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1. INTRODUCTION

Increases in smoking, urbanization and the persistence of burning unrefined fuel indoors in 

low-and middle-income countries (more than 80% of the world’s population) have led to a 

substantial increase in exposure to environmental pollutants 1–4. Tobacco cigarette smoking 

contributes to nearly half a million deaths in the U.S. and 5 million deaths worldwide every 

year 5, 6. Compared to never smokers, tobacco cigarette smokers have an average loss of 

13.2 and 14.5 years of life in men and women, respectively 7. Individuals who quit smoking 

before the age of 44 gain almost a decade of life, compared to those who continue to 

smoke 8. Even those individuals who quit between the ages of 45–54 gain an average of 6 

years of life relative to those who continue to smoke, highlighting the need for counseling 

patients of any age on smoking cessation and providing resources for the treatment of 

nicotine addiction 8. Despite declines in tobacco cigarette smoking in high-income societies 

like the United States (U.S.), a re-emergence of nicotine addiction and related disease is 

possible due to the manufacture and sale of alternative tobacco products such as electronic 

cigarettes (e-cigarettes). Further, even in countries that have declines in tobacco cigarette 

smoking prevalence, certain vulnerable populations (low socioeconomic status, lower 

education, etc.) continue to have a high smoking prevalence suggesting the need for targeted 

interventions 9–11.

The most recent World Health Organization (WHO) modelled data shows that 92% of the 

world’s population live in areas where the air quality levels are not in compliance with air 

quality standards 4. Climate change is also altering the levels and composition of outdoor 

(ambient) air pollution and without policies aimed at reducing carbon emissions these 

changes are likely to continue, further increasing the global burden of environmental 

disease 12, 13. In 2010, ambient and indoor (household) air pollution were estimated to be 
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responsible for 3 million and 3.9 million deaths that year, respectively 3, 4, 14, making them 

the 4th and 9th leading risk factors for global disease burden 2.

Mitochondria are highly sensitive to environmental toxicants and the individual components 

of tobacco smoke and air pollution. Environmental toxicant exposure induces changes in 

mitochondrial respiration and metabolism 15–25, oxidant generation 26–31, mitochondrial 

DNA (mtDNA) damage and copy number 25, 29, 30, 32–36, network formation and 

structure 19, 37–39, clearance of dysfunctional mitochondria through mitophagy 40, 

apoptosis 24, and reduction-oxidation (redox) signaling 24, 27. Mitochondria contain many 

iron-rich enzymes making the proteins within the organelle particularly sensitive to oxidant 

inactivation 41–43. Inactivation of manganese superoxide dismutase (the mitochondrial form 

of superoxide dismutase) leads to further oxidant generation, and many of the respiratory 

complexes within the mitochondrion contain heme groups that are subject to inactivation or 

inhibition by oxidants or carbon monoxide, which directly affects mitochondrial ATP 

production 43, 44. Several studies have shown that the mtDNA is prone to oxidant/toxicant-

induced damage through the formation of strand breaks, thymidine dimer formation, bulky 

adducts and mtDNA copy number depletion or deletions (reviewed in 45). Thus, environmental 

toxicant-linked mitochondrial abnormalities likely play a causal or contributory role in 

disease development and pathogenesis and may serve as biomarkers of toxicant-induced 

injury.

Mitochondria form a dynamic network within cells undergoing cycles of fission into smaller, 

rounder mitochondria and fusion re-forming into string-like networks 46–50. The state of the 

mitochondrial network has been directly linked to the functional status of individual 

mitochondria 49, 50. Mitochondria with lower membrane potentials are often smaller, more 

rounded and are thought to be targeted for removal through mitophagy, a specialized form of 

autophagy 46–50. An inability to remove dysfunctional mitochondria can lead to cellular 

dysfunction and if sustained, apoptosis 51. Interestingly, cessation of exposure to toxicants 

often results in restoration of mitochondrial networks, decreased oxidant production, and 

improved oxidative phosphorylation 17, 52. Hence, the improvements associated with 

cessation of exposure may be the result of improved clearance of dysfunctional/damaged 

mitochondria and replacement with a healthy mitochondrial network, through mitochondrial 

biogenesis.

Our review outlines the contribution of mitochondrial abnormalities to the pathologies 

resulting from tobacco smoke and air pollution exposure. The chemical composition of 

tobacco smoke and air pollution are discussed with an emphasis on their similar chemical 

components that likely explain the similar disease risk profiles attributed to tobacco smoke 

or air pollution exposure. We also provide an overview on mitochondrial function and 

genetics. After a brief background on the diseases associated or caused by exposure to 

tobacco smoke and air pollution, we discuss the potential contribution of mitochondrial 

abnormalities to the pathogenesis. We provide potential future directions regarding the 

utility of mitochondrial markers of function and/or damage as biomarkers for monitoring the 

possible health effects of environmental toxicants and how mitochondrial genetic variation 

may impact individual susceptibility to disease.
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2. CHEMICAL COMPOSITION

Both tobacco smoke and air pollution consist of complex mixtures of gaseous and 

particulate components that vary in chemical composition and are the result of the 

combustion of organic compounds. While the complex nature of this mixture makes it 

difficult to tease out the chemicals responsible for the toxicity of tobacco smoke and air 

pollution, the toxicity of some of the largest classes of chemicals have been clearly 

demonstrated, especially particulate matter 53. Particulate matter (PM) may consist of many 

different chemicals but the size of the particle plays a major role in determining its toxicity, 

with the smaller particles (≤10 μm in diameter, PM10) capable of reaching the deep lung 54. 

Fine particulate matter (≤2.5 μm in diameter, PM2.5) is of particular concern due to its potent 

toxicity especially within the pulmonary and cardiovascular systems 55–57. Additionally, the 

combination of chemicals present in tobacco smoke and air pollution likely contributes to 

the overall toxicity of these environmental pollutants 58. The similarities in chemical 

composition of air pollutants and tobacco smoke likely explain their similar toxicities and 

overlapping health effects.

2.1 TOBACCO SMOKE

Tobacco smoke is estimated to contain thousands of chemicals, present in particulate matter 

and gas phases, and is known to be a significant source of oxidants 59, 60. Tobacco smoke is 

divided into main stream smoke (smoke directly inhaled by the smoker) and side stream 

smoke, which encompasses the smoke coming off the sides of the burning tobacco product 

plus smoke exhaled by the smoker (collectively known as second-hand smoke). Both 

mainstream and side stream smoke consist of carbon monoxide, polycyclic aromatic 

hydrocarbons, tobacco-specific nitrosamines, nitrogen oxides, aldehydes, volatile organic 

compounds, nicotine, fine particulate matter, and oxidants 59, 61. The composition of main 

stream and side stream smoke is similar, but the concentrations of these toxicants and 

carcinogens differ, largely due to differences in combustion temperatures 59, 60. For a 

comprehensive review on the chemical composition of tobacco smoke, the review by 

Stedman, R.L. is an excellent resource 59.

2.2 AIR POLLUTION

Household air pollution is generated from incomplete combustion of solid or unrefined fuels 

during the burning of wood, coal, and other biomass for cooking, light and 

warmth 2, 3, 14, 62–65. Household air pollution is a major health risk among impoverished 

communities in low-and middle-income countries, with women and children having higher 

health risks due to increased exposure durations relative to men 2, 3, 64, 65. The level and 

composition of pollutants in household air varies depending upon the ventilation, stove 

efficiency, source of fuel, duration of exposure, and temperature of combustion 2, 3, 64, 65.

Ambient air pollution is primarily generated by industry and motor vehicle exhaust, 

although globally, household air pollution contributed an estimated 16% of ambient 

particulate matter pollution in 2010, with estimates reaching as high as 30% in India in 

2012 2, 65. Some studies include both passive and active smoking, burning of biomass both 

indoors and outdoors, and wind-blown dust as sources of ambient pollution 2. Like 
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household air pollution, ambient air pollution also varies based on the source of fuel 

exposure duration and combustion temperatures with added variables of industrial activity 

intensity, level of motor vehicle exhaust, time of day, time of year, weather conditions, local 

geography and geographical region 66–68.

The primary toxicants or toxicant mixtures associated with air pollution are similar for 

household and ambient air pollution and include particulate matter, ozone, carbon monoxide, 

nitrogen dioxide and sulfur dioxide 12, 67, 69. Some fuel sources, such as coal, are highly 

variable, having very different heating values and containing different levels of impurities 

such as sulfur, arsenic, silica, lead and mercury which are additional pollutants that can be 

released into the air during combustion 64.

3. MITOCHONDRIA

Mitochondrial toxicity resulting from pharmaceutical use has been appreciated for many 

years. Many drugs, including antibiotics, nucleoside reverse transcriptase inhibitors and 

chemotherapeutics have been identified to have unintended effects on multiple 

mitochondrial functions or responses (e.g. oxidant generation) reviewed in 45. It is perhaps not 

surprising that many environmental toxins also “target” the mitochondrion, either through 

the specific inhibitory action of a mitochondrial enzyme, and/or through the accumulation of 

a compound due the intrinsic characteristics of the organelle. Lipophilic compounds 

accumulate in mitochondrial membranes and cationic metals, xenobiotics (including MPP 

and paraquat) are known to accumulate within the organelle as well 45, likely due the net 

negative charge and alkaline pH of the organelle’s matrix. These characteristics in addition 

to the association of the mtDNA with the inner membrane (lipophilic environment), lack of 

histones, relatively low level of associated proteins for protection (nucleoids), and the 

presence of cytochrome P450 in mitochondria which can metabolize compounds into active 

toxins make the organelle a likely target for environmental toxins 45.

Mitochondria originated as separate bacterial organisms that were endocytosed by a 

primitive prokaryotic “host” cell approximately a billion years ago 7071, 72. This symbiotic 

relationship within the proto-eukaryotic cell provided advantages for survival. In addition to 

the stereotypical characterization of the mitochondrion as the “powerplants of the cell,” 

mitochondria have evolved to play important roles in the inter-related processes of immune 

responses, cell signaling, metabolism (bioenergetics and biosynthesis), and nuclear gene 

expression reviewed in 73. Another consequence of this endosymbiosis is that our genome (as 

eukaryotes) is a genetic hybrid that consists of the nuclear and mitochondrial genomes (the 

majority of “mitochondrial” genes encoded by the ancestral mtDNA have been relocated to 

the nucleus, a process known as endosymbiotic gene transfer). As a result, the two genomes 

must be coordinately regulated, and the mitochondrion and its “host” are inseparably linked 

for eukaryotic cell survival and propagation, both genetically and functionally.

3.1. FUNCTIONS

The mitochondrion serves as a source of cellular metabolites (through the citric acid cycle), 

ATP and oxidants (through electron transport and oxidative phosphorylation), as well as 

thermal energy (Figure 1). As ATP levels rise and energetic demand decreases, electron 

Fetterman et al. Page 4

Toxicology. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



carriers remain in a reduced state for longer periods of time, allowing free electrons to 

readily react with molecular oxygen to form superoxide 74. Superoxide is subsequently 

converted to hydrogen peroxide, a freely diffusible signaling molecule, by manganese 

superoxide dismutase. In the presence of nitric oxide, superoxide forms peroxynitrite, a 

reactive nitrogen species (RNS) that acts as an oxidant, or alternatively, can further react 

with carbon dioxide to form nitrosoperoxycarbonate, that is capable forming nitrotyrosine 

adducts 26, 75–79. Contrary to widespread perception, mitochondrial oxidants are not merely 

“byproducts” of metabolism, but instead, serve as cell signaling mediators for the regulation 

of metabolism. Mitochondrial oxidants play a role in signaling that alters gene expression of 

proteins involved in inflammation80, cell death81, and appetite control 82, as well as the 

MAP kinase and Akt pathways 83 (please see Bonini review herein, “Oxidative signaling in 
mitochondrial homeostasis” Chapter 4). Consequently, under conditions of positive energy 

balance (excess reducing equivalents and ATP) or the presence of mitochondrial inhibitors 

(e.g. components of tobacco smoke such as carbon monoxide and cyanide) mitochondrial 

oxidant production is altered which may cause damage to mtDNA and impact multiple cell 

functions by altering the aforementioned cell signaling pathways 84.

3.2. GENETICS AND MUTATION

Each cell contains hundreds to thousands of mitochondria, and each mitochondrion has 2–10 

copies of mtDNA, resulting in thousands of mtDNA copies per cell 85, 86. The mtDNA in 

mammals encodes 37 genes (13 polypeptides, 22 tRNAs and 2 rRNAs) 87. The mtDNA is 

especially vulnerable to damage by reactive oxidant species (ROS) as it is tethered to the 

highly hydrophobic inner mitochondrial membrane within close proximity to sites of ROS 

generation, and is 93% coding (compared to the nuclear genome which is 2% coding), 

which means damage to the mtDNA is likely to affect a coding region. Since the 13 

polypeptide subunits encoded by the mtDNA are the key catalytic proteins in electron 

transport complexes (I, III, IV and ATP synthase), mtDNA missense mutations can 

potentially alter mitochondrial functions. In this respect, mtDNA polymorphisms considered 

to represent “normal” genetic variation, have been linked with different bioenergetic 

capacities that may provide an adaptive advantage or altered disease susceptibility 88–90.

4. TOBACCO SMOKE TOXICITY

Active and passive cigarette smoke decrease mitochondrial respiration and membrane 

potential leading to decreased ATP content and increased oxidant production in a variety of 

tissues in a dose- and time-dependent manner 15–21, 23, 25, 27–30, 32, 33, 37, 52, 91, 92. 

Mitochondria are rich in enzymes with active sites easily modified and inactivated by 

ROS/RNS from the inhalation of tobacco smoke, or from oxidant generation within the 

mitochondrion (please see Bonini review herein, “Oxidative signaling in mitochondrial 
homeostasis” Chapter 4). For example, it has been shown that decreased activity of the 

mitochondrial isoform of superoxide dismutase, manganese SOD or SOD2, increases 

susceptibility to tobacco smoke exposure 27 and can be inactivated in mice through nitration, 

a consequence of nitrosoperoxycarbonate formation associated with side-stream tobacco 

cigarette exposure 32. Further, inactivation of oxidative phosphorylation complexes by 

ROS/RNS directly impairs proton pumping efficiency leading to decreased mitochondrial 
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membrane potential and ATP production 93. Importantly, studies have shown that cessation 

of both active and passive smoking improves various measures of mitochondrial 

function 17, 52.

Other effects of tobacco cigarette smoke include changes in mitochondrial 

morphology 19, 37, 38 promoting mitophagy in both cell culture and animal models 37, the 

formation of mtDNA adducts 94, increased mtDNA damage 34 and alterations in mtDNA 

copy number 35. Acrolein, one of the primary reactive aldehydes within tobacco cigarette 

smoke, forms bulky DNA adducts which are likely to persist in the mtDNA due to the 

inefficiency of the mitochondrial DNA polymerase ɣ resulting in transversions 94. However, 

whether acrolein is one of the primary drivers of mtDNA damage following tobacco smoke 

exposure has yet to be determined. Components found within tobacco cigarette smoke such 

as benzene induce alterations in mtDNA copy number 36, however it is important to note that 

mtDNA copy number is influenced by several factors including age and health status. 

Differences in mtDNA copy number may be obscured by comorbidities 95 and may be 

difficult to attribute directly to toxicant exposure. Overall, mtDNA damage may serve as a 

more reliable indicator of tobacco smoke-induced injury than copy number, based on the 

conflicting observations concerning copy number 30, 33, 96. However, differences in mtDNA 

copy number or damage may be difficult to detect following acute exposures or if sufficient 

time passes between exposure and sample collection, due to DNA repair and/or mitophagy 

(removal of mitochondria with damaged mtDNA and restoring mitochondrial 

function) 46–49. Some of the challenges of interpreting alterations in mtDNA copy number 

and damage to toxicant exposure can be overcome through study design and by determining 

whether similar alterations are observed across multiple models.

4.1 PULMONARY DISEASES

COPD, emphysema, chronic bronchitis, asthma, obstruction of the small airways, pulmonary 

hypertension, and acute respiratory illnesses such as pneumonia are all pulmonary diseases 

causally linked to active smoking in adults 97. In children and adolescents, active smoking 

causes both impaired lung growth and function as well as asthma- related symptoms and 

poor asthma control 97. The lung has defense mechanisms against foreign materials that are 

inhaled which primarily consist of mucociliary clearance, the alveolar-epithelial barrier and 

the inflammatory immune response 97, 98. However, tobacco smoke and its constituents 

(especially acrolein, formaldehyde, and oxidants) overwhelm the pulmonary defense 

systems leading to damage to the cilia and overproduction of mucus thus impairing 

clearance and disrupting the tight junctions of the epithelial barrier 97, 99. Both the tar and 

gas phases of tobacco smoke contain high levels of free radicals (as many as 1017 and 1015 

spins/gram, respectively) 100. These free radicals react to form ROS and RNS 97, 100, 101 

such as the semiquinone radical (tar phase) and the peroxyl radical (gas phase) both of 

which can contribute to superoxide and hydroxyl radical formation, and the formation of 

non-radical oxidants, such as hydrogen peroxide 100. Collectively, the radicals and oxidants 

generated can cause damage to proteins, lipids, and DNA, inactivate antiproteases, deplete 

antioxidants, and promote a proinflammatory environment by enhancing the phagocytotic 

respiratory burst and expression of proinflammatory mediator genes in the lung 97, 101.
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MtDNA damage, copy number, mitochondrial membrane potential, mitochondrial 

respiration, ATP content and structural damage have all been observed in tobacco cigarette 

smoke induced pulmonary disease. MtDNA damage and deletions were shown to be higher 

in brochoalveolar lavage tissues of smokers compared to cells from non-smokers 34. Nuclear 

DNA damage was also observed, but the mtDNA damage was significantly higher, while 

analysis of nuclear DNA to mtDNA ratios showed no significant differences 34. In another 

study, mtDNA copy number in circulating blood mononuclear cells displayed a dose-

dependent increase with the number of cigarettes smoked per day 35. Treatment of primary 

human bronchial and alveolar epithelial cells with tobacco cigarette smoke-extract (the 

water-soluble portion of tobacco cigarette smoke) resulted in a dose-dependent decrease in 

membrane potential, ATP-linked oxygen consumption (and thus ATP content) suggesting 

impaired oxidative phosphorylation 15, 28. Acrolein exposure induced similar dose-

dependent decreases in mitochondrial respiration and resulted in substrate switching to 

preserve glucose for ATP production in pulmonary alveolar cells, which likely has 

implications for surfactant production 16. The similar effects of acrolein and cigarette smoke 

extract on mitochondrial function in pulmonary alveolar cells suggest that acrolein may be 

one of the key mediators of cigarette smoke-induced pulmonary toxicity.

In addition to the effects on mitochondrial function, treatment of cultured human bronchial 

epithelial cells with tobacco cigarette smoke extract resulted in mitochondrial structural 

abnormalities as well including mitochondrial network fragmentation, mitochondrial 

swelling, and a loss of cristae19, 37, 38. The structural abonormalties in the mitochondria 

could be attenuated by silencing the mitochondrial fission mediator Fis1 suggestive of up-

regulation of mitochondrial fission19, 37, 38. Antioxidant treatment also improved 

mitochondrial morphology and networks suggesting that oxidative stress likely plays a role 

in the structural abnormalities induced by tobacco smoke exposure 19, 37, 38. Similar 

structural abnormalities were also observed in primary human bronchial epithelial cells 

collected from COPD patients including a loss of mitochondrial cristae and elongated 

mitochondria that was associated with a down-regulation of genes involved in mitochondrial 

biogenesis (PGC1α, TFAM) and mitophagy (PINK1) 19. Tobacco cigarette smoke extract 

treatment in human bronchial epithelial cells increased mitochondrial oxidant generation and 

activated mitophagy through Parkin and Pink1 which lead to alterations in cellular 

phenotype consistent with cellular senescence 40. The increase in oxidant production was not 

observed in cells lacking mitochondria, suggesting that mitochondria were the primary 

source of oxidants under conditions of tobacco cigarette smoke exposure 28. In mice, eight 

weeks of tobacco cigarette smoke exposure lead to an up-regulation of proteins involved in 

oxidative phosphorylation, mitochondrial fusion, and mitochondrial oxidants within the lung 

tissue suggesting a potential compensation for mitochondrial impairments and 

dysfunction 17. Hence, acute cigarette smoke exposure appears to induce mitochondrial 

fission and removal of damaged mitochondria through mitophagy but continued exposure 

may impair the ability of lung epithelial cells to remove and replace damaged and 

dysfunctional mitochondria ultimately resulting in diseases such as COPD.
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4.2 CARDIOVASCULAR DISEASE

Smoking is a leading risk factor for cardiovascular disease and stroke 9, 102 and together they 

account for the majority of smoking-related deaths in the U.S. 9, 103, 104. Approximately 

one-third of coronary heart disease deaths are attributed to tobacco smoke exposure and 

active smokers have 2–4 times increased risk for stroke 9, 102. Non-smokers exposed 

routinely to secondhand smoke in the work place or home, have a 25–30% increase in the 

risk for coronary heart disease – even brief exposures to secondhand smoke have been 

reported to increase platelet aggregation and damage to the endothelium which is central to 

vascular homeostasis 97, 102.

Tobacco cigarette smoke exposure alters mtDNA copy number and induces damage to the 

mitochondrial genome in cardiac and vascular tissues which is associated with 

cardiovascular disease 32, 33, 105. In a murine model of atherosclerosis, in utero or neonatal 
exposure to second-hand tobacco cigarette smoke induced mtDNA damage and deletions, 

and increased mtDNA copy number within the vasculature compared to filter air exposed 

controls 29, 33. Many of these same associations were also observed in non-human primates 

following perinatal exposure to side-stream tobacco smoke 30. However, within the non-

human primate vasculature, mtDNA copy number was decreased with exposure in contrast 

to the observations within the vasculature of mice 30, 33. Notably, the effects of second-hand 

tobacco cigarette smoke exposure during early development persisted into adulthood and 

was associated with increased atherogenesis 33.

Within the vasculature, damaged mitochondria produce increased oxidants that impact nitric 

oxide signaling and pro-atherogenic pathways 106–108. Similarly, increased mtDNA damage, 

oxidant production, and inactivation of mitochondrial proteins (e.g. antioxidants and electron 

transport complexes) have been observed in the vasculature of mice exposed to cigarette 

smoke, and associate with increased atherogenesis 27, 33, 91. Concomitantly, aconitase 

inactivation (a marker for superoxide levels) was elevated in heart and vascular tissues of 

mice exposed to tobacco smoke 27, 33, 105. Perinatal tobacco cigarette smoke exposure in 

non-human primates also increased measures of mitochondrial oxidative stress including 

increased 3-nitrotyrosine and decreased cytochrome c oxidase activity within the abdominal 

aorta 30. Further, perinatal exposure was associated with increased cellularity in the 

subintimal space of the aorta, suggestive of increased inflammation consequent of altered 

mitochondrial redox signaling 30. Importantly, the effects of developmental exposure to 

tobacco smoke have been shown to have implications for adult vascular disease development 

in animal models 29, 30, 33.

Tobacco smoke exposure induces cardiac mitochondrial damage and dysfunction. 

Components of tobacco smoke directly inhibit or inactivate several mitochondrial proteins 

within the heart 23, 24, 42, 52, 109. Rabbits exposed to tobacco cigarette smoke for a single 30-

minute session or 30 minutes twice a day for 2 and 8 weeks (3 cigarettes each session) had 

decreased myocardial mitochondrial respiration compared to non-exposed rabbits 20, 21. A 

similar study found that tobacco cigarette smoke exposure of rabbits decreased levels of 

coenzyme Q and cytochrome c oxidase activity within cardiac mitochondria compared to 

those of non-exposed rabbits 18. Collectively, these studies are consistent with tobacco 

smoke exposure mediated dysfunction of electron transport chain components (in this case, 
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cytochrome c oxidase, which would result in decreased respiration) that impact ATP 

production. More specifically, carbon monoxide exposure in rabbits resulted in small, 

swollen mitochondria having condensed cristae compared to those observed from unexposed 

animals 39. Because it is well known that carbon monoxide competes with oxygen for heme 

binding within cytochrome c oxidase, it is likely that this component of cigarette smoke 

contributes to inhibiting oxygen consumption and thus inhibits oxidative phosphorylation 

and decreases ATP generation 24, 42, 109 Consequently, it is not surprising that cytochrome c 

oxidase activity was found to be lower in peripheral blood lymphocytes from heavy smokers 

relative to non-smokers 23, 52.

4.3 CANCER

Tobacco smoke contains at least 72 known carcinogens (reviewed in 110, 111) and is a known 

cause of all histological types of lung cancer (small-cell, large-cell, squamous and 

adenocarcinoma) with 90% of all lung cancer cases caused by tobacco smoke 97, 111–119. 

Smoking is also causally linked to cancers of the upper aerodigestive tract (oral, oropharynx, 

hypopharynx, larynx and oesophagus) as well as pancreas, stomach, bladder, kidney, cervix 

and acute myeloid leukemia 97, 111, 112, 120–128. It is likely that there are even more, yet 

undiscovered carcinogens in tobacco smoke and the presence of carcinogens in alternative 

tobacco products is currently under investigation. Furthermore, some chemical components 

that are not considered carcinogens, such as nicotine, have been shown to enhance 

carcinogenicity by promoting tumor growth through stimulation of angiogenesis and 

inhibition of apoptosis both in vitro and in mouse models of lung cancer 119, 129, 130.

Whereas there is ample evidence that tobacco cigarette smoke exposure can play a role in 

oncogenesis, the literature examining direct links between tobacco smoke exposure, 

mitochondria, and cancer is limited. However, it has been observed that changes in 

mitochondrial function 131–134, oxidant production/signaling 135–137, mtDNA copy 

number 35, 132, and mtDNA mutagenesis 132, 136, 138, 139 impact tumorgenicity 133, 136, 

malignancy 134, metastatic capacity 135, 140, 141 and resistance to anti-cancer therapy 142. 

Recently, differential mitochondrial bioenergetics linked to mitochondrial haplotype 

background has been shown to effect tumor latency and metastatic progression in a 

spontaneous mammary tumor model in mice 89. Many of the alterations in mitochondrial 

biology associated with oncogenesis have also been altered by tobacco smoke exposure 

suggesting a possible link but further investigation is needed.

4.4 DIABETES

Tobacco smoking is correlated with both the development and exacerbation of type 2 

diabetes, the most prevalent form of diabetes accounting for 90–95% of all 

cases 9, 97, 143–155. Smoking decreases glucose tolerance, insulin sensitivity, and adiponectin 

levels while promoting hyperinsulinemia, insulin resistance, elevated glycosylated 

hemoglobin levels, increased fasting blood glucose levels, dyslipidemia and post-prandial 

lipid intolerance, all of which are associated with the diabetic phenotype 9, 97, 155–160. A 

meta-analysis of 46 studies published between 1995–2010 revealed that on average, smokers 

have a 30–40% increased relative risk for developing type 2 diabetes compared to 

nonsmokers 9. This risk for diabetes increases in a dose-dependent manner with light 
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smokers (less than 20 cigarettes per day) having a 25% increased relative risk while heavy 

smokers (more than 20 cigarettes per day) have a 50–60% increased risk 9. Smokers also 

experience poorer control of their diabetes than nonsmokers 9, 97, 154. Cessation of smoking 

improves insulin sensitivity, despite weight gain, 97, 161, 162 and lowers the relative risk for 

diabetes to a level similar to that of nonsmokers in both women and men, ≥5 and ≥10 years 

after quitting, respectively 143, 163. One study, however, reported an 11% improvement in 

insulin sensitivity after only 8 weeks after smoking cessation suggesting improvements in 

insulin sensitivity following cessation may occur at even earlier time points 161.

Similar to cancer, the literature linking tobacco smoke, mitochondria and diabetes is not 

extensive. However, like cancer, there are strong associations between mitochondrial 

function and diabetes. Maternally Inherited Diabetes and Deafness (MIDD or Ballinger – 

Wallace Syndrome, OMIM #520000) is characterized by adult onset of sensorineural 

hearing loss and diabetes (non-insulin dependent). MIDD has been linked with several 

different mtDNA mutations 164–166 that manifest in altered mitochondrial function. 

Additionally, numerous reports have associated varied levels of mitochondrial oxidant 

production with insulin secretion 167–169 or β cell dysfunction 170, 171 (low or high, 

respectively), with some research showing that they act as necessary signals for glucose 

induced insulin secretion in rat and mouse islets 167, 168 as well as hypothalamic glucose 

sensing in rat hypothalamus both in vivo and ex vivo 172. Insulin secretion relies on the 

closure of ATP-sensitive potassium channels 173, which cause an influx of Ca2+ resulting in 

exocytosis of insulin vesicles 173–177.

Hence, insulin secretion is highly dependent and sensitive to changes in mitochondrial 

linked ATP production 175–177. Finally, it has been suggested that diabetes 178–180 and 

diabetic complications 181 are significantly influenced by mitochondrial genetic background 

suggesting that mtDNA mutations induced by cigarette smoke exposure may alter diabetes 

risk. Because tobacco cigarette smoke exposure is also linked with mtDNA damage, altered 

mitochondrial function, increased oxidant production, it is highly likely that associations 

between tobacco smoke exposure and diabetic risk are modulated via processes that involve 

the mitochondrion. Further studies in this area are required.

4.5 REPRODUCTIVE AND DEVELOPMENTAL EFFECTS

Smoking strongly associates with reduced fertility in women and maternal smoking during 

pregnancy is considered a causal factor of complications including increased incidence of 

preeclampsia, preterm delivery, and placental abnormalities 182–189. Maternal smoking or 

exposure to second hand smoke is also a major cause of infant morbidity, mortality, fetal 

growth restriction, and low birth weight resulting from placental abnormalities 188, 190–193. 

Even after adjustment for birth weight, infants of mothers who smoke have higher mortality 

rates than infants of non-smokers with maternal smoking increasing the risk of stillbirth by 

40–60% 192.

Tobacco smoke exposure-induced alterations in mitochondrial function may contribute to 

growth restriction in utero, subsequent low birth weight, and other developmental 

outcomes 25, 92, 194, 195. Placental abnormalities resulting from tobacco smoke exposure 

have been attributed to hypoxia and nicotine-mediated vasoconstriction 188, 190–193. Carbon 
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monoxide is a major contributor to the hypoxic in utero environment resulting from maternal 

tobacco smoking due to its greater affinity for fetal hemoglobin preventing oxygen loading 

and unloading196–198. Carbon monoxide also binds to complex IV of the electron transport 

chain inhibiting its activity which likely further contributes to impairments in meeting the 

high energetic needs of the developing fetus24, 42, 109. The fetal brain is especially sensitive 

to carbon monoxide toxicity due to its high oxygen consumption and glucose demands 

which may play a role in the association of cognitive deficits and neurobehavioral effects 

with maternal smoking 199, 200.

Mitochondrial abnormalities and impairments have been described in placental tissue from 

mothers who smoked during pregnancy 25. Mitochondria isolated from the placenta of 

mothers who smoked during pregnancy had a lower respiratory control index and decreased 

cytochrome c oxidoreductase (complex III) activity compared to placental mitochondria 

from non-smoking mothers, consistent with impaired mitochondrial respiration 25. Further, 

complex III activity was inversely related to the number of cigarettes smoked per day and 

trended towards an association with low birth weights suggesting that mitochondrial 

dysfunction may contribute to growth restriction in utero 25. According to the Barker 

hypothesis, developmental exposures to environmental toxicants may result in genetic 

reprogramming impacting cardiometabolic disease risk later in life and mitochondria may be 

a key mediator of this reprogramming 201, 202.

Smoking is the leading cause of erectile dysfunction in males between the ages of 20–40, 

which is not entirely surprising considering the well described effects of smoking on 

vascular function 203–208. Smokers have impaired endothelial-dependent vasodilation that is 

the result of oxidant scavenging of a key vasodilator, nitric oxide, which also plays a central 

role in dilation of the penile vasculature during stimulation of an erection 207, 208. Increased 

mitochondrial oxidant production contributes to endothelial damage by scavenging nitric 

oxide and consequently, smoking-induced increases in mitochondrial oxidant production 

may play a role in the impaired vasodilation and subsequent erectile dysfunction in 

smokers106.

Tobacco cigarette smoke exposure is also linked to decreased fertility in men 203–206 with 

several studies reporting decreased sperm motility with mitochondrial dysfunction and/or 

damage 209, 210. Mitochondria located within the tail of sperm are required to generate the 

energy to drive the cellular motors in the flagellum and if damaged, may not be able to 

provide sufficient energy resulting in reduced motility 209, 210. Again, whether the effects of 

tobacco smoke act through mitochondrial dysfunction is not yet clear. Nevertheless, tobacco 

smoke exposure decreases mitochondrial function, and therefore it is possible that this could 

provide a link between the observed association of cigarette smoke and decreased male 

fertility.

5.0 TOXICITY OF AIR POLLUTION

The six main ambient air pollutants are particulate matter, ground-level ozone, lead, carbon 

monoxide, nitrogen oxides and sulfur dioxide, termed criteria air pollutants by the United 

States Environmental Protection Agency. In this review, we have focused on particulate 
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matter and ozone as these are the most well studied pollutants with regards to mitochondrial 

toxicity.

Particulate Matter—The United States Environmental Protection Agency monitors the 

levels of particulate matter especially PM10 and PM2.5. Even with PM2.5, sub-fractions have 

been shown to have distinct effects on pathophysiology with ultrafine particles (≤0.1μM in 

diameter, PM0.1) being cleared more slowly, retained longer in the lung and able to have 

significant effects even 6 days after inhalation compared to only 1 day with the larger PM2.5 

fraction 211. Particulate matter is a major component of both household and ambient air 

pollution and has been implicated in mitochondrial toxicity 212–217. Organic PM is formed 

by gas-to-particle conversion or incomplete combustion of fuels 212. In contrast, engineered 

PM is generated for use in the production of paint, cosmetics, plastics, paper, and other 

materials released into the environment during manufacture, distribution and consumer 

use 213. Ammonium, elemental carbon, organic carbon matter, nitrate, silicon, sodium and 

sulfate make up about 80% of PM in ambient air; although these components vary regionally 

and seasonally 218.

PM has been shown to accumulate within the mitochondrion 212 and can disrupt 

mitochondrial membrane potential 214, damage mitochondrial structure 212, alter the mtDNA 

(strand breaks and methylation) 214,215–217, and activate the mitochondrial programmed 

apoptosis in pulmonary tissues. Exposure of murine macrophage and human bronchial 

epithelial cell lines to diesel exhaust particles suspended in the culture media resulted in a 

preferential accumulation of PM0.1 within the mitochondrion 212. Further, the accumulation 

of PM0.1 in mitochondria was further shown to cause structural damage to cristae and 

induced the formation of myelin figures, indicative of mitochondrial membrane damage 212. 

In contrast, PM10 or PM2.5 were sequestered in vacuoles rather than mitochondria causing 

minimal mitochondrial damage 212. Iron-derived free radicals in ambient air particulate 

matter can also cause DNA damage and decrease mitochondrial membrane potential, 

ultimately leading to cell death of alveolar epithelial cells via the intrinsic pathway in a dose 

and time dependent manner 214. Pre-treatment of cells with iron chelators and free radical 

scavengers protected the alveolar epithelial cells from particulate matter induced-DNA 

damage, mitochondrial dysfunction, and apoptosis 214. Most larger particles (>0.1μM) are 

cleared upon entering the respiratory tract; however, PM0.1 have been shown to cross the 

blood-brain barrier and disseminate through the blood to non-pulmonary organ 

systems 219, 220. Exposure of rat and human glial cell lines or primary hepatocytes to one of 

the most widely used engineered PM0.1, titanium dioxide PM0.1, induces oxidative 

stress 213, causes mitochondrial depolarization 212. Similarly, exposure of primary rat 

hepatocytes to titanium dioxide PM0.1 suspended in the culture medium for 2.5h induces 

oxidative stress and causes a loss of mitochondrial membrane potential 221.

Ozone—Ozone has many adverse health effects and is generated through the interaction of 

volatile organic compounds and nitrogen oxides in the presence of light 69. Ozone is a 

component of ambient air pollution 68, although the precursors for ozone formation are 

present in household air pollution 64. As mentioned previously, in many low- and middle-

income countries, household air pollution is a significant contributor to ambient air 
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pollution 2, 65. It is well described that exposure to ozone induces oxidative stress 222–224. 

Proposed mechanisms include the reaction of oxidants with unsaturated fatty acids to form 

lipid ozonation products and the reaction of secondary products formed in the epithelial 

lining fluid such as aldehydes, hydrogen peroxide and organic radicals 222–224. Ozone also 

enhances oxidative stress by depleting antioxidants and surfactants in the epithelial lining 

fluid 225. Mitochondrial toxicity has been implicated in the pathology of ozone-induced 

pulmonary and cardiovascular disease including perturbed mitochondrial bioenergetics, 

decreased mitochondrial membrane potential, increased mitochondrial oxidant production 

and mtDNA damage in mice, non-human primates and humans 96, 226. In addition, 

pulmonary ozone exposure decreased endothelial nitric oxide synthase protein levels and 

indices of nitric oxide production, resulting in vascular dysfunction and accelerated 

atherogenesis in mice 96. Treatment with the mitochondrial-targeted antioxidant MitoQ, 

lowered both mitochondrial and cellular oxidant levels, restored membrane potential and 

attenuated the ozone-induced airway hyper-responsiveness (see Section 5.1) suggesting that 

ozone mediates its effects, in part, by increasing mitochondrial oxidant production 226. 

Exposure of rats to ozone levels observed in high pollution cities (0.25ppm) caused chronic 

oxidative stress in the hippocampus, neurodegeneration, and mitochondrial dysfunction 227. 

Ozone exposure has also been linked to beta amyloid accumulation in the mitochondria of 

rat hippocampal cells and may be linked to the development of Alzheimer’s disease due to 

air pollution 227.

5.1 PULMONARY DISEASES

Particulate matter and ozone along with the rest of the criteria air pollutants cause, trigger, 

and exacerbate pulmonary diseases in both children and adults while also impairing lung 

development in children 228–233. The extended duration and heavy breathing associated with 

manual labor of certain occupations (e.g. transportation, landscaping, construction) as well 

as the increased exposure to household air pollution among women, children and the elderly 

in low- and middle-income countries (who spend more time indoors than male adults) 

results in a greater burden of exposure and subsequent greater pulmonary disease in these 

sub-populations 14, 63–65, 229, 234. The increasing prevalence of acute respiratory diseases has 

also been linked to climate change and alterations in ground level ozone pollution 

distribution 228, 229. Mice exposed to ozone (3 parts per million, 3 hours/day, twice a week 

for 1 or 6 weeks) exhibit phenotypes similar to human patients with COPD including lung 

inflammation and airway hyper-responsiveness 226, 235. Mitochondria isolated from the 

lungs of ozone-exposed mice have increased levels of mitochondrial ROS at both the 1-week 

and 6-week time points, decreased ATP content, decreased mitochondrial electron transport 

chain complex I enzyme activity and decreased protein levels of complexes I, III and V 

compared to control air-exposed mice 226. Treatment of these ozone-exposed mice with 

MitoQ (5mg/kg intraperitoneally), an antioxidant that targets the mitochondrion, 

significantly increased mitochondrial membrane potential and decreased the following: 

ozone-induced airway hyper-responsiveness, bronchoalveolar lavage total cell counts, 

keratinocyte-derived cytokine levels, mitochondrial ROS levels and cellular ROS levels 226. 

In contrast, a similar study with a slightly lower ozone exposure of 2.5 parts per million 

showed that N-acetylcysteine treatment did not attenuate ozone-induced lung injury in the 

same mouse model of COPD 235.235. The improvement observed in pulmonary function with 
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MitoQ but not N-acetylcysteine suggests that mitochondrially targeted therapies to be more 

efficacious and that mitochondrial oxidants play a pivotal role in ozone-induced lung 

injury 235.

5.2 CARDIOVASCULAR DISEASE

Both short and long term exposure to air pollution (especially PM2.5, PM10, ground level 

ozone) increase the risk of cardiovascular events (hypertensive episodes, myocardial 

infarction, cardiac arrhythmia, stroke and heart failure) and cardiovascular attributed 

mortality, especially in individuals with pre-existent cardiovascular disease, the elderly, 

those that live in urban areas, impoverished communities where unrefined fuels are used 

indoors and certain occupations 234, 236–244. In adults of more advanced age, increased 

exposure to ambient air pollution is positively associated with increased mtDNA to nuclear 

DNA ratio and blood pressure 245. PM2.5 exposure caused structural damage to 

mitochondria in rat myocardial tissues including mitochondrial swelling, crista disorder and 

vacuole formation in a dose dependent manner 246. Mice exposed to PM for 3h exhibited 

impaired cardiac contractility with decreased mitochondrial respiration and ATP 

production 247. Exposure of healthy rats to diesel exhaust for one month caused decreased 

mitochondrial aconitase activity in the cardiac tissues 248. Mice exposed to ozone (0.5 ppm, 

8h/day for 5 days) had increased heart rate, increased blood pressure and impaired aortic 

endothelial dependent vasoconstriction while also increasing markers of oxidative/

nitrosative stress (increased lipid peroxidation by products, decreased aconitase activity, 

increased protein nitration) compared to filtered air controls 96. Aortas from mice and infant 

non-human primates exposed to ozone had increased levels of mtDNA damage compared to 

filtered air controls 96. Furthermore, atherosclerosis prone apolipoprotein E-deficient 

(apoE−/−) mice exposed to ozone also exhibited increased atherosclerosis compared to 

filtered air controls 96. These data taken together suggest that air pollution induced 

cardiovascular disease at least in part through mitochondrial toxicity.

5.3 CANCER

Ambient air pollution has been causally linked to cancers of the brain, nervous and 

endocrine systems, skin, cervix, oropharynx, ovary, kidney, liver, bladder, rectum, prostate, 

breast and blood 249–262 with risk increasing dose- dependently in many cases. Both 

household and ambient air pollution have been causally linked to lung 

cancer 64, 249–251, 263–265. Studies of ambient air pollution and cancer have focused on 

highly exposed cohorts (e.g. occupational exposure, residence 

proximity) 249, 251, 252, 254–256, 258, 259, 266 and urban areas 250, 253, 257, 260–263, 265. Studies 

of indoor air pollution and cancer have focused on emissions from incomplete combustion of 

solid or unrefined fuels (high temperature heating of wood, coal, and other biomass for 

cooking, light and warmth) in low-and middle-income countries or rural areas where 

alternative fuel sources are either unavailable or cost prohibitive 64, 65, 264. In Asia (southern, 

southeastern and eastern), Oceania, and sub-Saharan Africa (eastern, central and western), 

household air pollution from solid fuels is ranked in the top four risk factors for disease 

burden, outranking ambient air pollution 2. The World Health Organization estimates that 

three billion people are exposed to these emissions on a daily basis causing 4.3 million 

premature deaths a year, 17% of which are from lung cancer 65.
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Similar to tobacco smoke, the literature on air pollution effects on mitochondrial toxicity in 

cancer is limited. It is well established that both ozone and PM mediate carcinogenesis 

through ROS generation 267–271. Diesel exhaust particles have been shown to induce ROS 

production, decrease mitochondrial membrane potential, increase mitochondrial structural 

damage and uncoupling of oxidative phosphorylation 270. Furthermore, studies in human 

lung carcinoma cell lines as well as primary human and rat lung cell cultures suggest that 

PM induces apoptosis by increasing mitochondrial ROS production leading to increased p53 

expression as well as mitochondria-regulated apoptosis which is thought to cause 

remodeling and malignant transformation of airway epithelial cells 269.

5.4 DIABETES

Cohort studies suggest that long term exposure to air pollution, specifically PM2.5 and 

nitrogen dioxide, is associated with increased risk of developing type 2 diabetes and 

increased diabetes-related mortality 272–279. As with tobacco smoke, research on air 

pollution induced mitochondrial toxicity in diabetes pathogenesis is limited, however the 

few performed studies yielded results suggesting that this area of study should be 

pursued 280, 281. C57BL/6 mice fed a high fat diet (42% fat, for 34 weeks) had increased 

adipose inflammation and increased insulin resistance when exposed to PM2.5 (6h/day, 5 

days/week, for 24 weeks) compared to filtered air exposed controls 280. Exposing this same 

strain of mouse to PM2.5 for a longer period (40 weeks) but on a standard chow diet still 

caused insulin resistance and glucose intolerance 282. This prolonged exposure to PM2.5 also 

decreased mitochondrial number in visceral adipose and decreased mitochondrial size in 

interscapular brown adipose 282 consistent with a role for mitochondria in air pollution 

induced type 2 diabetes.

5.5 REPRODUCTIVE AND DEVELOPMENTAL EFFECTS

Ambient air pollution exposure is associated with adverse reproductive health and outcomes 

in both women and men 283–303. Air pollution has been associated with increased sperm 

abnormalities including aneuploidy, head morphology and motility decreasing fertility in 

men 283, 300, 304. The effects of developmental exposure are of great concern especially for 

pregnant women who live in urban areas with high levels of ambient air pollution or in low-

and middle-income countries where women may have extended duration of exposure to 

household air pollution 14, 62–65. Air pollution has been associated with negative pregnancy 

outcomes 284, 285, 287–290, 293, 298, 299, including low birth weight 292–295, 302, respiratory 

illnesses 301 and mortality 301, 303 in the fetus, newborn and infant. Increased in utero 
exposure to PM2.5, especially in the first trimester of pregnancy, is positively associated with 

placental mtDNA methylation (in both the displacement loop and the sequence which 

encodes the mitochondrial ribosomal 12S rRNA) 215. Conversely, increased in utero 
exposure to PM2.5 or PM10 is negatively associated with mtDNA content with the most 

significant association in the third trimester 215, 216. MtDNA methylation is controversial 

because the mtDNA does not have many CpG nucleotides 305–307 and thus, most of the 

methylations are on non-CpG cytosines 305. Consequently, the techniques used to identify 

CpG methylation in nuclear DNA may not be appropriate for detecting mtDNA 

methylation 305. Furthermore, there was little evidence that any of the three catalytically 

active DNA methyltransferases could access the mitochondrion 215, 305–307 until recently 
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when it was discovered that DNA methyltransferase 1 could target mitochondria 308. 

Nevertheless, methylation in certain key regions of the mtDNA can have detrimental effects 

on replication and transcription of mtDNA (displacement loop methylation) 215, 305, or 

translation of mtDNA encoded RNA (12S rRNA methylation) 215.

6. FUTURE DIRECTIONS

6.1 TOXICITY RELATED TO NEW AND EMERGING TOBACCO PRODUCTS

New and emerging tobacco products such as e-cigarettes have become increasingly popular 

and are often used in combination with tobacco cigarettes 309, 310. Many of these alternative 

tobacco products are viewed as a potential means for reducing tobacco-induced disease 

burden in smokers and as a potential mechanism for aiding smokers in cessation. However, 

the few studies performed assessing cessation with e-cigarette use have been scarce, small in 

scale, and had ambiguous results that are often difficult to interpret 311, Moreover, the acute 

and chronic health effects of e-cigarettes and other alternative products are largely unknown 

and consequently, studies designed to evaluate risk for cellular injury associated with e-

cigarette use are required. Measures of mitochondrial damage and function may provide a 

means to assess potential injury.

E-cigarettes likely contain fewer toxicants than tobacco cigarettes but they are not toxicant-

free. Mass-spectrometry analysis has already demonstrated the presence of aldehydes, free 

radicals, and metals which are known mitochondrial toxicants and may act through similar 

disease mechanisms as those triggered by cigarette smoke exposure 312–317. Other tobacco 

products including hookahs, little cigars, and cigarillos combust tobacco leaves in a fashion 

very similar to traditional cigarettes and therefore, likely contain the same toxicants and 

carcinogens found in tobacco cigarette smoke. Consequently, hookah, little cigar, and 

cigarillo smoke exposure likely induce similar changes to mitochondrial physiology as 

tobacco cigarette smoke exposure and ultimately, are expected to induce similar morbidities 

and mortalities but require future investigation. The uncertainty of the chronic effects of e-

cigarette and other alternative tobacco product use will likely continue for some time until 

large scale, longitudinal studies can be performed. However, as we gain a clearer picture 

regarding the chemical composition of the emitted vapors and smoke given off by these 

products, we will be able to draw conclusions regarding whether those chemicals at the 

levels observed have already shown effects on mitochondrial function and disease pathways.

6.2 TOXICITY RELATED TO MITOCHONDRIAL – NUCLEAR GENETIC BACKGROUND

The genetic basis for common disease susceptibility and environmental exposure sensitivity 

is not well understood. Studies have investigated this question often finding associations of 

variants with phenotypes in smaller sample cohorts, but these associations are usually lost in 

more broad-based or larger cohort studies. Our current viewpoint of genetic susceptibility, 

which typically interrogates only the nuclear genome may, in part, explain differences in 

disease susceptibility and environmental exposure sensitivity. Mitochondrial genetic 

variation may be a missing component that modifies penetrance or alters the symptoms 

associated with a disease. Several reports have shown that certain rare forms of blindness are 

linked to pathogenic mtDNA mutations and become less penetrant in individuals of African 
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ancestry. Similarly, certain mtDNA polymorphisms alter individual susceptibility to non-

syndromic sensorineural deafness, especially in individuals exposed to 

aminoglycosides 318–320. The evidence showing that mitochondrial genetic background 

influences disease susceptibility, including cancer, heart disease, and longevity is 

growing 89, 90, 321, 322. Collectively, these studies have focused on the impact of the mtDNA 

on disease susceptibility, and while important, a relatively unexplored area of study is the 

interaction of the two genomes (mitochondrial and nuclear) upon individual response to 

environmental stimuli (including toxicants). We hypothesize that certain nuclear mutations 

which convey increased susceptibility to environmental toxicants may have altered 

penetrance due to the combined influence of mitochondrial genetic background, age, and 

pre-existent health status. Consequently, a future direction of precision medicine should 

include an evaluation of both mitochondrial and nuclear genetic backgrounds when 

considering of the genetic aspects of individual risk.
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Figure 1. Mitochondrial functions
The citric acid cycle serves as a source of metabolic intermediates (citrate, a-ketoglutarate, 

etc) for several biosynthetic pathways (glucose, fatty acid, cholesterol synthesis, etc), and 

electron transport. Energy derived from electrons as they move through the electron 

transport complexes is utilized to pump protons across the inner mitochondrial membrane to 

form an electrochemical gradient; this conserved energy is used to generate molecular 

energy (ATP) at ATP synthase. Energy not conserved for proton pumping is lost in the form 

of thermal energy (heat). Under conditions of increased ATP/ADP ratios, electron acceptors 

remain in the reduced state for longer periods of time, and therefore electrons can also react 

with molecular oxygen to form the oxidant superoxide (O2
·−), that can be converted to 

hydrogen peroxide (H2O2), a cell-signaling molecule by manganese superoxide dismutase 

(MnSOD) in the mitochondrion, or alternatively, react with nitric oxide (·NO) to form 

peroxynitrite (ONOO−), an oxidant, which in the presence of carbon dioxide (CO2), can 

form nitrosoperoxycarbonate (ONOOCO2
−), a nitrating agent.
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	5.0 TOXICITY OF AIR POLLUTIONThe six main ambient air pollutants are particulate matter, ground-level ozone, lead, carbon monoxide, nitrogen oxides and sulfur dioxide, termed criteria air pollutants by the United States Environmental Protection Agency. In this review, we have focused on particulate matter and ozone as these are the most well studied pollutants with regards to mitochondrial toxicity.Particulate Matter—The United States Environmental Protection Agency monitors the levels of particulate matter especially PM10 and PM2.5. Even with PM2.5, sub-fractions have been shown to have distinct effects on pathophysiology with ultrafine particles (≤0.1μM in diameter, PM0.1) being cleared more slowly, retained longer in the lung and able to have significant effects even 6 days after inhalation compared to only 1 day with the larger PM2.5 fraction 211. Particulate matter is a major component of both household and ambient air pollution and has been implicated in mitochondrial toxicity 212–217. Organic PM is formed by gas-to-particle conversion or incomplete combustion of fuels 212. In contrast, engineered PM is generated for use in the production of paint, cosmetics, plastics, paper, and other materials released into the environment during manufacture, distribution and consumer use 213. Ammonium, elemental carbon, organic carbon matter, nitrate, silicon, sodium and sulfate make up about 80% of PM in ambient air; although these components vary regionally and seasonally 218.PM has been shown to accumulate within the mitochondrion 212 and can disrupt mitochondrial membrane potential 214, damage mitochondrial structure 212, alter the mtDNA (strand breaks and methylation) 214,215–217, and activate the mitochondrial programmed apoptosis in pulmonary tissues. Exposure of murine macrophage and human bronchial epithelial cell lines to diesel exhaust particles suspended in the culture media resulted in a preferential accumulation of PM0.1 within the mitochondrion 212. Further, the accumulation of PM0.1 in mitochondria was further shown to cause structural damage to cristae and induced the formation of myelin figures, indicative of mitochondrial membrane damage 212. In contrast, PM10 or PM2.5 were sequestered in vacuoles rather than mitochondria causing minimal mitochondrial damage 212. Iron-derived free radicals in ambient air particulate matter can also cause DNA damage and decrease mitochondrial membrane potential, ultimately leading to cell death of alveolar epithelial cells via the intrinsic pathway in a dose and time dependent manner 214. Pre-treatment of cells with iron chelators and free radical scavengers protected the alveolar epithelial cells from particulate matter induced-DNA damage, mitochondrial dysfunction, and apoptosis 214. Most larger particles (>0.1μM) are cleared upon entering the respiratory tract; however, PM0.1 have been shown to cross the blood-brain barrier and disseminate through the blood to non-pulmonary organ systems 219, 220. Exposure of rat and human glial cell lines or primary hepatocytes to one of the most widely used engineered PM0.1, titanium dioxide PM0.1, induces oxidative stress 213, causes mitochondrial depolarization 212. Similarly, exposure of primary rat hepatocytes to titanium dioxide PM0.1 suspended in the culture medium for 2.5h induces oxidative stress and causes a loss of mitochondrial membrane potential 221.Ozone—Ozone has many adverse health effects and is generated through the interaction of volatile organic compounds and nitrogen oxides in the presence of light 69. Ozone is a component of ambient air pollution 68, although the precursors for ozone formation are present in household air pollution 64. As mentioned previously, in many low- and middle-income countries, household air pollution is a significant contributor to ambient air pollution 2, 65. It is well described that exposure to ozone induces oxidative stress 222–224. Proposed mechanisms include the reaction of oxidants with unsaturated fatty acids to form lipid ozonation products and the reaction of secondary products formed in the epithelial lining fluid such as aldehydes, hydrogen peroxide and organic radicals 222–224. Ozone also enhances oxidative stress by depleting antioxidants and surfactants in the epithelial lining fluid 225. Mitochondrial toxicity has been implicated in the pathology of ozone-induced pulmonary and cardiovascular disease including perturbed mitochondrial bioenergetics, decreased mitochondrial membrane potential, increased mitochondrial oxidant production and mtDNA damage in mice, non-human primates and humans 96, 226. In addition, pulmonary ozone exposure decreased endothelial nitric oxide synthase protein levels and indices of nitric oxide production, resulting in vascular dysfunction and accelerated atherogenesis in mice 96. Treatment with the mitochondrial-targeted antioxidant MitoQ, lowered both mitochondrial and cellular oxidant levels, restored membrane potential and attenuated the ozone-induced airway hyper-responsiveness (see Section 5.1) suggesting that ozone mediates its effects, in part, by increasing mitochondrial oxidant production 226. Exposure of rats to ozone levels observed in high pollution cities (0.25ppm) caused chronic oxidative stress in the hippocampus, neurodegeneration, and mitochondrial dysfunction 227. Ozone exposure has also been linked to beta amyloid accumulation in the mitochondria of rat hippocampal cells and may be linked to the development of Alzheimer’s disease due to air pollution 227.5.1 PULMONARY DISEASESParticulate matter and ozone along with the rest of the criteria air pollutants cause, trigger, and exacerbate pulmonary diseases in both children and adults while also impairing lung development in children 228–233. The extended duration and heavy breathing associated with manual labor of certain occupations (e.g. transportation, landscaping, construction) as well as the increased exposure to household air pollution among women, children and the elderly in low- and middle-income countries (who spend more time indoors than male adults) results in a greater burden of exposure and subsequent greater pulmonary disease in these sub-populations 14, 63–65, 229, 234. The increasing prevalence of acute respiratory diseases has also been linked to climate change and alterations in ground level ozone pollution distribution 228, 229. Mice exposed to ozone (3 parts per million, 3 hours/day, twice a week for 1 or 6 weeks) exhibit phenotypes similar to human patients with COPD including lung inflammation and airway hyper-responsiveness 226, 235. Mitochondria isolated from the lungs of ozone-exposed mice have increased levels of mitochondrial ROS at both the 1-week and 6-week time points, decreased ATP content, decreased mitochondrial electron transport chain complex I enzyme activity and decreased protein levels of complexes I, III and V compared to control air-exposed mice 226. Treatment of these ozone-exposed mice with MitoQ (5mg/kg intraperitoneally), an antioxidant that targets the mitochondrion, significantly increased mitochondrial membrane potential and decreased the following: ozone-induced airway hyper-responsiveness, bronchoalveolar lavage total cell counts, keratinocyte-derived cytokine levels, mitochondrial ROS levels and cellular ROS levels 226. In contrast, a similar study with a slightly lower ozone exposure of 2.5 parts per million showed that N-acetylcysteine treatment did not attenuate ozone-induced lung injury in the same mouse model of COPD 235.235. The improvement observed in pulmonary function with MitoQ but not N-acetylcysteine suggests that mitochondrially targeted therapies to be more efficacious and that mitochondrial oxidants play a pivotal role in ozone-induced lung injury 235.5.2 CARDIOVASCULAR DISEASEBoth short and long term exposure to air pollution (especially PM2.5, PM10, ground level ozone) increase the risk of cardiovascular events (hypertensive episodes, myocardial infarction, cardiac arrhythmia, stroke and heart failure) and cardiovascular attributed mortality, especially in individuals with pre-existent cardiovascular disease, the elderly, those that live in urban areas, impoverished communities where unrefined fuels are used indoors and certain occupations 234, 236–244. In adults of more advanced age, increased exposure to ambient air pollution is positively associated with increased mtDNA to nuclear DNA ratio and blood pressure 245. PM2.5 exposure caused structural damage to mitochondria in rat myocardial tissues including mitochondrial swelling, crista disorder and vacuole formation in a dose dependent manner 246. Mice exposed to PM for 3h exhibited impaired cardiac contractility with decreased mitochondrial respiration and ATP production 247. Exposure of healthy rats to diesel exhaust for one month caused decreased mitochondrial aconitase activity in the cardiac tissues 248. Mice exposed to ozone (0.5 ppm, 8h/day for 5 days) had increased heart rate, increased blood pressure and impaired aortic endothelial dependent vasoconstriction while also increasing markers of oxidative/nitrosative stress (increased lipid peroxidation by products, decreased aconitase activity, increased protein nitration) compared to filtered air controls 96. Aortas from mice and infant non-human primates exposed to ozone had increased levels of mtDNA damage compared to filtered air controls 96. Furthermore, atherosclerosis prone apolipoprotein E-deficient (apoE−/−) mice exposed to ozone also exhibited increased atherosclerosis compared to filtered air controls 96. These data taken together suggest that air pollution induced cardiovascular disease at least in part through mitochondrial toxicity.5.3 CANCERAmbient air pollution has been causally linked to cancers of the brain, nervous and endocrine systems, skin, cervix, oropharynx, ovary, kidney, liver, bladder, rectum, prostate, breast and blood 249–262 with risk increasing dose- dependently in many cases. Both household and ambient air pollution have been causally linked to lung cancer 64, 249–251, 263–265. Studies of ambient air pollution and cancer have focused on highly exposed cohorts (e.g. occupational exposure, residence proximity) 249, 251, 252, 254–256, 258, 259, 266 and urban areas 250, 253, 257, 260–263, 265. Studies of indoor air pollution and cancer have focused on emissions from incomplete combustion of solid or unrefined fuels (high temperature heating of wood, coal, and other biomass for cooking, light and warmth) in low-and middle-income countries or rural areas where alternative fuel sources are either unavailable or cost prohibitive 64, 65, 264. In Asia (southern, southeastern and eastern), Oceania, and sub-Saharan Africa (eastern, central and western), household air pollution from solid fuels is ranked in the top four risk factors for disease burden, outranking ambient air pollution 2. The World Health Organization estimates that three billion people are exposed to these emissions on a daily basis causing 4.3 million premature deaths a year, 17% of which are from lung cancer 65.Similar to tobacco smoke, the literature on air pollution effects on mitochondrial toxicity in cancer is limited. It is well established that both ozone and PM mediate carcinogenesis through ROS generation 267–271. Diesel exhaust particles have been shown to induce ROS production, decrease mitochondrial membrane potential, increase mitochondrial structural damage and uncoupling of oxidative phosphorylation 270. Furthermore, studies in human lung carcinoma cell lines as well as primary human and rat lung cell cultures suggest that PM induces apoptosis by increasing mitochondrial ROS production leading to increased p53 expression as well as mitochondria-regulated apoptosis which is thought to cause remodeling and malignant transformation of airway epithelial cells 269.5.4 DIABETESCohort studies suggest that long term exposure to air pollution, specifically PM2.5 and nitrogen dioxide, is associated with increased risk of developing type 2 diabetes and increased diabetes-related mortality 272–279. As with tobacco smoke, research on air pollution induced mitochondrial toxicity in diabetes pathogenesis is limited, however the few performed studies yielded results suggesting that this area of study should be pursued 280, 281. C57BL/6 mice fed a high fat diet (42% fat, for 34 weeks) had increased adipose inflammation and increased insulin resistance when exposed to PM2.5 (6h/day, 5 days/week, for 24 weeks) compared to filtered air exposed controls 280. Exposing this same strain of mouse to PM2.5 for a longer period (40 weeks) but on a standard chow diet still caused insulin resistance and glucose intolerance 282. This prolonged exposure to PM2.5 also decreased mitochondrial number in visceral adipose and decreased mitochondrial size in interscapular brown adipose 282 consistent with a role for mitochondria in air pollution induced type 2 diabetes.5.5 REPRODUCTIVE AND DEVELOPMENTAL EFFECTSAmbient air pollution exposure is associated with adverse reproductive health and outcomes in both women and men 283–303. Air pollution has been associated with increased sperm abnormalities including aneuploidy, head morphology and motility decreasing fertility in men 283, 300, 304. The effects of developmental exposure are of great concern especially for pregnant women who live in urban areas with high levels of ambient air pollution or in low-and middle-income countries where women may have extended duration of exposure to household air pollution 14, 62–65. Air pollution has been associated with negative pregnancy outcomes 284, 285, 287–290, 293, 298, 299, including low birth weight 292–295, 302, respiratory illnesses 301 and mortality 301, 303 in the fetus, newborn and infant. Increased in utero exposure to PM2.5, especially in the first trimester of pregnancy, is positively associated with placental mtDNA methylation (in both the displacement loop and the sequence which encodes the mitochondrial ribosomal 12S rRNA) 215. Conversely, increased in utero exposure to PM2.5 or PM10 is negatively associated with mtDNA content with the most significant association in the third trimester 215, 216. MtDNA methylation is controversial because the mtDNA does not have many CpG nucleotides 305–307 and thus, most of the methylations are on non-CpG cytosines 305. Consequently, the techniques used to identify CpG methylation in nuclear DNA may not be appropriate for detecting mtDNA methylation 305. Furthermore, there was little evidence that any of the three catalytically active DNA methyltransferases could access the mitochondrion 215, 305–307 until recently when it was discovered that DNA methyltransferase 1 could target mitochondria 308. Nevertheless, methylation in certain key regions of the mtDNA can have detrimental effects on replication and transcription of mtDNA (displacement loop methylation) 215, 305, or translation of mtDNA encoded RNA (12S rRNA methylation) 215.
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