

effects on mitochondrial function. We anticipate that it will stimulate additional research into the 

mechanisms by which chemical exposures impact mitochondria, the biological processes that 

protect mitochondria from such impacts, and the health consequences that result when defense and 

homeostatic mechanisms are overcome.
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Mitochondrial function is critical for health. This is demonstrated both by the large number 

of diseases caused by mutations in nuclear and mitochondrial genes that code for 

mitochondrial proteins (Chinnery et al. 2004; DiMauro and Davidzon 2005; Howell et al. 

2005; Wallace 2005), and by the critical role that mitochondrial dysfunction plays in a large 

number of chronic diseases (Coskun et al. 2012; D’Aquila et al. 2015; de Moura et al. 2010; 

Szklarczyk et al. 2014; Tulah and Birch-Machin 2013; Van Houten et al. 2016; Wallace 
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2005). Genetic contributions to most chronic disease are modest, and environmental 

contributors are poorly understood (Bookman et al. 2011; Rappaport 2012; Rappaport et al. 

2014). Therefore, as chronic disease becomes more and more important in the US and 

globally, the potential health significance of environmental exposures that perturb 

mitochondrial function will grow.

Research into mitochondrial pathways of chemical toxicity is accelerating. While sporadic 

reports of mitochondrial toxicity of various chemicals appear throughout decades of 

literature, including classic mitochondrial poisons such as rotenone and carbon monoxide, 

an understanding of how common this may be emerged when Drs. Dyken and Will showed 

that 35% of pharmaceutically relevant molecules tested were mitotoxic (Dykens et al. 2008; 

Dykens et al. 2007; Dykens and Will 2007). This is further supported by recent high-

throughput in vitro toxicity screening efforts, including those of the National Toxicology 

Program (Attene-Ramos et al. 2015; Attene-Ramos et al. 2013; Houck et al. 2009; Shah et 

al. 2015; Wills et al. 2015). Several recent publications (Bestman et al. 2015; Kovacic et al. 

2005; Meyer et al. 2013; Moreira et al. 2011; Sabri 1998; Shaughnessy et al. 2010) discuss 

the growing evidence that many pollutants affect mitochondria, although in many cases 

mitochondria are not the only subcellular target. Importantly, in some cases, effects may 

persist long after exposure ceases, as has been documented for adriamycin’s effect on 

cardiomyocytes (Berthiaume and Wallace 2007b), or the long-term effects of nucleoside 

reverse transcriptase inhibitors on mitochondrial function in after in utero exposure (Chan et 

al. 2007; Liu et al. 2016). Examples of such persistent effects are also presented by Dr. 

Ballinger and colleagues and Dr. Meyer and colleagues in this issue (references).

Some individuals are at particular risk of mitotoxic exposures. Developmental exposure to 

mitochondrial toxicants can be particularly deleterious, causing both short- and long-term 

toxicity, as documented for many mitotoxicants including nucleoside reverse transcriptase 

inhibitors, arsenic, and dichloroacetate (Berthiaume and Wallace 2007a, b; Ditzel et al. 

2015; Divi et al. 2010; Wood et al. 2015). It is also quite likely that mitochondrial toxicity is 

significantly exacerbated in the approximately 1 in 4,000 persons who suffer from a 

mitochondrial disease (Chinnery et al. 2004; DiMauro and Davidzon 2005; Howell et al. 

2005; Wallace 2005). These diseases, while individually rare, are caused by deficiencies in a 

wide range of mitochondrial processes (Chinnery et al. 2004; DiMauro and Davidzon 2005; 

Howell et al. 2005; Wallace 2005). It is therefore critical that we expand our in-depth 

understanding of specific mechanisms of mitochondrial toxicity, our knowledge of the role 

of mitochondrial biology in homeostatic and defense processes, and our ability to conduct 

relatively high-throughput testing of gene-environment interactions. This special issue is 

designed to bring the reader up to speed on a variety of cutting-edge areas of research into 

mitochondrial (dys)function, and how chemicals can impact mitochondrial biology.

Unfortunately, compared to the relatively extensive toxicity testing carried out for 

pharmaceuticals, the tens of thousands of pollutant and industrial chemicals to which 

individuals may be exposed are much less well-tested for toxicity of any sort, including 

mitochondrial effects. New methods for screening and studying mitochondrial toxicity are 

addressed by many papers in this issue, and in particular by Dr. Wills (this issue reference), 

who outlines mechanisms, systems, and acute versus chronic effects.
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The best known mitochondrial function is oxidative phosphorylation; however, mitochondria 

also generate reactive oxygen species (ROS); participate in apoptosis; carry out a variety of 

anabolic biochemical processes including synthesis of heme, iron-sulfur clusters, and 

steroids; contribute to energy production by other pathways including fatty acid oxidation 

and the Krebs cycle; generate molecules important in epigenetic and other processes, such as 

acetyl-coenzyme A; participate in regulation of intracellular calcium; and play key roles in 

innate immune function. Important homeostatic processes include replication of the 

mitochondrial genome, mitochondrial biogenesis, mitochondrial degradation pathways 

including mitophagy, as well as mitochondrial fusion and fission processes. Articles in this 

Special Issue describe many of these functions and their relation to chemical exposure in 

greater detail.

ROS may be as important a product of oxidative phosphorylation as ATP, due to the role 

ROS plays in signaling for cellular and mitochondrial homeostasis; ROS signaling is 

covered in detail by Dr. Bonini (this issue reference). The mitochondrial genome can be 

highly susceptible to DNA damaging agents compared to the nuclear genome, due in part to 

differences in DNA repair mechanisms (Copeland and Longley 2014; Scheibye-Knudsen et 

al. 2015), as described by Drs. de Souza Pinto and Roubicek (this issue reference). Dr. Chan 

discusses the susceptibility of organisms with inherited mitochondrial genomic instability to 

mitochondrial toxicants (this issue reference). Dr. Meyer and colleagues review the literature 

on the role of mitochondrial fusion and fission in response to toxicants (this issue reference), 

and Dr. West discusses the role of mitochondria in inflammation and the immune response 

(this issue reference). Dr. Weinhouse summarizes the current knowledge of how 

mitochondrial function influences epigenetic patterning, and vice versa (this issue 

reference).

Moving to higher-level biological effects of perturbed mitochondrial function, Dr. Franco 

focuses on the relationship between mitochondrial toxicity and neurodegeneration (this issue 

reference). Dr. Ballinger and colleagues review the consequences of air pollutant exposures 

on mitochondria (this issue reference), and Drs. Cunningham and Falk present a clinical 

perspective on some of the consequences of mitochondrial toxicity in the context of 

mitochondrial disease (this issue reference). Finally, the effects of mitotoxicants are not 

limited to humans. Indeed, animals have been informative of toxicity not just in the context 

of laboratory test organisms and sentinel species such as canaries used to detect carbon 

monoxide in coalmines, but also in wildlife epidemiology studies that have associated 

chemical exposures with cancer (McAloose and Newton 2009). Dr. Jayasundara describes 

what can be learned from the impacts of mitotoxicants on wildlife (this issue reference).

We note that there are additional emerging or controversial areas of research that we were 

unable to cover in this special issue. For example, Naviaux and colleagues have described a 

key mitochondrial role in mediating signals released as part of the cell danger response 

(Naviaux 2014), which may lead to an adaptive or hormetic response if the stressor is 

removed, or to chronic pathology if the exposure and response are long-term. The potential 

for “mitohormesis” (hormesis via mitochondrial pathways) resulting from a large number of 

mitochondrial “stressors” including diet, exercise, genetic deficiencies, as well as chemical 

exposure has gained significant attention outside of the field of toxicology (Yun and Finkel 
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2014), and should be considered by toxicologists, who have also begun to investigate 

hormetic responses (Calabrese et al. 2016). Another area of intense interest is the source of 

mitochondrial DNA (mtDNA) mutagenesis. MtDNA mutations are responsible for causing 

mitochondrial disease in approximately 1 in 5,000 people (Gorman et al. 2015). Although 

mtDNA is more prone to mutation than nuclear DNA over evolutionary time (Brown et al. 

1979; Rebolledo-Jaramillo et al. 2014; Wallace 2010), the source of mtDNA mutations is 

unclear (Kennedy et al. 2013). Two hypotheses for the cause of mtDNA mutations have been 

the focus of most research: oxidative damage to mtDNA (Cooke et al. 2003; Loeb et al. 

2005), and random errors of DNA replication by the mtDNA polymerase γ (Kennedy et al. 

2013; Szczepanowska and Trifunovic 2015). The ROS hypothesis was attractive because the 

electron transport chain (ETC) is the major source of ROS production in most cells, mtDNA 

is anchored to the inner mitochondrial membrane adjacent to the ETC, and mitochondrial 

perturbations such as ETC inhibition can significantly increase mitochondrial ROS 

production (Fridovich 2004; Van Houten et al. 2006). Furthermore, empirical evidence 

demonstrates that mtDNA is very sensitive to ROS (Ballinger et al. 2000; Santos et al. 2006; 

Yakes and Van Houten 1997). Thus, if ROS were a major driver of mtDNA mutagenesis, 

protection from exposures that cause direct mitochondrial oxidative stress or mitochondrial 

dysfunction that leads to oxidative stress, could prevent mtDNA mutagenesis and 

mitochondrial disease. However, growing and compelling evidence indicates that oxidative 

stress is not a major driver of mtDNA mutagenesis (Ameur et al. 2011; Itsara et al. 2014; 

Szczepanowska and Trifunovic 2015), likely due to the fact that the mitochondrial genome 

has very robust base excision DNA repair machinery that corrects most oxidative DNA 

damage (Alexeyev et al. 2013; Scheibye-Knudsen et al. 2015). Despite the fact that mtDNA 

is highly sensitive to genotoxins that cause nonoxidative damage (Meyer et al. 2013), few 

studies have directly tested the hypothesis that environmental genotoxins causing 

nonoxidative damage drive mtDNA mutagenesis. However, a recent publication reported 

lack of evidence to support this hypothesis (Valente et al. 2016). Thus, this remains an area 

of intense interest.

We hope that this Special Issue will stimulate additional research into the effects of chemical 

exposures on mitochondria, the biological processes that protect mitochondria from such 

impacts, and the health consequences that result when defense and homeostatic mechanisms 

are overcome.
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