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Abstract Computed tomography laser mammography (Eid
et al. Egyp J Radiol Nucl Med, 37(1): p. 633–643, 1) is a
non-invasive imaging modality for breast cancer diagnosis,
which is time-consuming and challenging for the radiologist
to interpret the images. Some issues have increased the missed
diagnosis of radiologists in visual manner assessment in
CTLM images, such as technical reasons which are related
to imaging quality and human error due to the structural com-
plexity in appearance. The purpose of this study is to develop
a computer-aided diagnosis framework to enhance the perfor-
mance of radiologist in the interpretation of CTLM images.
The proposed CAD system contains three main stages

including segmentation of volume of interest (VOI), feature
extraction and classification. A 3D Fuzzy segmentation tech-
nique has been implemented to extract the VOI. The shape
and texture of angiogenesis in CTLM images are significant
characteristics to differentiate malignancy or benign lesions.
The 3D compactness features and 3D Grey Level Co-
occurrence matrix (GLCM) have been extracted from VOIs.
Multilayer perceptron neural network (MLPNN) pattern rec-
ognition has developed for classification of the normal and
abnormal lesion in CTLM images. The performance of the
proposed CAD system has been measured with different met-
rics including accuracy, sensitivity, and specificity and area
under receiver operative characteristics (AROC), which are
95.2, 92.4, 98.1, and 0.98%, respectively.

Keywords Breast cancer . Computed tomography laser
mammography (CTLM) . Computer-aided diagnosis systems
(CADs) . 3D shape features . 3DGLCMfeatures .Multi-layer
perceptron neural network (MLPNN)

Introduction

Breast cancer is the most prevalent cancer that affects women
all over the world. Early detection and diagnosis of breast
cancer play a significant role to reduce the mortality rate as
well as to increase the prognosis of patients. Mammography is
the golden standard for breast imaging. Breast screening with
mammography involves passing radiation (X-ray) through the
breast. Evidence indicates the growth of risk of breast cancer
with exposure to multiple mammographies, especially in
women with genetic predisposition due to impaired deoxyri-
bonucleic acid (DNA) repair mechanisms [2]. The results
show that the sensitivity in women with fatty breast is roughly
88% but drastically decreased in women with dense breast
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reducemisdiagnosis as well as to differentiate between normal
and abnormal tissue within the breast.

Related Works

Computed tomography laser mammography is a new optical
imaging modality for breast cancer detection [8, 11]. Major
advantages of optical imaging techniques do not include the
use of any ionising as mammography or any radioactive com-
ponents as positron emission tomography (PET), and it is
relatively economical [12]. In the most modalities, breast den-
sity is a significant agent which has impacted the cancer diag-
nosis. As a striking feature, the CTLM’s laser is not impeded
by dense breast [8, 11, 13]. CTLM use near infrared (NIR)
laser light in a specific wavelength (808 nm) that can be
absorbed by blood and able to visualise neovascularisation
[14]. During the CTLM imaging procedure, the scanning
mechanism transmits laser light by rotating 360° starting from
the chest wall to the breast. Part of the light is absorbed by
tumour or blood vessels, and the remaining part is registered
by the detector. The area with high haemoglobin concentration
(neo-angiogenesis) contains more absorption. After complete
rotation, the scanning mechanism will automatically descend
to a predetermined distance to register the next slice data [6].
The slice thickness is adjusted to 2–4 mm in accordance with
the breast size. This process is repeated to the nipple area as
well as to scanning the whole breast.

Optical imaging foundation is presented in Fig. 1, in which
a tumour with high haemoglobin concentration is observed in
Fig. 1a. The laser lights that pass through the breast are
absorbed by the neo-angiogenesis area as shown in Fig. 1b,
and the remaining lights will be recorded by the detector as
shown in Fig. 1c.

The diffusion approximation of transport (Eq. [16]) is used
to reconstruct CTLM images slice by slice. The CTLMwork-
station is capable of displaying it in three planes, namely sag-
ittal, axial and coronal (2D) as well as a 3D view of the whole
breast as shown in Fig. 2. CTLM interpretation is based on the
absorption pattern of haemoglobin in the vessels. The detec-
tion of angiogenesis in CTLM images does not only rely on
the brightness but is also required to recognise various abnor-
mality in shapes and volumes [8]. Bright areas indicate ag-
gressiveness of cancer, while angiogenesis can appear in any
shade of green. Normal vessels are tubular and ribbon shape,
which gets bigger from the nipple to the chest wall. This
ribbon can be seen in axial and sagittal views. Coronal images
demonstrate lobular blood supply that is in wedge-shaped,
which is also broad on the skin and the apex towards the
centre. Any distortion and deviation in sagittal and coronal
views can be considered an abnormality.

In 3D space, the images are analysed in two different pro-
jections, namely maximum intensity projection (MIP) and
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which is 62% [3]. On top of that, the risk of developing breast
cancer in dense breasts is four to six times higher than in non-
dense breasts [4].

In recent years, several studies have been conducted to find
alternative methods to adjunct mammography in order to en-
hance sensitivity and specificity. Computed tomography laser
mammography (CTLM) is an optical imaging technique
which is presented for breast screening, particularly in women
under the age of 40 and who have dense breasts. CTLM is a
non-invasive and cost-effective modality that uses near-
infrared light propagation through the tissue to assess its opti-
cal properties. Different tissue components have unique scat-
tering and absorption characteristics for each wavelength. In
new forming tumours, the blood flow increases and the
CTLM then looks for high haemoglobin concentration
(angiogenesis) in the breast to detect neovascularization,
which may be hidden in mammography images, especially
in dense breast [1, 5, 6]. Malignant lesions will be detected
based on their higher optical attenuation compared to the sur-
rounding tissue, which is mainly related to the increase in light
absorption by their higher haemoglobin content [7].

CTLM image interpretation is not an easy task due to the
shape diversity of angiogenesis [6]; thus, a radiologist is re-
quired to have specific skills to interpret and distinguish be-
tween normal veins and abnormal angiogenesis. Analysis of
CTLM image is based on the absorption pattern of
haemoglobin in vessels. Bright areas indicate the aggressive-
ness of cancer, while angiogenesis can appear in any shade of
green. The detection of angiogenesis in CTLM images does
not only rely on the brightness but also on the various abnor-
mality shapes and volumes [8]. The radiologist needs to ex-
plore in a 2D plane to find any bright green areas that show
distortion or deviation and investigates the irregular shape of
angiogenesis in 3D view [8].

Generally, in clinical imaging assessment, some issues af-
fect the interpretation of radiologists such as technical reasons
which are related to imaging quality [9] and human error [10]
due to the structural complexity in appearance. Computer-
aided detection/diagnosis (CAD) systems have been devel-
oped for automatic detection and classification of the suspi-
cious area on different modality. CAD systems help the radi-
ologist in the interpretation of medical images to detect and
differentiate between benign and malignant lesions. CAD sys-
tems are used as a double reader for accuracy enhancement
and final decision which is made by the physician.

The fact that diagnosis in CTLM images for a radiologist is
time-consuming and complicated due to a variety of angio-
genesis shape [6]; thus, an automatic system to detect and
classify abnormality is desirable. It is expected that the effi-
ciency and effectiveness of diagnosis can be increased by
CTLM-CAD system. The purpose of this study is to develop
a computer-aided detection/diagnosis (CAD) system in
CTLM that would act as the radiologist assistant in order to



front to back projection (FTB) [17]. FTB mode improves the
quality of the image and presents the significant parts of the
image by applying surface rendering using window/level ad-
justment. Angiogenesis occurs only in deep veins and not in
superficial vessels, and it can appear in irregular 3D shapes
such as an oblate sphere, a dumbbell shape, diverticulum,
circle and free standing [8].

The radiologist needs to explore in the 2D planes for any
bright green areas that show distortion or deviation and inves-
tigate the irregular shape of angiogenesis in 3D view [8]. In
the first step of conventional way CTLM image interpretation,
radiologists look at the 2D views of sagittal and coronal views
to find any distortion and deviation in different slices. If any
abnormality is detected in coronal or sagittal views, the next
stepwill be performed for more investigation in 3D space. The
results of surface rendering are highly dependent on the
amount of window and level values selected by a radiologist.
The outcomes of surface rendering in FTB mode can be

rotated to explore different shapes of angiogenesis. The radi-
ologist performs localisation of abnormality based on clock
face quadrant and lateral view for prior, mid-segment and
posterior.

Materials and Methods

Experimental Dataset

In this study, the CTLM breast images of women have been
acquired from clinical screening in Breast Wellness Centre,
Malaysia, and two datasets of Medoc centre in Budapest,
Hungary, and TATA Hospital in Mumbai, India. The distribu-
tion of breast density does not affect the sensitivity and spec-
ificity of the study [8, 11, 13]. This dataset includes CTLM
images, also ultrasound and mammography images to corre-
late cancerous area in CTLM images with ultrasound and

Fig. 2 The 2D and 3D image in CTLM workstation

Fig. 1 Optical imaging
foundation [15]
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mammography images. The collected data have been released
on the website (http://www.upm-ctlmimages.net/). A total of
180 patients have been examined with CTLM and ultrasound
for patients under the age of 40, while CTLM, ultrasound and
mammography were conducted for those above the age of 40.
A total of 48 cases have been reported as malignant by two
expert radiologists and correlation of ultrasound and
mammography images. The study was approved by the local
Ethics Committee (Universiti Putra Malaysia - Ethics refer-
ence number UPM/TNCPI/RMC/1.4.18.1 (JKEUPM)/F2),
and written informed consent was obtained from all patients.

Analysis of CTLM Images with the CAD System

The development of an effective computer-aided diagno-
sis for breast cancer possesses significant clinical impor-
tance in raising the survival rate of the patients. CTLM is
a non-invasive imaging modality for breast cancer diag-
nosis, which is time-consuming and challenging for the
radiologist to interpret the image. Some studies have in-
dicated that CTLM may provide additional information to
characterise benign and malignant lesions when adjunct to
other breast screening [8, 17]. The general objective of
this study is to develop a computer-aided diagnosis frame-
work in order to enhance the performance of radiologist in
the interpretation of CTLM images.

The foundation of the proposed CAD system has shown
in Fig. 3 for detection of abnormality in the CTLM im-
ages. The first step of CAD system is to design a fully
automatic 3D segmentation and reconstruction technique to
elicit volume of interests (VOIs) from a background of

CTLM image. A 3D Fuzzy segmentation technique has
been implemented to extract the volume of interest
(VOI). The extracted VOIs from CTLM image is a con-
nected area which needs to split into sub-VOIs before fea-
ture extraction. The dissociation model has been proposed
to split VOIs based on the centroid of 2D objects. The
shape and texture of angiogenesis in CTLM images are
significant characteristics to differentiate malignancy or be-
nign lesions. The 3D compactness features and 3D grey
level co-occurrence matrix (GLCM) have been extracted
to achieve the second objective. Classification of imbal-
anced distributed data degrades the prediction accuracy of
the most standard machine learning techniques. This study
focuses on binary classification for breast cancer detection
on the CTLM dataset which include 180 patients in which
a total of 132 instances are labelled with normal and the
remaining 48 are labelled abnormal, based on two expert
radiologist reporting and correlation with their mammogra-
phy and ultrasound images. After dissociated VOIs to sub-
VOIs, the number of negative instance in our dataset is
much higher than positive instances which reflect the im-
balanced class distribution. To obviate the class imbalance
problem, ADASYN oversampling techniques are used to
balance the number of positive and negative instances.
Multilayer perceptron neural network (MLPNN) pattern
recognition has developed for classification of the normal
and abnormal lesion in CTLM images. The effect of the
different combination of 3D shape and GLCM features on
the accuracy of classifier have been evaluated to achieve
the best combination features to diagnosis abnormality in
the CTLM images.

CTLM Acquisition 
of Coronal Slices  

Segmentation and 
3D Reconstruction of 

Volume of Interest 
(VOI) 

Feature Extraction 
Dissociation of VOI to  

Sub-VOI 

GLCM 3D Harlick’s 
features extraction 

Compactness Features 
extraction 

Assessment

Classification 

Adaptive Synthetic Sampling 
approach (ADASYN) for 
imbalanced data issue 

Multilayer Perceptron Neural 
Network (MLPNN) pattern 

recognition 

Effect of 
combination 
features in 

classification 

Evaluation of the 
Proposed CAD 

System 

Fig. 3 Proposed CAD system for
breast cancer detection in CTLM
images
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3D Segmentation of Volume of Interests from CTLM
Background

Segmentation is a critical step in CAD systems conducted by
extracting substantial anatomical structures from a back-
ground of images. CTLM is a 3D imaging modality that
serves to provide specific information in order to analyse vas-
cular anatomy in the breast. The 3D shapes of neo-
angiogenesis which represent the cancer growth are very im-
portant in the diagnosis of breast cancer in CTLM images. The
2D segmentation techniques are not capable of displaying
different forms of angiogenesis in CTLM images; therefore,
the 3D automatic segmentation techniques are of great interest
in the segmentation of CTLM images. The three automatic
segmentation techniques include Fuzzy C-means clustering
(FCM), K-mean clustering and colour quantization method
[18] and have been implemented in our previous study [19,
20] to extract volume of interest from CTLM images. In order
to accept the segmentation results in clinical practice, the
quantitative evaluation is crucially important. The challenging
task in quantitative evaluation is finding the ground truth for
the evaluation segmentation results. In the field of radiology,
window width and window level are used to establish ground
truth images to assess the accuracy of segmentation algorithm
[21]. This feature is used by the radiologists to review CTLM
images in conventional diagnosis. The windows/level values
adjusted by radiologists in manual diagnosis are utilised to
extract the ground truth in our work. The values can vary from
one patient to another based on the structure preferred by the
radiologist in the surface rendering of the CTLM image.

Due to the impact of segmentation in subsequent stage as
classification, the evaluation of segmentation methods has
special significance in the medical imaging field. To date,
there are no desirable segmentation methods that can provide
satisfactory results in all medical imaging modalities. To find
the most appropriate segmentation method in a specific issue,
it needs to be decided experimentally. In order to accept the
segmentation results in clinical practice, the quantitative eval-
uation is crucially important. Among the number of the
region-based coefficients, the Jaccard [22] and Dice [23] co-
efficients have been widely used for performance evaluation
of the segmentation methods in clinical imaging. These

coefficients’ measure is calculated with true positive, false
positive and false negative values. If G is the set of voxels in
ground truth image and S is the set of voxels in segmented
image, TP is the number of voxels in the intersection of G and
S, while FP is the number of voxels in G that does not belong
to S, and FN is the number of voxel in S and does not belong
in G.

J c ¼ G∩Sj j
G∪Sj j ¼

TP
TP þ FP þ FN

ð1Þ

DC ¼ 2 G∩Sj j
Gj j þ Sj j ¼

2 TP
2 TP þ FP þ FN

ð2Þ

The ratio of volumetric overlap error [24] can also be
assessed by Eq. (3).

VOE ¼ 1−
G∩Sj j
G∪Sj j � 100 ð3Þ

The value varies between 0 and 100 and zero value sig-
nifies perfect segmentation.

Dissociation Object Model on VOIs and Feature Extraction

Feature extraction is the next stage of the proposed CAD
system to exploit the significant characteristics of VOIs. In
CTLM image segmentation, the extracted volumemay consist
of normal blood vessels or neo-angiogenesis which is a sign of
tumour growth. The extracted VOIs from CTLM image are
connected areas that need to be split into sub-VOIs before
feature extraction. A dissociation model has been proposed
to split VOIs based on 2D region properties of image objects
based on the centroid of 2D objects. Each object in the 2D
images has many region properties such as area, bounding
box, centroid, convex hull, eccentricity, extrema and many
more features. Figure 4a, b shows the segmented objects in
the 2D slice, and Fig. 4c shows the segmented objects in
sequential slices which are highlighted with orange colour.

The 2D segmented CTLM image contains one or more
objects. If X and Y show the centroid of objects in consecutive
slices, the Euclidean distance of each object is calculated with
all objects in the next slice. Since the irregular forms of

Fig. 4 View of region properties
in sequential slices. a Centroid of
an object in a 2D slice. b
Segmented objects in a 2D slice. c
Centroid of objects in sequential
slices
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angiogenesis are shown in the oblate sphere, diverticulum,
dumbbell shaped [8], the displacement of object centroid can
indicate diversion of blood vessels to the tumour. The dis-
placement of centroid among two objects in sequential slices
is obtained by Euclidian distance Eq. (4). At this point, a
threshold value is required if the displacement of two centres
is less than the threshold, which shows that the deviation of
the object is less than the specified amount. Hence, two ob-
jects are connected to each other or otherwise further objects
are examined. Since 1 mm = 3.779527559 pixels, the thresh-
old value is considered to be related to the number of pixels in
the image. In this work, an arbitrary value use for the threshold
is between 15 and 30 pixels (displacement value ≈4–8 mm),
and the trial and error method is applied to determine which
threshold value performs the desirable dissociation of VOIs.

d X ; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 X i−Y ið Þ2
q

ð4Þ

The probability of malignancy in CTLM image depends on
the shape and texture of lesions; thus, the diagnosis tasks are
designed to extract corresponding features based on these
characteristics. These features can be categorised into texture
features and morphological features [25]. With the develop-
ment of 3D imaging modalities, demands have been increas-
ing for 3D feature descriptors to raise the performance of the
classifier. The texture is one of the most prevalent features that
are used to analyse and interpret images, specifically in clini-
cal imaging. The variation of the surface intensity and several
attributes such as smoothness, coarseness and regularity have
to be measured through the texture [26]. The texture of bio-
medical image can be used to describe the suspected regions
by the training of existing samples to learn the distinctive
patterns associated with normal and abnormal tissues [27].
In this study, textural features have been extracted to differen-
tiate the characteristics of a normal and abnormal tissue in
CTLM images.

Among the various texture computation techniques pre-
sented, Halick [28] is the most prevalent method for textural
feature extraction in a different application specifically in clin-
ical imaging. The traditional 2D co-occurrence matrices are
used to capture spatial dependence of the grey levels value of
pixel pairs within certain angles and distances. The GLCM
has used an array of offsets to determine pixels relationship
in distinct direction and distance to the creation of GLCM
matrices. Figure 5 shows the spatial relationship of pixels in
four directions and distances which represent the input image
by 16 GLCMs. The red pixel considers as coordinate (0, 0)
and the offsets show the direction relative to the axis.

With recent advances in technology particularly in
medicine, new types of data with volumetric properties
have emerged. The 2D GLCM extraction techniques are
not able to extract the 3D texture characteristics of the

volumetric data. To address this issue, 2D GLCM extrac-
tion techniques are spread to the 3D GLCM texture fea-
tures. Based on the theory of 2D GLCM, the concepts and
structure of 3D GLCM are shown in Fig. 6. In a 3D
matrix of pixels (3 × 3 × 3), assume that the centre point
(red colour) is the intersection of the three axes X, Y and
Z. The centroid pixel has 26 nearest neighbours leading to
26 different directions. Each direction and its opposite
have the same co-occurrence matrix [29]; thus, we have
considered only 13 directions as shown in Fig. 6. In this
study, the values considered for the distances of voxel
which included 1, 2, 4 and 8. Therefore, four different
values of distance and 13 directions obtained by 52
GLCM matrices are used. A total of 12 Harlick’s feature
[28] are calculated from 3D GLCM matrices which con-
sist of energy, entropy, correlation, contrast, variance, sum
means, inertia, cluster shade, cluster tendency, homogene-
ity, max probability and inverse variance. In order to re-
duce the dimension of extracted features, the mean value
of Harlick’s features for the same distance has been cal-
culated in different directions. Therefore, for each
Harlick’s feature, four different values and a total of 48
GLCM texture features are obtained. The formulas and a
brief description of the Harlick’s features with respect to
the texture characterisation are presented in Table 1 [26,
30–33].

The shape of angiogenesis in CTLM images is a significant
characteristic to determine malignancy or a benign lesion. As
mentioned in BDissociation Object Model on VOIs and
Feature Extraction^ section, the normal blood vessels are in
tubular and ribbon shape which becomes narrower from the
chest wall to the nipple. Haemoglobin concentration
(angiogenesis) leads to the emergence of distortion and devi-
ation in the direction of the blood vessels. The deformation of
blood vessels in angiogenesis area appears in different shapes
such as dumbbell-shaped, diverticulum, freestanding and pol-
ypoid [8]. The use of the shape descriptors can be effective in
differentiating between the blood vessels and angiogenesis.

Fig. 5 Spatial relationship of pixels and offset of neighbours (2D space).
Offset 1 = (0 1), Offset 2 = (−1 1), Offset 3 = (−1 0) and Offset 4 = (−1 −1)
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Compactness is the inherent properties of an object,
which is one of the most common morphological descrip-
tors for shape analysis. Several 3D shape compactness

measures have been developed with extends of 2D com-
pactness measure [34–37]. In this study, three different
compactness measures are applied as shape descriptor

Table 1 The Harlick’s texture feature from GLCM

Feature Formula Description

Energy
(angular second moment)

∑
M

i
∑
N

j
P2 i; j½ �

Measure the local homogeneity and, therefore, show the opposite of the
entropy. The energy value is high with the larger homogeneity of the texture.

Entropy

−∑
M

i
∑
N

j
P i; j½ �logP i; j½ �

Measure the randomness of a grey-level distribution. The Entropy is
expected to be high if the grey-levels are distributed randomly through
the image.

Correlation

∑
M

i
∑
N

j

i−μð Þ j−μð ÞP i; j½ �
σ2

Measure the joint probability occurrence of the certain pixel pairs. The
correlation is expected to be high if the grey levels of the pixel pairs are
highly correlated.

Contrast

∑
M

i
∑
N

j
i− jð Þ2 P i; j½ �

Measure the local variations in the grey level co-occurrence matrix. The
contrast is expected to be low if the grey levels of each pixel pair are
similar. High contrast values are expected for heavy textures and low
for smooth, soft textures

Variance

1
2 ∑

M

i
∑
N

j
i−μð Þ2P i; j½ � þ j−μð Þ2P i; j½ �

� � Variance shows how is spread out the distribution of grey levels. The variance
is expected to be large if grey levels of image are spread out greatly

Sum mean (Mean)

1
2 ∑

M

i
∑
N

j
i P i; j½ � þ j P i; j½ �ð Þ

Presents the mean of the grey levels in the image. The sum mean is expected
to be large if the sum of the grey levels of the image is high.

Inertia
(second difference moment)

∑
M

i
∑
N

j
i− jð Þ2 P i; j½ �

Inertia is very sensitive to large variation in GLCM. It is expected to be high
in highly contrast regions and low for homogeneous regions.

Cluster Shade

∑
M

i
∑
N

j
iþ j−μx−μy

� �3
P i; j½ �

Measure the skewness of GLCM and represent the perceptual concepts of
uniformity. It expected to be high in the asymmetric image.

Cluster Tendency

∑
M

i
∑
N

j
iþ j−2μð Þk P i; j½ �

Measure the grouping of pixels that have similar grey levels.

Homogeneity

∑
M

i
∑
N

j

P i; j½ �
1þ i− jj j

Measures the uniformity of non-zero entry and closeness of the distribution
of elements in GLCM. The homogeneity is expected to be high if GLCM
concentrates along the diagonal.

Max Probability (MP)
MaxM ;N

i; j P i; j½ �
Results the pixel pair that is most predominant in the image. The MP is

expected to be high if the occurrence of the most predominant pixel
pair is high.

Inverse variance

∑
M

i
∑
N

j

P i; j½ �
1þ i− jð Þ2 ; i≠ j

Also called Inverse Difference Moment, similar to homogeneity. It is
expected low for inhomogeneous and high for the homogeneous image.

From [26, 30–33]

Fig. 6 Spatial relationship of
pixels and offset of neighbours
(3D space) Offset 1 = (0 1 0),
Offset 2 = (−1 1 0), Offset 3 = (−1
0 0), Offset 4 = (−1 −1 0), Offset
5 = (0 1 −1), Offset 6 = (0 0 −1),
Offset 7 = (0 −1 −1), Offset
8 = (−1 0 −1), Offset 9 = (1 0 −1),
Offset 10 = (−1 1 −1), Offset
11 = (1 −1 −1), Offset 12 = (−1 −1
−1) and Offset 13 = (1 1 −1)
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which is presented in continue. The classical compactness

of a 3D object is measured by area3ð Þ.
volume2ð Þ which is

dimensionless and minimised by a sphere [37]. Bribiesca
[36] proposed a compactness measure by the relation
among the area of surface enclosed to the volume and
contact area. The proposed measure is invariant under
translation, rotation and scaling. The measure of descript
compactness Cd for a 3D shape composed of n voxel is
defined by Eq. (5).

Cd ¼ AC

ACmax

¼ n−A�
6

n−
ffiffiffi
n3

pð Þ2
ð5Þ

where AC is the contact surface area and A is the area of
the enclosing surface.

Another definition of compactness measure is presented by
[35] with comparing a shape S with its fit sphere Bfit. Assume
that S is a shape and a sphere Bfit that its centre coincides with

the centroid of S with radius 3
4π :volume Sð Þ� �1=3 . The com-

pactness kfit(S) is shown in Eq. (6).

kfit Sð Þ ¼ Volume S∩Bfit
� �

Volume S∪Bfit
� � ð6Þ

The other compactness measure developed by [35] is based
on the geometric moment [38]. The (p, q, r)-moment of a 3D
shape S is defined by Eq. (7).

μp;q;r Sð Þ ¼ ∫∫∫sxpyqzr dxdydz ð7Þ

Assume that S is a sphere which its centroid coincides with

the origin and C is a sphere with radius 3
4π :μ0;0;0 Sð Þ� �1=3 ,

where μ0 , 0 , 0 shows the centralised moment. The compact-
ness value based on presented method in [34, 35] is calculated
by Eq. (8).

Chu ¼ 5
5=3

5 4πð Þ2=3
:μ0;0;0 Sð Þ5=3 ð8Þ

Feature selection is a significant phase in many bioin-
formatics application due to reducing the storage require-
ment and reducing the training time of classifier.
Generally, feature selection techniques organised into
three categories: filter methods, wrapper methods and em-
bedded methods [39, 40]. In this work, the sequential
forward selection technique has utilised to choose appro-
priate features. In addition, a variety of manual categori-
zation of features has been used to assess the performance
of the proposed classifier (Table 2).

Classification Technique for Breast Cancer Lesions in CTLM
Image

Classification of imbalanced distributed data is the cause of the
degrading prediction accuracy of the most standard machine
learning techniques. In binary classification, this problem oc-
curs when the number of instances from one class is signifi-
cantly less than another class. Prediction cost for minority class
is higher than the majority class, especially in medical datasets
that high-risk patients placed in minority class [41]. The use of
imbalanced data in the learning stage will result in high accu-
racy and sensitivity, while the specificity value will be low.

This study focuses on binary classification for breast cancer
detection on CTLM dataset. Based on the two expert radiolo-
gists report and correlation with their mammography and ul-
trasound images, the CTLM dataset obtained from 180 pa-
tients with a total of 132 instances labelled normal and the
remaining 48 labelled abnormal. The proposed dissociation
model divides the segmented VOIs into sub-VOIs (5–10 ob-
jects for each image). In breast cancer patients, one or two sub-
VOIs are labelled as positive. Therefore, the number of nega-
tive instances is too much higher than the positive instances
which reflect imbalanced class distribution.

Selecting an appropriate sampling technique is an addition-
al procedure to improve the classifier performance. The mi-
nority instances are of great importance in machine learning
techniques to achieve high performance of classification.

Table 2 The different combinations of GLCM 3D and shape features

No. Features Number of
features

1 Compactness 3

2 Compactness and energy 7

3 Compactness and entropy 7

4 Compactness and correlation 7

5 Compactness and contrast 7

6 Compactness and variance 7

7 Compactness and Sum mean 7

8 Compactness and inertia 7

9 Compactness and Cluster shade 7

10 Compactness and Cluster tendency 7

11 Compactness and homogeneity 7

12 Compactness and max probability 7

13 Compactness and inverse variance 7

14 GLCM-3D 48

15 Compactness and GLCM-3D 52

16 Selected features with sequential forward selection
method (energy, compactness, contrast, inverse
variance, cluster shade, homogeneity, inertia,
max probability)

18
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Adaptive synthetic (ADASYN) sampling approach is an
oversampling method which is used in this work [42]. The
main idea of ADASYN method is the weight distribution for
a minority class to commensurate with the degree of difficulty
in learning. In this method, more synthetic data are produced
for the minority instances which are more complex to learn
than other minority instances. The ADASYN method im-
proves learning with respect to the data distribution in two
ways: (1) reducing the bias provided by imbalanced classes
and (2) shifting the classification decision boundary adaptive-
ly towards the complex samples [42]. The positive instances
generated by ADASYN repeatedly add to multiple mini-
batches to avoid the overfitting issue [43]. The balance level
β in ADASYNmethod has been adjusted to 1 on training data
to represent the fully balanced dataset. The number of synthet-
ic samples that is required to be generated for each minority

instance is defined based on their density distribution (ri ̂ ).
The ri ̂ is a measure of the distribution weight for each minor-
ity instance proportional to their complexity in learning.
Therefore, ADASYN concentrates more on difficult instances
to learn by shifting the classifier boundary.

The variety of features set includes texture and shape fea-
tures which are described in BAnalysis of CTLM Images with
the CAD System^ section and have been extracted from sub-
VOIs. These features include three different compactness fea-
tures and 12 Harlick’s features GLCM 3D. With reference to
BAnalysis of CTLM Images with the CAD System^ section,
the Harlick’s features are extracted in four different directions.
Therefore, each Harlick’s features contains four values and the
combination with compactness features includes seven fea-
tures. The total number of GLCM 3D features is 48, and the
overall number of compactness and GLCM 3D features is 52.
These features are extracted from centroid-based object disso-
ciation model (CODM). The different combinations of
Harlick’s features GLCM 3D and compactness contain 16
groups of features which are shown in Table 2. The feature
groups F1–F15 are various combination of compactness fea-
tures and the Harlick’s features, and group feature F16 is the
selected features by sequential forward selection method. The

different categories of features (Table 2) are used to train and
test in the proposed multilayer perceptron neural network
(MLPNN) pattern recognition. The overview of our experi-
mental design for MLPNN classification is shown in Fig. 7.

Multilayer perceptron (MLP) is a feed forward neural
network model which is widely used in analysing the
object characteristics in order to recognise the patterns.
Matlab neural network toolbox is an interactive environ-
ment that provides a suitable context for the implemen-
tation of a neural network for clustering, fitting, pattern
recognition and time series. The MLP neural network is
a supervised method that uses a pair of {X, L}, where X
is a set of extracted features and L is the label of the
corresponding object. In this study, an MLP classifica-
tion method is designed to classify normal and abnor-
mal objects in CTLM image for the diagnosis of breast
cancer. To obtain the appropriate number of the hidden
layer, the performance of the proposed MLPNN is eval-
uated by the different number of hidden layer (Fig. 12).
Increasing the number of hidden layers does not signif-
icantly affect the performance of MLPNN and leads to
the increase of learning time. Therefore, a number of
the hidden layers has been considered as ten for further
experiments. The output layer represents the outcome of
the neural network over the activation pattern applied to
the input layer, in which the proposed MLPNN contains
two neurones to produce a binary classifier.

The balanced data with ADASYN oversampling is used to
train the neural network. Seventy per cent of input data are used
for training, 15% for testing and the rest of the data (15%) for
validation. A loop is embedded in the training procedure to
improve learning performance, and the condition for exiting
the loop is intended based on training error. If the training error
is below 5% learning end, the loop is then repeated 50 times.
The features are separately transmitted to the network as input
data to build model, testing and validation. The training func-
tion Btrainlm^ is used to update weight and bias values based
on Levenberg-Marquardt (LM) backpropagation [44, 45]. The
general overview of the proposed MLP neural network is

2 
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based objects 
dissociation 

model 
(CDOM)

Classification 

Multilayer 
perceptron 

Neural network 
(MLPNN) 

1

Feature Extraction 

Texture Features 

 & 

 Shape Features 
16

Features 
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Fig. 7 The overview of proposed experimental design on MLPNN classification
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shown in Fig. 8. Levenberg-Marquardt (LM) backpropagation
is often the fastest backpropagation function in the toolbox to
update the weights and biases.

CAD system evaluation can be done in several ways,
which include Bstandalone^ sensitivity and specificity, labo-
ratory studies of potential detection improvement and actual
practice experience [46]. The performance evaluations of the
proposed classifier techniques in this study have been mea-
sured with three main metrics including accuracy, sensitivity
and specificity based on the following formulas:

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

¼ TP þ TN
P þ N

ð9Þ

Sencitivity Recallð Þ ¼ TP
TP þ FN

¼ TP
P

ð10Þ

Specificity ¼ TN
FP þ TN

¼ TN
N

ð11Þ

The CTLM images have been reviewed by two expert ra-
diologists which correlate with patient’s mammography and
ultrasound images to diagnose cancerous area. The radiolo-
gist’s reports are used to supervise classifier training. To eval-
uate the prediction models, 10-fold cross validation technique
was used to partition the input data into the training set in
order to build the training model and the test set for the eval-
uation of the model. Sensitivity (Eq. (10)) shows the ratio of
abnormal objects correctly detected by the classifier and spec-
ificity (Eq. (11)) shows the ratio of normal objects correctly
detected by the classifier.

Receiver operative characteristics [47] are a two-
dimensional graph for visualisation, organisation and selec-
tion of the classifier based on their performance [48, 49].
The axes represent relative trade-offs between benefits (true
positives) which are plotted on the Yand costs (false positives)
which are plotted on the X [50]. Probabilistic classifier such as

SVM and neural network return a score to depict the degree of
belonging of an object to the specific class rather than other.
These scores can be used to rank the test data and classifier to
achieve the best performance if the positive samples are on the
top of the list [49]. The most advantageous ROC curve is
compared to other metrics to assess the performance of a clas-
sifier that is for the visualisation of classifier performance in
all possible threshold. A ROC curve can be interpreted in two
ways, graphically or numerically. A popular method to map a
ROC curve to a single scalar value is the area under ROC
curve (AUROC) [51, 52]. The ROC curve and AUROC
values are used to evaluate the performance of different pro-
posed by MLP neural network pattern recognition.

Results and Discussions

Segmentation is the first stage of the proposed CAD system in
CTLM images which has been evaluated in our previous
works [19, 20]. The results illustrate that 3D FCM surpasses
K-mean clustering and colour quantization technique by pro-
viding maximum values of 98.49 and 99.24% and minimum
values of 90.87 and 95.14% for Jaccard and Dice indexes. The
further metric that used to quantify the accuracy of segmenta-
tion methods is volumetric overlap error. The value varies
among 0 to 100, which zero value shows the perfect segmen-
tation. Based on results obtained on segmentation of 180
CTLM images, 3D FCM clustering has produced acceptable
results than other two methods. The mean volumetric overlap
errors were 47.89, 8.86 and 44.06 for 3D K-mean, FCM and
CQ algorithms, respectively. The minimum value for volu-
metric overlap error in 3D FCMwas 1.09 andmaximum value
21.68. The overall results have shown that 3D FCM clustering
presents reasonable outcomes in extraction volume of interests
for computed tomography laser mammography. The extracted

Fig. 8 The overview of proposed
experimental design on MLP
neural network pattern
recognition
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volume can be rotated to investigate and localise the suspi-
cious angiogenesis area in different clock quadrant.

The extracted VOIs are often connected object that requires
pre-processing before feature extraction. The dissociation
model (CDOM) has been proposed to split VOIs based on
centroid properties of 2D region objects.

To illustrate the CDOM model, the few samples of FCM
segmentation slices (S9, S10 and S11) are considered in
Fig. 9. An object in S9 has been divided into three separate
objects in S10 and S11, and the centre of the object is as well
changed. Euclidean distance of the object centre in S9 has
been measured with the centre of the object in S10. The value
is greater than the threshold; therefore, the objects in S10 are
not connected to the object in S9. In the next slice of the
displacement of the objects, the centre is less than the thresh-
old value and each object merges with the corresponding ob-
ject. The result of dissociation model is depicted in Fig. 10
which shows the six sub-VOIs created by CDOM.

According to the characteristics of angiogenesis, 3D
GLCM texture features and 3D compactness features are ex-
tracted from dissociated objects by CDOM. ADASYN is used
to over-sampling of the minority class in order to obtain an
approximately equivalent representation of both classes. The
different combinations of features which are listed in Table 2
are used as input for the classifier. Multilayer perceptron
(MLP) is a feed forward neural network model which is wide-
ly used in analysing the object characteristics in order to rec-
ognise the patterns. Matlab neural network toolbox is an in-
teractive environment that provides a suitable context for the
implementation of a neural network for clustering, fitting, pat-
tern recognition and time series.

The first step to learning a supervised classifier is to prepare
the training data. The CDOM model is used to dissociate the
VOIs into sub-VOIs. The sub-VOIs are labelled according to
the reporting of two expert radiologists. The 3D GLCM tex-
ture features include energy, entropy, correlation, contrast,
variance, sum mean, inertia, cluster shade, cluster tendency,
homogeneity, max probability, inverse variance and 3D com-
pactness shape features which are extracted from dissociated
sub-VOIs with CDOM model.

In this research, the focus is on the binary classification for
breast cancer detection on CTLM dataset. The CTLM dataset
is obtained from 180 patients, in which a total of 132 instances
are labelled normal and the remaining 48 are labelled as ab-
normal, based on two expert radiologists report and correla-
tion with their mammography and ultrasound images. The
proposed dissociation model divides the segmented VOIs into
sub-VOIs (5–10 objects for each image). The distribution of
negative and positive instances in CTLM dataset is shown in
Table 3. According to this figures, the number of negative
instances is much higher than the positive instances, which
reflect the imbalanced class distribution. To overcome the dif-
ficulty of learning associated with the imbalanced dataset,
adaptive synthetic sampling (ADASYN) technique [42] is
used to create a balanced training data. MLP neural network
pattern recognition has been applied to diagnose an abnormal-
ity in CTLM images. In order to select the best combination of
features on the proposed dissociationmodel (CDOM) for clas-
sification, each group of features are individually trained and
assessed by provided classifier.

The number of negative and positive instances in CTLM
dataset MLPNN method is designed to classify normal and
abnormal objects in CTLM image for the diagnosis of breast
cancer (Table 3). To obtain the appropriate number of the layer
for the proposed MLPNN, Fig. 11 shows the achieved classi-
fication accuracy and required time for learning MLPNN by a
combination of GLCM 3D and compactness feature (F15) by

Table 3 The number of negative and positive instances in CTLM
dataset

Total Normal Abnormal

Number of patients 180 132 48

Number of dissociated object 1994 1939 55

Number of dissociated object after
apply ADASYN

3867 1939 1928

Fig. 10 Six sub-VOIs created by CDOM

Fig. 9 A view of the CDOM
model procedure
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a different number of hidden layers. Increasing the num-
ber of layers does not provide any significant effect on
the performance of MLPNN but has led to the increase
of learning time. Therefore, based on the results of fur-
ther experiments, a number of 10 layers have been con-
sidered for hidden layers.

The balanced data with ADASYN oversampling are used
to train the neural network. Seventy per cent of the input data
are used for training, 15% for testing and the rest of the data
(15%) for validation. These features are separately transmitted
to the network as input data for building models, testing and
validation. The training function Btrainlm^ is used to update
weight and bias values based on Levenberg-Marquardt (LM)
backpropagation [44, 45]. The trainlm function is often the
fastest backpropagation algorithm for a neural network which
is frequently advised for supervised learning.

The performance of the proposed MLPNN classifier with
the different combination of features is depicted in Fig. 12.

The group feature F16 is extracted with sequential forward
selection technique and contains 18 features, while F15 in-
cluded all Harlick’s features and compactness. The overall
results show that the combination of each Harlick’s features
with compactness features is not sufficient individually to
describe characteristics of objects (sub-VOIs). The results
show the group feature F15 which contains all Harlick’s
features, and compactness has achieved the highest accuracy,
sensitivity and specificity. The highest accuracy, sensitivity
and specificity are 95.2, 92.4 and 98.1%, respectively. The
high number of features used in learning procedure in some
systems increases the computation time. Compared to en-
hance the efficiency of the system by using the high number
of features, increasing the learning time is not important in
CAD systems, and therefore, all extracted features from dis-
sociated VOIs with CDOM model present higher accuracy,
sensitivity and specificity in the proposed CTLM-CAD
system.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
Accuracy 78 87.2 85.6 83.6 85.9 89.4 85.1 89.3 88.1 87.7 86.3 85.7 87.7 91.1 95.2 92.8
Sensi�vity 68.5 80.4 79.4 77.4 81 84.2 79.2 83.4 83.2 81.8 79.4 80.2 82.9 86.2 92.4 88
Specificity 87.6 94.1 91.8 89.9 90 94.7 91 95.2 93 93.5 93.3 91.2 92.5 96 98.1 97.7
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Fig. 12 Performance of the
proposed MLPNN classifier with
different combination of features
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Figure 13 is presented to compare the classifier results with
and without ADASYN on the group feature F15 which con-
tains all Harlick’s features and compactness. In the imbal-
anced dataset, when the number of positive instances is much
smaller than the number of negative instances, the sensitivity
is low and the specificity is high, as well as high overall ac-
curacy [53].

Figure 14 illustrates the ROC and AUROC of proposed
classifier using all combination of features (shown in
Table 2).The group feature F1 includes three compactness
features which achieve the lowest value of AUROC, 0.84.
The group features F2–F13 are combination of three compact-
ness features and each Harlick’s feature which introduced in
Table 2. The obtained values of AUROC with group features
F2–F13 are between 0.89 and 0.94. The group feature F14

contains all 3DGLCM (Harlick’s) features which have obtain-
ed the AUROC value equal 0.95. The group feature F15 con-
sists of three compactness features and all 3D GLCM
(Harlick’s) features which achieve the highest value of
AUROC, 0.98. These results demonstrate usage of a high
number of features to learn MLPNN increases CTLM-CAD
system performance to diagnose breast cancer.

To investigate the proposed CTLM-CAD system in
the detection of breast cancer, an automatic diagnosis
example has been depicted in Fig. 15. The rendered
image by CTLM standalone in front to back projection
(FTB) mode is shown in Fig. 15a. The radiologists de-
tect a polypoid-shaped angiogenesis in the posterior seg-
ment at 9–10 o’clock which is shown by red arrows in
Fig. 15a. The suspicious area in CTLM image has
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Fig. 14 Performance evaluation
of the proposed MLPNN
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correlated with ultrasound and mammography patient’s
images. The red object (Fig. 15b) was detected as a
suspicious lesion by proposed CTLM-CAD system and
confirmed as an angiogenesis by two expert radiologists.
The red object was detected as an abnormal and located
in the posterior segment of the breast at 9–10 o’clock
(small yellow cube shows 9 o’clock). The shape of an-
giogenesis detected by the proposed CAD system is
similar to polypoid shape.

Conclusion

In this research, a novel computer-assisted diagnostic
(CAD) framework was developed for detecting breast
cancer in computed tomography laser mammography
(CTLM) images. This CAD system consists of three
main components, namely (1) segmentation volume of
interests (VOIs), (2) development of dissociation model
to disjoint VOIs into sub-VOIs as pre-step of feature
extraction, and (3) detection and classification of the
abnormality. This research encountered a binary classi-
fication for breast cancer detection on CTLM dataset.
The CTLM dataset was obtained from 180 patients, in
which a total of 132 instances were labelled normal and
the remaining 48 were labelled abnormal based on two
expert radiologists reporting and correlation with their
mammography and ultrasound images. The number of
negative instances is too much higher than the positive
instances which reflect the imbalanced class distribution.

To overcome the difficulty of learning associated with the
imbalanced dataset, adaptive synthetic sampling (ADASYN)
technique [42] was applied on dissociated objects. MLP neu-
ral network was applied to diagnosis abnormality in CTLM
images. The performance evaluation of the proposed classifier
in this study was measured with different metrics including
accuracy, sensitivity and specificity, ROC curve and AUROC
value. The results show that the highest accuracy has been
achieved by group feature F15 which is a combination of

compactness and all 3D GLCM, which is 95.2%, as well as
the highest sensitivity and specificity obtained by MLPNN
which are 92.4 and 98.1%, respectively. The highest area un-
der the curve (AUROC) was achieved with group feature F15
which is 0.98.

The most significant limitation of this study was the lack of
all forms of angiogenesis in CTLMdataset. Another limitation
of this study was the access to Digital Imaging and
Communications in Medicine (DICOM) format of
CTLM image, which was not provided by the data col-
lection centres. To address this matter, the coronal slices
of CTLM images were saved as Tagged Image File
Format (TIFF) and used in all procedures.

To achieve the clinical use of the proposed framework, the
level of performance and impact of the system in breast cancer
detection have to be investigated through a rigorous clinical
trial. The CTLM-CAD system has to be tested in multi-centre,
multi-reader and multi-cases with and without CAD system.

Various possibilities can be recommended for future work
to develop this work such as extract other shape features such
as asymmetry to evaluate the effectiveness in classifier perfor-
mance. Collecting more cancerous CTLM images that include
other shapes of angiogenesis such as ringed-shaped and
polypoid-shaped to be enhanced the performance of CTLM-
CAD system.
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