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Abstract

Mitochondria form a cellular network of organelles, or cellular compartments, that efficiently 

couple nutrients to energy production in the form of ATP. As cancer cells rely heavily on 

glycolysis, historically mitochondria and the cellular pathways in place to maintain mitochondrial 

activities were thought to be more relevant to diseases observed in non-dividing cells such as 

muscles and neurons. However, more recently it has become clear that cancers rely heavily on 

mitochondrial activities including lipid, nucleotide and amino acid synthesis, suppression of 

mitochondria-mediated apoptosis as well as oxidative phosphorylation (OXPHOS) for growth and 

survival. Considering the variety of conditions and stresses that cancer cell mitochondria may 

incur such as hypoxia, reactive oxygen species and mitochondrial genome mutagenesis, we 

examine potential roles for a mitochondrial-protective transcriptional response known as the 

mitochondrial unfolded protein response (UPRmt) in cancer cell biology.
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I. Introduction

Mitochondrial organization and functions

Mitochondria are cellular compartments that form a dynamic network located throughout the 

cytosol that harbor the tricarboxylic acid (TCA) cycle and oxidative phosphorylation 

(OXPHOS) machinery. These two processes convert acetyl-CoA generated from 

carbohydrate, protein and fat catabolism into ATP via the electron transport chain 
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(respiratory chain) complexes and the ATP synthase. Mitochondria are also required for 

many other essential cellular activities, including amino acid, lipid, nucleotide, and iron-

sulfur cluster synthesis as well as calcium homeostasis. Beyond metabolism, mitochondria 

significantly contribute to multiple signal transduction events including the regulation of cell 

death, cell differentiation, growth and innate immunity [1–5].

Mitochondria are double membrane bound organelles consisting of about 1200 proteins. 

Nearly 99% of mitochondrial proteins are encoded by nuclear genes and synthesized on 

cytosolic ribosomes. These proteins harbor mitochondrial targeting sequences (MTS) that 

direct them to either the mitochondrial outer membrane, intermembrane space, inner 

membrane or the mitochondrial matrix. At the outer membrane, proteins destined for the 

mitochondrial matrix interact with the TOM (translocase of the outer membrane) complex 

and the TIM (translocase of the inner membrane) complex sequentially to traverse both 

mitochondrial membranes [6]. In addition to the channels, transportation across the inner 

membrane requires a proton gradient generated by the respiratory chain as well as molecular 

chaperones located in the mitochondrial matrix. Once in the matrix, the MTS is typically 

cleaved and the protein folds and/or assembles which is facilitated by molecular chaperones 

and complex assembly factors.

The remaining components of the mitochondrial proteome are encoded by the mitochondrial 

genome (mtDNA). Typically, human cells harbor hundreds, or thousands of mtDNA copies, 

which require extensive cellular machinery to maintain [7, 8]. Human mtDNA encodes 13 

essential components of the OXPHOS complexes as well as 2 rRNAs and 22 tRNAs, which 

are required for the synthesis of mtDNA-encoded proteins within the mitochondrial matrix 

[9]. As the OXPHOS system is composed of large multi-subunits complexes encoded by 

separate genomes, transcription, protein expression and complex assembly must be tightly 

coordinated to prevent the accumulation of toxic protein folding or assembly intermediates 

in the mitochondria.

Mitochondria in cancer

Mitochondrial dysfunction caused by lesions associated with nuclear- or mtDNA-encoded 

genes contributes to a variety of human diseases, which typically present as neuro-muscular 

disorders [10–13]. Interestingly, similar mutations or lesions have been found in a variety of 

cancers, suggesting a relationship between mitochondrial dysregulation and cancer cell 

biology [14, 15]. Many of these mutations reduce OXPHOS efficiency [16–18] and force 

cells to rely more heavily on glycolysis for ATP production, potentially providing an 

underlying mechanism for what Warburg observed in cancer cells nearly 100 years ago; that 

cancer cells rely heavily on glycolysis even in the presence of oxygen [19].

However, a bevy of recent studies have found that cancer cells rely more heavily on 

mitochondrial functions than previously thought. In contrast to Warburg’s observation that 

mitochondria are dysfunctional in cancers, mitochondria are likely metabolically altered to 

support cell proliferation and tumorigenesis, consistent with mitochondrial perturbations 

impairing tumorigenicity. For example, depletion of mtDNA in glioblastoma and breast 

carcinoma cells significantly impairs tumor proliferation [20, 21]. Additionally, inhibition of 

mtDNA replication or mitochondrial biogenesis by suppressing PGC-1α or TFAM also 
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reduces the invasion and metastasis of mammary epithelial cancer cells and lung cancer 

cells, respectively [22, 23]. These studies suggest that cancer cells rely on mitochondrial 

activities as well cellular pathways that evolved to maintain and recover mitochondrial 

function.

Furthermore, considerable evidence suggests that signals emanating from stressed or 

dysfunctional mitochondria promote cancer cell growth and survival. For example, 

mutations in the TCA cycle gene encoding isocitrate dehydrogenase (IDH) cause an over-

production of the onco-metabolite 2-hydroxyglutarate, which contributes to glioma 

formation and leukemogensis [24, 25]. And, succinate dehydrogenase (SDH) or fumarate 

hydratase (FH) mutations also cause accumulation of the TCA cycle metabolic 

intermediates, succinate and fumarate, that activate hypoxia-inducible factor 1 alpha 

(HIF-1α), which promotes cancer cell growth and survival [26–29]. Moreover, mutations in 

genes encoding complex III components of electron transport chain impair apoptosis, thus 

contributing to tumor progression [30].

Further suggestive of a contribution of dysfunctional mitochondria to tumor progression, 

several conserved mtDNA mutations, such as mutations in cytochrome c oxidase subunit 1 

(MTCO1) and NADH dehydrogenase (ND5), are found in tumors of patients with diverse 

mtDNA backgrounds [16, 31]. Although the impact on cancer biology remains 

controversial, several studies have suggested that mtDNA mutations perturbing the 

respiratory chain cause increased reactive oxygen species (ROS) which engage components 

of pro-growth or pro-survival pathways such as KRas, Akt and TLR4 [22, 32–36]. While it 

is well-documented that mtDNA lesions are relatively common in cancer cells, it should be 

noted that some studies have found no effect of mtDNA mutations on cancer cell biology 

[37]. Hopefully, future studies will be able to determine if mtDNA mutations are correlative 

or causative in tumorigenesis.

While mitochondrial lesions may or may not benefit tumor growth and survival, 

accumulation of mitochondrial stress in cancer has the potential to perturb mitochondrial 

and cellular activities, and must be dealt with to maintain cellular integrity. Here, we review 

a mitochondrial stress responsive pathway, the mitochondrial unfolded protein response 

(UPRmt), that responds to mitochondrial dysfunction by promoting mitochondrial repair, 

metabolic adaptations as well as survival by inducing anti-apoptotic factors, and its potential 

role in cancer biology.

II. The mitochondrial unfolded protein response (UPRmt)

Discovery of a mitochondrial stress response: A brief history

Considerable evidence has suggested the existence of adaptive transcriptional responses to 

mitochondrial dysfunction. Transcript profiling studies comparing affected tissues in patients 

with mitochondrial diseases demonstrated a variety of potentially adaptive transcriptional 

alterations [38]. Consistent with the patient studies, mitochondrial dysfunction in cultured 

cells caused by depletion of mtDNA or the overexpression of a terminally misfolded 

mitochondrial protein (ΔOTC) causes transcriptional induction of a number of 

mitochondrial-specific molecular chaperones and proteases [39, 40]. As these findings were 
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conceptually similar to a well-studied response that mediates endoplasmic reticulum protein 

homeostasis known as the unfolded protein response (UPR), it was dubbed a mitochondrial 

stress response, and later a UPRmt [41]. While conceptually similar, regulation of the UPRmt 

is different and completely independent of the UPRER, likely deriving from differences in 

the two organelles and their respective protein folding compartments. And, the scope of the 

response is reflective of diverse cellular activities affected by mitochondrial functions.

In line with an organelle-specific response, the UPRmt is specifically activated by 

mitochondrial perturbations [41]. In addition to mtDNA depletion and mitochondrial 

unfolded protein accumulation, OXPHOS defects, inhibition of mitochondrial protein 

synthesis, mtDNA mutations, reactive oxygen species, hypoxia, as well as pathogenic 

bacteria that target mitochondria as part of a virulence response can trigger the UPRmt [42–

49]. As indicated in the previous section, many of the listed mitochondrial defects can be 

observed in cancer cells suggesting activation of the UPRmt.

UPRmt signaling in C. elegans

Genetic and biochemical studies in C. elegans have indicated that cells evaluate or monitor 

mitochondrial protein import efficiency to regulate the UPRmt. Mitochondrial import likely 

serves as a useful surrogate for mitochondrial function, as multiple activities including 

OXPHOS and mitochondrial protein homeostasis, are required for efficient mitochondrial 

import [50]. Several components that regulate UPRmt activation have been discovered via 

genetic screens. The bZip transcription factor, ATFS-1, directly regulates UPRmt gene 

promoters during mitochondrial dysfunction and is regulated by organellar 

compartmentalization (Figure 1). ATFS-1 harbors both a mitochondrial targeting sequence 

as well as a nuclear localization sequence allowing it to respond to mitochondrial import 

efficiency [43]. In cells with a healthy mitochondrial network, ATFS-1 is synthesized and 

rapidly imported into mitochondria where it is degraded. However, during mitochondrial 

stress or dysfunction, reduced mitochondrial protein import efficiency causes a percentage 

of mitochondrial-targeted proteins to accumulate in the cytosol. As ATFS-1 harbors a 

nuclear localization sequence, it traffics to the nucleus to regulate a broad transcriptional 

response [43, 51]. In addition to transcriptional adaptations, UPRmt activation also requires 

chromatin rearrangements for a sustained response [52]. Interestingly, UPRmt activation can 

also be communicated between cells or different tissues presumably to allow for metabolic 

coordination or to prepare tissues for future conditions that may impact mitochondrial 

functions, although the signaling mechanism remains to be further defined [49, 53].

The transcriptional responses

Once in the nucleus, ATFS-1 regulates transcription of over 500 genes that orchestrate a 

coherent mitochondrial stress response including genes that promote mitochondrial protein 

homeostasis (chaperones, proteases and antioxidant genes). ATFS-1 also regulates diverse 

metabolic adaptations including an increase of all glycolysis genes while simultaneously 

limiting transcription of TCA cycle and OXPHOS genes, presumably to reduce 

mitochondrial metabolic loads and maintain cellular ATP levels via glycolysis, which occurs 

in the cytosol. And, the UPRmt coordinates a mitochondrial repair and recovery program that 

includes a mitochondrial biogenesis pathway [54]. Concomitantly, ATFS-1 regulates the 
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expression of xenobiotic detoxifying genes and an innate immune response likely to reduce 

the effects of toxic metabolic intermediates or environmental toxins, and detect those 

pathogens that perturb mitochondrial function as part of their virulence responses. For 

example, the pathogen Pseudomonas aeruginosa, which produces the OXPHOS inhibitor 

cyanide as a virulence factor, activates the UPRmt, which is required to clear the infection 

[46, 54].

UPRmt signaling in mammals

The UPRmt was first discovered in cultured mammalian cells expressing a terminally 

misfolded protein to the mitochondrial matrix, which yielded the increased transcription of 

multiple proteostasis genes as well as the bZip transcription factor CHOP [40]. Subsequent 

studies have demonstrated that UPRmt activation in mammals relies on similar mechanisms 

and bZip transcription factors to those in, however signaling in mammals is likely more 

elaborate as multiple transcription factors including CHOP, ATF4 and ATF5, are involved. 

The interaction or coordination of these three transcription factors remains to be understood, 

but all three are induced during mitochondrial dysfunction and required for UPRmt induction 

[55–59]. For example, ATF4 has been shown to respond to mitochondrial dysfunction and 

induce mitochondrial proteases, components of one carbon metabolism, as well as the 

hormone FGF21 that coordinates metabolism between cells and tissues [60–62]. And most 

recently, ATF5 was found to regulate a UPRmt, by mediating a transcription response that 

includes mitochondrial chaperones and proteases similar to ATFS-1 in C. elegans [59] 

(Figure 2). Interestingly, ATF5 is transcriptionally induced in several mitochondrial 

disorders [63–66], and cells with impaired ATF5 are susceptible to mitochondrial stress [59].

Accumulating evidence indicates that, like in C. elegans, the UPRmt in mammals is 

regulated at least in part by mitochondrial import efficiency. For example, during 

mitochondrial dysfunction, a subunit of the TIM23 mitochondrial protein import complex is 

rapidly degraded, resulting in reduced import efficiency and induction of a UPRmt [67]. 

Importantly, ATF5 is regulated by mitochondrial protein import efficiency similar to ATFS-1 

[59], and potentially responds to degradation of Tim17a or other forms of mitochondrial 

stress that perturb protein import. Similar to ATFS-1, the steady-state localization of ATF5 is 

within mitochondria when expressed in healthy cells. However, during mitochondrial stress 

it accumulates in nuclei and induces the expression of mitochondrial-protective genes.

The UPRmt requires the integrated stress response (ISR)

Interactions between CHOP, ATF4 and ATF5 have been documented by multiple studies. 

For example, ATF4 and CHOP are capable of forming a heterodimer, however ATF5 does 

not associate with ATF4 or CHOP at least in vitro [68]. And, CHOP and ATF4 are both 

required for transcriptional induction of ATF5 [69–71]. Of note, the relationship between the 

three transcription factors has not been determined during mitochondrial dysfunction. One 

potential mechanism consistent with current data is simply that CHOP and/or ATF4 are 

required for basal transcription of ATF5, which can serve as a mitochondrial stress sensor 

similar to ATFS-1 in C. elegans. This model is consistent with CHOP being activated by 

multiple stressors, yet contribute specifically to a mitochondrial stress specific 

transcriptional program via increasing expression of ATF5, a transcription factor capable of 
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responding to mitochondrial dysfunction. Although, this model remains to be tested during 

mitochondrial dysfunction.

Interestingly, CHOP, ATF4 and ATF5 are preferentially translated during conditions that 

activate the integrated stress response (ISR) [69, 72–76]. The ISR is comprised of four 

kinases that are stimulated by different cellular conditions that phosphorylate the translation 

initiation factor eIF2α. The kinase PERK is activated by endoplasmic reticulum dysfunction, 

GCN2 is activated by amino acid depletion, PKR is activated by double stranded RNA in the 

cytosol typically during viral infection, and HRI is activated by heme depletion [77]. 

Importantly, all four kinases have been shown to be activated during mitochondrial stress, 

consistent with the pleiotropic nature of mitochondrial dysfunction. Phosphorylation of 

eIF2α results in reduced synthesis of most proteins, however proteins such as CHOP, ATF4 

and ATF5 that are encoded by mRNAs harboring upstream open reading frames (uORFs) in 

the 5’ untranslated regions are preferentially synthesized [69, 70, 73–75]. The activation or 

contribution of each eIF2α kinase and CHOP, ATF4 and ATF5 during mitochondrial 

dysfunction remains to be elucidated. Although, the interactions are potentially cell type-

specific as different baseline levels of eIF2α phosphorylation driven by specific kinases exist 

in different tissues. For example, pancreatic beta cells rely heavily on PERK [78], and liver 

cells on GCN2 [79]. In tissue culture, it is clear that the ISR responds to mitochondrial stress 

and is required for UPRmt activation. However, it remains to be determined if the ISR 

kinases dynamically respond to mitochondrial stress in vivo or simply set the baseline level 

of eIF2α phosphorylation and cell-specific expression of CHOP, ATF4 and ATF5. 

Alternatively, ATF5 transcription can also be induced by increased growth factor signaling 

via ERK and PI3K signaling [80].

III. The UPRmt and cancer

As discussed in the previous sections, mitochondrial dysfunction is well documented in 

multiple cancers, as is the increased eIF2α phosphorylation that affects CHOP, ATF4 and 

ATF5 expression, suggesting a role of the UPRmt in cancer cell survival and growth. 

However, to our knowledge, a specific role for the UPRmt in cancer biology has not been 

explicitly examined. In principle, the UPRmt could promote cell growth and survival by 

ensuring mitochondrial function in the presence of mitochondrial stress related to cancer cell 

physiology or mutation accumulation, or influencing cancer cell metabolism, growth and 

inflammatory signaling, or responses to therapeutic agents perceived by the cell as 

xenobiotics [81, 82]. In this section, we review recent findings that suggest functions for 

UPRmt regulatory components as well as transcriptional outputs in cancer cell growth and 

survival.

UPRmt signaling components

Many studies indicate that the ISR via PERK, PKR or GCN2 activation is important for 

tumor progression [83–88], although their relationship with mitochondrial dysfunction 

remains to be elucidated. However, there is evidence showing that mitochondrial dysfunction 

enhances chemotherapeutic resistance in tumors via GCN2 [82], demonstrating a 
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relationship between mitochondrial stress and ISR activation. However, the impact of ATF5 

in the context of ISR activation in cancer remains to be addressed.

While CHOP, ATF4 and ATF5 have all been reported to contribute to tumor growth and 

survival [83–85, 89, 90], we focus on ATF5, as it functions downstream of CHOP and ATF4, 

and recent studies suggest a role for ATF5 in cancer cell survival and growth. ATF5 

knockout mice are viable despite the failure of olfactory neuron differentiation [91, 92]. 

However, many cancers including epithelial ovarian carcinoma, thyroid follicular 

lymphoma, chronic lymphocytic leukemia, colorectal adenocarcinoma, breast carcinoma, 

pancreatic cancer and malignant glioma cells require ATF5 for growth and tumor formation 

[80, 93–100].

Initially, ATF5 was identified as an anti-apoptotic factor as it regulates the expression of the 

anti-apoptotic components BCL2 and MCL1 [80, 93, 97], and multiple studies demonstrated 

that ATF5 inhibition leads to cell death in multiple cancer cells. ATF5 also regulates growth 

and metabolism coordinating factors such as EGR1, mTOR and FGF21, as well as the 

mitochondrial-protective genes outlined above [59, 101–103]. In addition to pro-growth and 

anti-apoptotic phenotypes, ATF5 contributes the resistance to radiotherapy [81] and the 

invasiveness of tumor cells by inducing integrin-α2 and integrin-β1 [96].

In general, the relationship between mitochondrial dysfunction or metabolism and the 

requirement for ATF5 has not been explicitly examined. However, mitochondrial 

dysfunction is common in gliomas [104, 105], ovarian cancer [106, 107], breast cancer [108] 

and leukemia [109, 110], where ATF5 is highly expressed. And, our lab recently 

demonstrated that ATF5 is required to maintain OXPHOS function and promote growth in 

multiple cancer cell lines including a line derived from a thyroid oncocytoma harboring high 

quantities of deleterious mtDNAs [59, 111]. Though further investigation is required, the 

ATF5-mediated UPRmt potentially contributes to the survival and growth of these cancers by 

adapting them to various forms of mitochondrial dysfunction, sustaining mitochondrial 

proteostasis and preventing mitochondrial-induced cell death.

UPRmt transcriptional outputs

The UPRmt-induced genes such as mitochondrial chaperones and proteases are highly 

induced in many cancers [112–115], some of which have been shown to be ATF5-dependent 

[59]. Consistent with promoting protein folding and organelle homeostasis, mitochondrial 

chaperones contribute to signal transduction, protect against cell death and senescence, and 

thus are required for cancer cell survival and growth (Figure 3). For example, the 

mitochondrial chaperone HSP60 protects tumor cells from Bax-dependent cell death and 

CypD-dependent cell death by regulating mitochondrial permeability transition [116, 117]. 

HSP60 is also positively associated with tumor progression and hormone resistance in 

prostate cancer [118], and tumor differentiation in colorectal cancer [119]. mtHSP70, or 

mortalin, promotes tumor cell survival and epithelial-to-mesenchymal transition (EMT) by 

regulating the activities of p53 and PI3K–Akt pathways [120, 121], as well as facilitating 

metastasis of breast carcinoma and hepatocellular carcinoma [122, 123].
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Mitochondrial proteases also promote mitochondrial function by degrading proteins that fail 

to fold or assemble, or that become damaged over time. LONP1 and ClpP are mitochondrial 

matrix-localized proteases that can be induced by ATF5. Loss of either LONP1 or ClpP 

impairs tumor proliferation and metastasis due to the dysregulation of mitochondrial 

activities [124–127]. Additionally, mitochondrial proteases can contribute to the metabolic 

remodeling observed in cancer. For example, some cancer cells increase OXPHOS capacity 

to promote survival and proliferation, a phenomenon known as the “reverse Warburg effect” 

[128]. Breast cancer, pancreatic cancer, and AML cells have elevated expression of 

respiratory chain components and increased mitochondrial mass and basal oxygen 

consumption [129–131]. Perhaps not surprisingly, the UPRmt is required for the maintenance 

of mitochondrial function in these cancers. Consistent with this idea, ClpP inhibition impairs 

the growth and viability of multiple AML cell lines [132].

The UPRmt and cancer treatment

Multiple studies in vitro and in vivo have demonstrated that the inhibition of the UPRmt can 

selectively repress the growth and progression of tumor cells. And, because inhibition of 

UPRmt components is often toxic to cancer cells, while having relatively modest impact on 

normal cells, UPRmt-related reagents are being developed as cancer-specific therapies.

Several studies have shown that ATF5 inhibition suppresses the viability of cancer cells. For 

example, expression of a dominant-negative form of ATF5 specifically increased death in 

cancer cell lines relative to non-neoplastic cell lines [133]. Interestingly, a cell permeable 

peptide, CP-d/n-ATF5-S1, has been developed as an ATF5-specific inhibitor. The inhibitory 

peptide impairs the growth of prostate cancer, glioblastoma, melanoma and triple receptor-

negative breast cancer cells in cell culture and xenograft models by inducing apoptosis 

[134]. Lastly, ATF5 inhibition can selectively kill rat and human glioblastoma cells as well 

as human pancreatic cancer cells while sparing the neighboring normal cells in vivo [98, 99].

The mitochondrial-localized HSP90 paralog, TRAP-1, is expressed in normal cells at low 

levels, but enriched in mitochondria of pancreatic and breast adenocarcinoma cells [135]. 

Repression of TRAP-1 by G-TPP, a derivative of the HSP90 inhibitor 17-AAG that localizes 

to mitochondria, leads to the apoptosis of patient-derived and cultured glioblastoma cells 

[136, 137]. Similarly, knocking-down of HSP60 by siRNA causes Bax overexpression and 

Bax-dependent apoptosis in breast and colon adenocarcinoma cells [116], as well as canine 

osteosarcoma cells [138], but not in normal cells, providing a potential therapeutic approach 

for breast and colon cancers.

Targeting UPRmt-regulated mitochondrial proteases has also been shown effective in 

impairing cancer cell survival and proliferation. For instance, inhibition of mitochondrial 

protease LONP1 by obtusilactone A or CDDO selectively kills non-small-cell lung 

carcinoma and lymphoma cells, respectively [139, 140]. Also, inhibition of ClpP can 

selectively kill human leukemic cells by disturbing the folding of mitochondrial metabolic 

proteins [132].
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V. Conclusion and Perspective

Underlying mechanisms that regulate the UPRmt in mammals are emerging with significant 

similarities to what has been elucidated in C. elegans. Cells utilize mitochondrial protein 

import efficiency to determine the function of the cellular pool of mitochondria. And, if 

import efficiency declines due to damaged OXPHOS, reduced membrane potential or 

perturbed mitochondrial proteostasis, ATF5 fails to be imported, which allows it to traffic to 

the nucleus and activate the UPRmt. Studies from worms and cell culture indicate that the 

UPRmt promotes survival and mitochondrial recovery during a number of mitochondrial 

stresses, and similar data is emerging from in vivo systems.

Considerable evidence suggests that the UPRmt is active in multiple cancer types, and thus, 

may provide viable therapeutic targets. While ATF5 can induce a number of mitochondrial 

chaperone and protease genes during mitochondrial stress, along with anti-apoptotic 

components, the full transcriptional scope of the response is unclear. Furthermore, it will be 

important to understand how UPRmt activation affects aspects of cancer cell biology such as 

metabolic adaptations and xenobiotic detoxification. A number of interesting parameters 

remain to be elucidated in cancer cells as well. For example, is the UPRmt exclusively 

activated by mitochondrial dysfunction, or are there other pathways to engage the protective 

effects of the UPRmt (gene amplification, etc.)? It will also be interesting to determine how 

the UPRmt interacts with known oncogenes and tumor suppressors to impact mitochondrial 

physiology.

Recent studies using small molecules and cell permeable peptides to impair both UPRmt 

signaling component (ATF5) and UPRmt transcriptional outputs (mitochondrial chaperones 

and proteases) provide optimism that the UPRmt pathway can be manipulated to improve 

cancer treatment. Presumably, inhibition of either will synthetically interact with cancer-

specific mitochondrial stress and thus impair tumor growth or induce cell death.
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Figure 1. UPRmt signaling in C. elegans
In the absence of mitochondrial stress, ATFS-1 is targeted to mitochondria via an amino-

terminal mitochondrial targeting sequence (MTS) and is subsequently degraded in the 

mitochondrial matrix. During mitochondrial stress or dysfunction, mitochondrial protein 

import is impaired causing ATFS-1 to accumulate in the cytosol. Subsequently, ATFS-1 

traffics to nucleus via its nuclear localization signal (NLS) and regulates transcription of 

~500 genes that promote mitochondrial protein homeostasis (proteostasis), mitochondrial 

recovery or biogenesis, metabolic adaptations such as glycolysis, antioxidants, and genes 

involved in xenobiotic detoxification to promote survival and the resolution of mitochondrial 

stress.

Deng and Haynes Page 16

Semin Cancer Biol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. UPRmt signaling in mammalian cells
The mammalian UPRmt is regulated by multiple bZip transcription factors such as ATF5, 

which is regulated by at least two mechanisms. Expression of ATF5 is regulated by the 

phosphorylation of the translation initiation factor eIF2α, which is regulated by the kinases 

GCN2, PERK or PKR. Because the ATF5-encoding mRNA harbors upstream open reading 

frames (uORFs) in the 5`-untranslated region, its synthesis requires phosphorylated eIF2α 
which can be stimulated during nutrient deprivation, mitochondria or endoplasmic reticulum 

dysfunction or the accumulation of double-stranded RNA in the cytosol by the above-

mentioned kinases. Once it is expressed, ATF5 is regulated by mitochondrial protein import 

efficiency. In the absence of mitochondrial stress, ATF5 is targeted to mitochondria via its 

amino-terminal mitochondrial targeting sequence (MTS). However, during mitochondrial 

dysfunction, ATF5 fails to be imported into mitochondria and traffics to the nucleus via its 

nuclear localization signal (NLS) to induce transcription of genes that influence 

mitochondrial proteostasis, anti-apoptotic machinery, cell growth and migration.
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Figure 3. Requirements for UPRmt-related components in cancer cell biology
The transcription factor ATF5 and the UPRmt-induced mitochondrial chaperones (HSP60, 

mtHSP70) and mitochondrial proteases (LONP1, ClpP) are required for the growth and 

survival of multiple cancers.
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