
Medical Image Tamper Detection Based on Passive
Image Authentication

Guzin Ulutas1 & Arda Ustubioglu1
& Beste Ustubioglu1

& Vasif V. Nabiyev1 &

Mustafa Ulutas1

Published online: 8 May 2017
# Society for Imaging Informatics in Medicine 2017

Abstract Telemedicine has gained popularity in recent years.
Medical images can be transferred over the Internet to enable
the telediagnosis between medical staffs and to make the pa-
tient’s history accessible to medical staff from anywhere.
Therefore, integrity protection of the medical image is a seri-
ous concern due to the broadcast nature of the Internet. Some
watermarking techniques are proposed to control the integrity
of medical images. However, they require embedding of extra
information (watermark) into image before transmission. It
decreases visual quality of the medical image and can cause
false diagnosis. The proposed method uses passive image au-
thentication mechanism to detect the tampered regions on
medical images. Structural texture information is obtained
from the medical image by using local binary pattern rotation
invariant (LBPROT) to make the keypoint extraction tech-
niques more successful. Keypoints on the texture image are
obtained with scale invariant feature transform (SIFT).
Tampered regions are detected by the method by matching
the keypoints. The method improves the keypoint-based pas-
sive image authentication mechanism (they do not detect tam-
pering when the smooth region is used for covering an object)
by using LBPROT before keypoint extraction because smooth
regions also have texture information. Experimental results
show that the method detects tampered regions on the medical
images even if the forged image has undergone some attacks
(Gaussian blurring/additive white Gaussian noise) or the
forged regions are scaled/rotated before pasting.
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Introduction

Data communication over the Internet has become a necessity
for many applications to share information (file and resource
sharing, online transaction processing, telemedicine, etc).
Especially telemedicine applications have gained popularity
recently. Telemedicine enables transmission of medical data
over the Internet and provides helpful interaction between
patients and specialists. It helps early diagnosis of deadly dis-
eases and let doctors to share information about diseases and
treatments.

Protecting integrity, ensuring confidentiality, and source
authentication are some of the requirements during medical
image transmission. Integrity protection guarantees that a user
has not modified that medical image. Confidentiality ensures
that medical image is accessible by only authorized person.
Authentication provides the verification of the source of the
medical image and guarantees correctness of the correspond-
ing patient info.

Many medical image watermarking techniques have been
proposed recently to meet the requirements defined above
[1–3]. Especially, integrity control of the medical images is
important because any modification on the medical image can
cause false diagnosis. Medical images can be attacked during
transmission over the Internet and can cause false diagnosis.
Figure 1b, c shows the results of the covering and duplication
attacks, respectively, of the test image given in Fig. 1a.
Tampered images show that modification on the image cannot
be perceived by visual inspection. This type of forgeries can
be called as meaningful forgery because it modifies medical
image to reason false diagnosis.
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Some watermarking techniques have been used in order to
check the integrity of medical images in recent years. These
techniques given in BRelated Work^ section have been de-
signed not only to check integrity but also to detect tampered
regions in the image. Although watermarking-based methods
can detect even one pixel modification on the medical image,
the most important disadvantage of them is to necessitate em-
bedding extra information into medical images as explained
above. Specially created information (watermark) must be
embedded into the host image (medical image) to detect tam-
pered regions by these methods. Separate information embed-
ding step performed by a software after medical image acqui-
sition and deteriorated visual quality due to watermark are two
disadvantages of these techniques. Any alteration on the med-
ical image can cause serious misdiagnosis and using a pro-
gram to create and embed watermark can be unpractical.
Therefore, detection of the tampered regions without embed-
ding extra information into medical image becomes an impor-
tant goal if these disadvantages are considered.

In 2003, Fridrich et al. suggested a method called passive
image authentication to detect copied and pasted regions on
the tampered image [4]. The method does not require any
information (watermark or digital signature) for authentica-
tion. Passive image authentication techniques attract more at-
tention due to the following reasons:

1. They do not necessitate any information to authenticate
images.

2. They eliminate visual degradation due to embedding a
watermark.

A new passive image authentication technique is proposed
in this work for medical image tamper detection. The method
does not necessitate embedding of extra information on the
medical image for tamper detection. It takes the advantages of
local binary pattern rotational invariant (LBPROT) operator
and scale invariant feature transform (SIFT) to detect any

tampering operation on the medical images. The method ex-
tracts the structural texture information from the test image by
using LBPROT operator, and then, SIFT is used on it to ex-
tract the keypoints. Tampered regions are detected by
matching the keypoints.

Keypoint-based passive authentication methods do not de-
tect forgery operations that hide a region with smooth region
like in Fig. 1b because keypoints are not obtained from
smooth regions. Extraction of the statistical texture informa-
tion from the medical image by LBPROT reveals the texture
on the seemingly smooth regions. Then, keypoint extraction
algorithms can detect keypoints on the textured image. Thus,
the proposed method solves the problem of the keypoint-
based passive image authentication techniques. Experimental
results show that the method can detect tampered regions even
if they are rescaled or rotated. Results also show that the
method is robust against additive white Gaussian noise
(AWGN) or blurring attacks.

The paper is organized as follows. BRelated Work^ section
summarizes some of the related works reported in the litera-
ture. The details of the proposed method and experimental
results are given in BProposed Method^ and BExperimental
Results^ sections, respectively. Conclusions are drawn in the
last section.

Related Work

Many watermarking-based methods are proposed to detect
tampered regions on the medical images recently. Some of
them are listed below to summarize literature about tamper
detection on the medical images.

Zain and Fauzi developed a technique in 2006 to detect the
tampered regions on medical images [5]. Their method uses a
block-based approach and divides the image into non-
overlapping 8 × 8 pixel blocks. Each block is then divided

Fig. 1 a Medical image. b, c Tampered medical image after covering attack and duplicating attack, respectively
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into 4 × 4 pixel subblocks, and a 9-bit watermark is generated.
Watermark information is then embedded into least significant
bits (LSBs) of the first nine pixels of the 4 × 4 pixel subblocks.
Three-level hierarchical approach is used during tamper de-
tection to detect the modified regions. Their results indicate
that watermarked image has approximately 54 dB peak signal
to noise ratio (PSNR).

Wu et al. developed a method based on robust
watermarking and combined with modulo addition [6]. The
method generates the joint photographic experts group(JPEG)
bit string of the selected region of interest (ROI) and then
divides them into fixed length segments. Medical image is
divided into blocks by the method, and hash bits are calculated
for each of them excluding the block with ROI. Robust
watermarking technique is used to embed the hash bits of the
block and the corresponding segment of JPEG bit string into
the block. At last, all watermarked blocks and ROI portion are
combined to get the watermarked image. Hash bits are used to
check whether the block is tampered or not. Their results show
that PSNR for the watermarked image is approximately 49 dB.

Chiang et al. used symmetric key cryptography and mod-
ified difference expansion technique to propose block-based
tamper detection methods [7]. Their work presents two differ-
ent methods according to recovery capability. The first meth-
od divides the image into 4 × 4 pixel blocks. Average intensity
values of all blocks are calculated and concatenated and then
are encrypted with two symmetric keys. Smooth blocks are
determined by the method by using Haar wavelet transform.
Average values are embedded into smooth blocks for the pur-
pose of tamper detection. Their results show that watermarked
image has approximately 49 dB PSNR.

Al-Qershi and Khoo embedded the patient info, average
intensity values of the blocks in ROI, and hash value of ROI
into ROI using the method described in [8]. Hash value of
ROI is used for coarse tamper detection. If the extracted hash
value mismatches the calculated hash value, finer tamper de-
tection is realized. ROI is divided into blocks, and average
intensity pixel values are calculated. If the extracted average
value mismatches calculated value, corresponding block is
signed as tampered.

The same authors proposed a method based on two-
dimensional difference expansion [9]. Border pixels are also
determined in this work as the third region. Patient record,
hash value of ROI, LSBs of border pixels, and bits of intensity
values in ROI are concatenated and compressed with Huffman
coding. Compressed data is embedded into region of non-
interest (RONI) using 2D-DE approach. Location map of the
embedding procedure is embedded into border pixels. Tamper
detection approach defined in their previous work is also used
in this work. Experimental results show that PSNR of the
watermarked image is approximately 37 dB.

Liew et al. proposed two block-based approaches in their
work [10]. The medical image is separated into two regions in

their first method: ROI and RONI. The method divides the
ROI into 8 × 8 pixel blocks and RONI into 6 × 6 pixel blocks.
A mapping between the ROI and RONI blocks is constituted,
and LSBs of the ROI blocks are embedded into corresponding
RONI blocks to realize the recovery. The method uses ap-
proach in [5] to detect the tampered regions. The secondmeth-
od in their work compresses LSBs of the ROI blocks with run
length encoding scheme before embedding. PSNR for
watermarked images is not reported in their work.

In 2011, Memon et al. embeds the watermark information
into LSBs of the ROI portion by using fragile watermarking
[11]. RONI portion of the image is divided into N × N pixel
blocks, and then, embeddable blocks are determined. Location
map of these blocks and a robust watermark are embedded
into blocks on the RONI using integer wavelet transform
(IWT). LSB replacement is applied on the LL3 subband of
the blocks to hide the location map for recovery purposes.
After the embedding procedure, ROI and RONI portions are
combined to form the watermarked image. Robust watermark
in RONI is used for tamper detection. Their results indicate
that WPSNR value of the watermarked image is approximate-
ly 59 dB.

Tan et al. construct the first layer watermark from source
information and location information in encrypted form [12].
The second layer watermark accommodates the cyclic redun-
dancy check (CRC) values of all blocks in the medical image.
CRC values are used for tamper detection.

In 2012, Tjokorda et al. collected the LSBs of all pixels in
medical image and altered themwith zero value [13]. ROI and
RONI regions after the modification are divided into 6 × 6 and
6 × 1 pixel blocks, respectively. Original LSBs are com-
pressed with RLE scheme, and result string is embedded into
blocks on RONI. The algorithm proposed by [5] is used for
tamper detection at the receiver side. Experimental results
show that watermarked images have approximately 47 dB
PSNR.

Deng et al. used reversible watermarking technique in their
work [14]. Their method also takes the advantage of quadtree
decomposition. The image is divided into blocks by using
quadtree decomposition. Linear interpolation of pixels is em-
bedded into the image via invertible integer transformation.
The second watermark is constructed using quadtree informa-
tion and embeddedwith LSB technique. At the receiver’s side,
the embeddedwatermark is extracted and the original image is
reconstructed because the technique has used reversible em-
bedding approach during watermarking. Linear interpolation
of the pixels is again calculated and compared with extracted
ones. Thus, tampering detection and localization will be
achieved.

Eswaraiah et al. segments the medical image into three
parts: ROI, RONI, and border pixels in 2014 [15]. Secure hash
algorithm is used to extract the hash of ROI. ROI and RONI
parts of the medical image are divided into 4 × 4 and 8 × 8
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pixel blocks, respectively. A mapping scheme is constructed
between ROI and RONI, and it collects ROI block pixels and
embeds them into corresponding RONI block with LSB re-
placement technique. A key encrypts hash value and informa-
tion of ROI. Border pixels are used for hiding the encrypted
bits. Information of ROI and hash value are used for tamper
detection. Watermarked medical image is divided into ROI
and RONI portions using the extracted ROI information.
Hash value of ROI is calculated and compared with extracted
one. If there exists a mismatch, block-based search is realized.
Each ROI block is consulted using the corresponding RONI
block to detect the absence of any modification. PSNR of the
watermarked medical images with different modalities is in
[50–55] decibel range.

The method expla ined in [22] exploi ts two
watermarking approaches based on slantlet transform
(SLT) to embed data. Their method used IWT coeffi-
cients to generate recovery information. ROI is divided
into non-overlapping 16 × 16 pixel blocks. IWT is used
to calculate average pixel intensities and recovery infor-
mation from ROI blocks. These values are embedded
into RONI using a robust irreversible technique.
Reversible technique is used to embed EPR information
into ROI. Two drawbacks of this method are as follows:
It uses average information from 16 × 16 blocks to
detect the tampered regions, and it must send some side
information with watermarked medical image.

Eswaraih et al. uses IWT to watermark a medical image
[23]. The medical image is segmented into ROI and RONI
regions. IWT is used to embed hash of ROI, recovery infor-
mation, and EPR into RONI. The disadvantages of the method
are as follows: The coordinates of ROI and the size of water-
mark are sent to the other side as side information; authenti-
cation of ROI depends on hash function, and it can be applied
to only medical images whose ROI size does not exceed 20%
of the whole image.

Existing methods necessitate embedding extra information
intomedical images to ensure tamper detection [5–15]. Hiding
extra information into medical image causes degradation in
image quality. However, clarity of the medical image is im-
portant for medical personnel to prevent misdiagnosis. The
novelty of the proposed method is that it does not necessitate
embedding any information into medical image and hence
does not deteriorate image quality. The proposed method uses
a new passive image authentication method to determine tam-
pered areas without hiding extra information into the medical
image. The method extracts texture information of themedical
image by LBPROT and then extracts SIFT keypoints from
textured medical image. However, SIFT does not work well
on smooth regions that are encountered in most of the medical
images. That is why LBPROT operator is used before
keypoint extraction. Matched SIFT keypoints designate the
tampered regions.

Proposed Method

The details of the proposed method are presented in this sec-
tion. Tampered regions in the medical image are detected in
three steps: extraction of the statistical and structural texture
information from the image using LBPROT, detection of the
SIFT keypoints from the LBPROT image, and matching the
keypoints to detect tampered regions. General framework of
the method is also given in Fig. 2. The details of the method
are given in the subsections below.

Extraction of the Statistical and Structural Texture
Information

The proposed method is a passive image authentication
mechanism. Passive image authentication methods in the
literature can be divided into two groups: block-based and
keypoint-based methods. Keypoint-based methods have
gained popularity recently compared to block-based
methods because they are invariant to rotation, translation,
and scaling. However, both methods have a major vulner-
ability. Both techniques do not work properly if one cop-
ies a smooth region of the image and pastes it on another
region to hide a clue as a forgery. Since block-based
methods divide input image into overlapping blocks and
use threshold to judge similarity among group of blocks,
large number of similar group of blocks (e.g., two groups
of blocks corresponding to sky in the image) must be
ignored to deal with false negatives. Therefore, these
methods cannot detect forgery if forged region is smooth
or have no texture. Likewise, keypoint-based authentica-
tion methods cannot detect smooth forged regions because
keypoint extraction algorithms extract keypoints from
complex regions.

In this work, structural texture information from the med-
ical image is extracted as the first step to use keypoint extrac-
tion methods on them. Seemingly smooth regions of images
also have a texture (due to sensor and/or quantization noise),
and the proposed method reveals the structure of these regions
by using the LBPROT operator. Thus, keypoint extraction
algorithms can obtain keypoints from the textural information
of the image.

LBPROT, the rotation invariant version of the basic LBP
operator [16], is used to extract the texture information from
input image in this work. LBP operator computes binary dif-
ference of center pixel and its neighbors in each block as
shown in Fig. 3.

Generic LBP has no restriction on the number of sam-
pling points and size of the neighborhood. Ojala et al.
proposed a generalized version of LBP after years [16].
Assume that gray-level image denoted by I and a pixel at
xth row and yth column denoted by ic = I(x, y). Circular
neighborhood of point (x, y) with evenly spaced P
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sampling points and radius R will be used. Circular neigh-
borhood examples for eight sampling points with various
R values are given in Fig. 4. Let any point ip denote the
gray value of sampling point from the P points. Sampling
point at (x, y) will be calculated as in (1). The proposed
method uses circular neighborhoods and radial filter to
allow the choice of any radius R. Circular neighborhood
of point (x, y) with evenly spaced eight sampling points
and radius R will be used in this work.

ip ¼ I xp; yp
� �

; p ¼ 0;⋯;P−1
xp ¼ x þ R cos 2πp=Pð Þ
yp ¼ y − R sin 2πp=Pð Þ

ð1Þ

Assume that s(t) is the unit step function. If t ≥ 0, the
function returns one; otherwise, it returns zero. Using the
unit step function, LBP value of a point with radius R and
eight sample points can be calculated as in (2).

LBP xp; yp
� �

¼ ∑7
p¼0s ip−ic

� �
2p ð2Þ

LBP patterns of regions rotate about their center if a region
from an image is rotated before pasting it on another region.
The proposed method uses LBPROToperator to improve per-
formance under rotation attack. LBPROT operator is defined
as in (3). ROR(x, i) denotes circular bitwise right rotation of
bit sequence x by i steps.

LBPrixp;yp ¼ min
i

ROR LBP xp; yp
� �

; i
� �

ð3Þ

LBPROToperator chooses the minimum LBP code among
the results of circular bitwise operations. Minimum LBP code,

LBPrixp;yp , is used to label center pixel of the current 3 × 3

block. Figure 5a shows the medical image, and Fig. 5b, c
denotes the tampered medical image and its LBPROT image,
respectively.

In this step of the algorithm, the method extracts
rotation invariant texture information from the medical
image. Thus, smooth regions are textured, and the pro-
posed method can apply keypoint extraction algorithms
on the textured image to detect smooth region forgery
operations. However, the method must normalize medi-
cal image into 0–255 range before it applies texture
extraction algorithm. Table 1 shows that a medical im-
age can have various modalities. Therefore, the method
must normalize it before LBPROT operation. Medical
images have textural information because of their na-
ture. Thus, texture extraction from them before the
keypoint extraction algorithm enhances accuracy of the
method. The next section will extract keypoints on the
LBPROT image to detect tampered regions.

Keypoint Extraction from LBPROT Image

The proposed method extracts keypoints from the
LBPROT image using scale invariant feature transform
proposed by Lowe et al. in 2004 [17]. Scale-space extre-
ma detection, keypoint localization, orientation assign-
ment, and determination of the keypoint descriptors are
the steps of the SIFT.

First, scale space is constructed to detect the local
interest points called keypoints. Potential keypoints are
searched over all scales. Variable scale Gaussian func-
tion G(x, y, σ) convolved with an input image I(x, y) to
construct the scale space function. Scale space of an
image L(x, y, σ) is calculated as in (4).

Fig. 2 General framework of the
proposed method

Fig. 3 An example of basic LBP
operator
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L x; y;σð Þ ¼ G x; y;σð Þ*I x; yð Þ G x; y;σð Þ

¼ 1

2πσ2
e− x2þy2ð Þ=2σ2 ð4Þ

The difference between two nearby scaled images separat-
ed by a multiplicative factor k is convolved with the image
I(x, y) as in (5) to extract stable keypoint location.

D x; y;σð Þ ¼ G x; y; kσð Þ−G x; y;σð Þð Þ*I x; yð Þ
¼ L x; y; kσð Þ − L x; y;σð Þ ð5Þ

Simple image extraction is used to compute D. Figure 6
shows an example of images at different scales. The initial
image is convolved with Gaussian function to create the scale
space images in each octave. Difference of Gaussian (DoG)
images are calculated by subtracting corresponding adjacent
Gaussian images. Scale space images and DoG images are
shown in Fig. 6 at left and right, respectively. The Gaussian
image is down sampled by a factor of 2 after each octave.

Keypoint localization is the next step during the algorithm.
Extrema points in the DoG pyramid is detected in this step.

Each point in D is compared with its eight neighboring pixels
and nine pixels in neighboring scales. If the center value is the
minimum or maximum, this point is an extrema and it is a
potential keypoint. Keypoints obtained by the algorithm are
denoted by X = {x1, ⋯ , xn}.

Then, localization of keypoints is improved to
subpixel accuracy using second-order Taylor series ex-
pansion. Keypoints are rejected if the intensity at any
extrema is less than a threshold. Edge points are also
eliminated in this stage. As a result, key point localiza-
tion algorithm eliminates low-contrast keypoints and
edge keypoints.

Each keypoint is assigned to an orientation to achieve
rotation invariance. A neighborhood of each keypoint is
taken according to scale to judge the orientation.
Gradient magnitude and direction is calculated in that
neighborhood. Assume that blurred image in that scale
be L. Gradient magnitude m and orientation θ are cal-
culated by the following Eq. (6), respectively. One or
more orientation assignment to each keypoint is realized
using the neighborhood pixels.

Fig. 5 a Medical image. b
Tampered medical image. c
LBPROT image of b

Fig. 4 Circular neighborhood
examples for eight sampling
points with various R values. a
LBP(8, 1). b LBP(8, 2). c LBP(8,
3)
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m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ−L x−1; yð Þð Þ2 þ L x; yþ 1ð Þ−L x; y−1ð Þð Þ2

q

θ x; yð Þ ¼ tan−1 L x; yþ 1ð Þ−L x; y−1ð Þð Þ
.

L xþ 1; yð Þ−L x−1; yð Þð Þ
� �

ð6Þ

Keypoint descriptors are created as the last step. A
16 × 16 pixel neighborhood around the keypoint is tak-
en, and this region is divided into 4 × 4 pixel sub-
blocks. Eight-bin orientation histogram is constructed

Fig. 6 Images at different scales
and DoG images

Table 1 Medical image
dimensions and bit depth for
various image modalities [21]

Modality Image dimension
(pixels)

Gray level
(bits)

Avg. size/exam
(Mbytes)

Nuclear medicine (PET, SPECT) 128 × 128 12 1–2

Magnetic resonance imaging 256 × 256 12 8–20

Ultrasound 512 × 512 8 5–10

Computed tomography 512 × 512 12 20–40

Spiral or helical CT 512 × 512 12 80–160

Digitized electronic microscopy 512 × 512 8 Varies

Digitized color microscopy 512 × 512 24 Varies

Digital subtraction angiography (per
run)

512 × 512 or
1024 × 1024

8 100–500

Digitized X-rays 2048 × 2048 12 8

Computed radiography 2048 × 2048 12 8

Digitized mammography 4096 × 4096 12 128 (4 images)
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for each subblock. One hundred twenty-eight bin values
are obtained from all subblocks, and they are represent-
ed as a vector to form keypoint descriptor {f1, ⋯ , fn}.

Matching Keypoints to Determine Tampered Regions

In this step of the algorithm, keypoint descriptor vectors are
processed to find matches corresponding to similar regions.
Best candidate keypoints are determined for each key point xi
by inspecting other keypoint descriptor vectors. The method
does not use comparison test on the Euclidian distance with a
global threshold to decide the similarity of any two keypoints
as suggested by [18] because some descriptors are much more
discriminative from the others. The proposed method uses the
approach defined in [18] to judge similar keypoints. Keypoint
matching algorithm defined by Amerini et al. is applied for a
keypoint descriptor as explained below.

1. Dot products are calculated between current keypoint de-
scriptor and the others, {d1⋯ dn}.

2. Dot product angles are computed by inverse cosine and
then sorted, and dot product values and their correspond-
ing indexes are stored.

3. The ratio of two neighbors,(di, di + 1) is compared with a
predefined threshold t until the ratio is greater than t.
Assume that the procedure stops at kth index; keypoints
corresponding to {di⋯ di + k} are considered as match for
the current keypoint. We set t value to 0.5 as suggested by
[18].

The procedure defined above is applied to all keypoints in
X. Matched keypoints designate forged regions and provide
information about the authenticity of the image.

Experimental Results

This section introduces the contents of medical image dataset
to test and metrics used to evaluate the performance of the
proposed method. Effectiveness and robustness tests are giv-
en, in turn, to demonstrate improved forgery detection of the
method.

Dataset and Evaluation Metrics

Experiments are realized on the dataset that was created by our
research group. The dataset contains 420 Gy level tampered
medical images with varying modalities (rotating, scaling,
blurring, AWGN). The following scenarios are applied on
the original medical images gathered from the Internet and
[20] to create the tampered images.

& A region/multiple region from themedical image is copied
and pasted into another region/regions on the same image.
Fifty-eight tampered medical images are created in this
way.

& A portion of the medical image is copied and then rotated
with degrees of [20, 90, 180, 220]. Rotated portion is then
used for concealing or duplicating purposes. Forty-eight
tampered medical images are created with rotation attack.

& Resizing operation with scaling factors between 80, 90,
110, and 120 on the copied regions before pasting. Fifty-
nine tampered medical images are created by this way.

& Gaussian blurring operation is applied on the 58 tampered
medical image with the following parameters (w = 5 and σ
is in the range of 1.5–3)

& AWGN is applied on the 58 tampered medical images
with SNR values of 30 and 60 dB.

Tamper detection capability of the proposed method for
a N × M test image is evaluated using a metric called by
detection ratio (DR) given in (7). The first part of the
metric is the ratio of matched keypoints inside tampered
regions, KF, to the total number of pixels, F, that reside on
those regions. The second part is the ratio of the number
of matched keypoints that are not on the forged regions,
KB, to the total number of pixels excluding the forged
regions, B. Independence from image size is ensured by
multiplying these metric by NM/100. Higher DRs corre-
spond to better accuracy in detecting tampered regions.

DR ¼ KF

Fj j−
KB

Bj j
� �

NM
100

ð7Þ

Since the method employs LBPROT operator before
extracting keypoints by SIFT to detect tampered regions in
medical images, radius of the LBPROT operator R should be
carefully selected to maximize DR. In order to find the opti-
mum radius of the LBPROToperator, average DR of the pro-
posed method for R values from 1 to 4 on the test dataset is
calculated. A bar graph of average DR as a function of radius
R is given in Fig. 7. This experiment proved that the method
yields higher average detection ratios for radius value of 3.

Three different scenarios given below are applied to show
the superiority of the method. The first two scenarios are im-
plemented to make a comparison between two popular
keypoint extraction algorithms (SIFT and SURF) and to show
the reason of preferring SIFT in the proposed method. We
implement the third scenario to test the success of the SURF
method on the texture information.

Scenario 1: SIFT is applied on the tampered medical
image to extract keypoints, and keypoint matching
algorithm is used to detect tampered regions.
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Scenario 2: SURF is applied on the tampered medical
image for keypoint extraction different from the previous
scenario [19].
Scenario 3: LBPROToperator is used to extract structural
information from the tampered image, and then, SURF
algorithm is used to extract keypoints.

The proposed method is compared with scenarios de-
scribed above to show both effectiveness and robustness of
the proposed method.

Effectiveness Test

In this set of experiments, two different types of attacks are
applied on the medical image to create the tampered versions:
simple and multiple attacks. Figure 8b is an example of a
simple attack. A region with a tumor on the mammogram
image given in Fig. 8a is covered by another region from the
same image to create the tampered image given in Fig. 8b.
Border smoothing is also applied during forgery to hide the
clues on the peripheral of the covered area. The numbers of
matched keypoints on the tampered regions for three scenarios
are 19, 26, and 43, and the total numbers of keypoints detected
by these scenarios are 886, 816, and 2059, respectively, as can
be seen in Fig. 8c–h. Figure 8h shows that the third scenario
detects more matched keypoints on the forged regions.
However, the proposed method finds 3791 keypoints on the
tampered image and matches 121 of them as can be seen in
Fig. 8i, j. Other scenarios find less matched keypoints on the
forged regions. Figure 8j also shows that the method detects
tampered regions with more matched keypoints compared to
other scenarios.

Multiple attack is used to create more than one forged re-
gions on the medical image. Tumor region on the mammo-
gram image is copied and pasted on the other two regions on
the same image as indicated by the red arrows to create the
tampered one given in Fig. 9a. The total matched keypoints

and keypoints for three scenarios are (14, 16, 3) and (470, 769,
2667), respectively, as given in Fig. 9b–g. The proposedmeth-
od extracts 4868 keypoints from the tampered medical image
as shown in Fig. 9h and matches 57 of them. Figure 9i indi-
cates that the proposed method detects more keypoints on the
forged regions.

In this section, the results show that effectiveness test re-
sults for the proposed method are better than the three scenar-
ios defined above. Structural texture information causes the
increase on the number of keypoints andmatched keypoints as
shown in the results. The method detects more keypoints on
the forged regions.

Robustness Test

The capability of the proposed method is also tested against
some attacks: rotation, scaling, blurring, and noise addition.
Results of the proposed method and the three other scenarios
are given in this section, respectively.

Brain MR image given in Fig. 10a is used as a test image
for rotation test. Tumor region on the image is covered by
another region on the same image as can be seen in
Fig. 10b. However, copied region is rotated 30° clockwise
before it is pasted. Border smoothing is also applied on the
forged regions to hide clues of forgery. Results of the three
scenarios are also given below of each corresponding image.
The number of matched keypoints and the number of total
keypoints for these scenarios are (0, 4, 0) and (531, 691,
2197), respectively. The proposed method detects 111
keypoints on the tampered region, while other methods cannot
detect more than 4 keypoints. Visual results (Fig. 10c–j) show
the intensity of the keypoints on the forged regions. The pro-
posed method reveals the forged region with more matched
keypoints. The most important advantage of the method be-
comes visible in this experiment. When the forgery operation
hides a portion of the image with a smooth region, other
methods do not find any keypoints in tampered regions or they
detect a few keypoints outside tampered regions.

The second experiment scaled the copied region before it is
pasted. A portion from the ultrasound image given in Fig. 11a
is scaled 120% and then used to cover the cystic component
on the same image. Red arrows given in Fig. 11b indicate the
forged region. Figure 11c, e, g shows that the three scenarios
detect 1559, 2325, and 5967 keypoints, respectively. These
scenarios as shown in Fig. 11d, f, h match 32, 59, and 2 of
them. However, the proposed method finds 10,668 keypoints
on the tampered medical image and matches 260 of them as
given in Fig. 11i, j. Even though LBPROT with SURF algo-
rithm finds 5967 keypoints, it is unsuccessful in this experi-
ment, because it cannot match even one of them. The second
scenario using only SURF is more successful than the other
two; however, the proposed method finds approximately four
times as many as keypoints compared with it.

Fig. 7 Comparison of the DR for various R values 1 to 4
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Blurring operation is used in the third experiment to blur
the tampered medical image. Figure 12a shows the tampered
image after Gaussian blurring with w = 5 and σ = 3 parame-
ters. The total numbers of keypoints detected by the three
scenarios are 267, 583, and 1864, respectively, as given in

Fig. 12b, d, f. The numbers of matched keypoints are given
in Fig. 12c, e, g as 27, 50, and 26, respectively. The proposed
method detects 2485 keypoints on the tampered image, and 84
of them are matched by the method as shown in Fig. 12i. The
second scenario (that uses only SURF) finds the best result

Fig. 9 a Tampered medical
image. b, c The result of scenario
1: SIFT-based method (total
keypoints 470, matched
keypoints 14). d, e The result of
scenario 2: SURF based (total
keypoints 769, matched
keypoints 16). f, g The result of
scenario 3: LBPROT + SURF
based (total keypoints 2667,
matched keypoints 3). h, i
Proposed method (total keypoints
4868, matched keypoints 57)

Fig. 8 a Medical image. b
Tampered medical image. c, d
The result of scenario 1: SIFT-
based method (total keypoints
886, matched keypoints 19). e, f
The result of scenario 2: SURF
based (total keypoints 816,
matched keypoints 26). g, h The
result of scenario 3: LBPROT +
SURF based (total keypoints
2059, matched keypoints 43). i, j
The result of the proposed method
(total keypoints 3791, matched
keypoints 121)
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according to the number of keypoints compared to the other
two scenarios. However, the proposed method finds more
keypoints on the forged regions compared with it.

Additive white Gaussian noise is applied on the tampered
medical image to test the robustness of the method against
noise addition. Medical image given in Fig. 13a is modified,
and 30 dB noise is added on tampered image to hide tamper-
ing clues as shown in Fig. 13b. The proposed method detects
4730 keypoints and matched 194 of them as shown in
Fig. 13i, j. The other scenarios detected less keypoints on
the forged region as shown in the visual results (Fig. 13d, f,

h). The third scenario that uses LBPROT with SURF yields
the worst result according to the number of keypoints. The
second scenario shows priority compared to other ones. But
the proposed method finds 28 more keypoints on the forged
regions of the image.

When we evaluate the three scenarios, the third scenario
exhibits the worst robustness results and the second scenario
that uses only SURF gives the best robustness. On the other
hand, the proposed method detects more keypoints on the
forged regions compared to the other three scenarios for all
tests especially rotation and scaling attacks. From these

Fig. 11 a Medical image. b
Tampered medical image. c, d
The result of scenario 1: SIFT-
based method (total keypoints
1559, matched keypoints 32). e, f
The result of scenario 2: SURF
based (total keypoints 2325,
matched keypoints 59). g, h The
result of scenario 3: LBPROT +
SURF based (total keypoints
5967, matched keypoints 2). i, j
Proposed method (total keypoints
10,668, matched keypoints 260)

Fig. 10 a Medical image. b
Tampered medical image. c, d
The result of scenario 1: SIFT-
based method (total keypoints
531, matched keypoints 0). e, f
The result of scenario 2: SURF
based (total keypoints 691,
matched keypoints 4). g, h The
result of scenario 3: LBPROT +
SURF based (total keypoints
2197, matched keypoints 0). i, j
Proposed method (total keypoints
3958, matched keypoints 111)
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experiments, extracting structural texture information with
LBPROT and keypoint extraction/matching with SIFT yield
improved detection of tampered region(s) in medical images.

In the last experiment in this section, we give the result of
the proposed method for medical image with symmetric prop-
erties. In this experiment, we investigate the effectiveness of
the keypoint-based method on the medical image with sym-
metric properties. Figure 14a, b gives the original medical
images. Detection results of the proposed method for the med-
ical images with symmetric properties show that keypoint-
based method cannot reason the false positives. Figure 14c,
d indicates that the proposed method does not match the sym-
metric region because it uses pattern information of the med-
ical image. Pattern is different even if the regions contain
symmetric nature.

Comparison Tests

In the last experiment, the method is compared with the three
other scenarios described before in this section. Many tam-
pered medical images (the details of the test set are given in
BDataset and Evaluation Metrics^ section) are used during the
tests to determine average detection ratio of the proposed
method and the three other scenarios. Higher detection ratio
indicates morematched keypoints in forged regions and hence
the reliability of detection. A higher DR value in a test corre-
sponds to a higher detection capability of a method.

In the first test, the proposed method and others are evalu-
ated on the tampered medical images without any post-
processing operations given in BDataset and Evaluation
Metrics^ section. Average detection ratios of the methods for

Fig. 12 a Tampered medical
image. b, c The result of scenario
1: SIFT-based method (total
keypoints 267, matched
keypoints 27). d, e The result of
scenario 2: SURF based (total
keypoints 583, matched
keypoints 50). f, g The result of
scenario 3: LBPROT + SURF
based (total keypoints 1864,
matched keypoints 26). h, i
Proposed method (total keypoints
2485, matched keypoints 84)

Fig. 13 a Medical image. b
Tampered medical image. c, d
The result of scenario 1: SIFT-
based method (total keypoints
784, matched keypoints 130). e, f
The result of scenario 2: SURF
based (total keypoints 1469,
matched keypoints 166). g, h The
result of scenario 3: LBPROT +
SURF based (total keypoints
3043, matched keypoints 20). i, j
Proposed method (total keypoints
4730, matched keypoints 194)
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58 test images are calculated and plotted in Fig. 15a. The
proposed method has a DR of approximately 46.8. SURF-
based, LBPROT + SURF, and SIFT-based scenarios yield
approximately 22.06, 16.03, and 10.11 of DR, respectively.
The experiment shows that the method detects more keypoints
in forged regions compared to other scenarios. Among the
three scenarios, SURF based yields the best result. However,
the proposed method finds nearly hundred times more
keypoints in forged regions compared to SURF-based scenar-
io. The first test clearly indicates that the method has higher
detection ratio compared to other keypoint-based methods.

We also test the robustness of the proposed method com-
pared to other scenarios for post-processed tampered medical
images and rotated/scaled forged regions. Results of the ro-
bustness experiments are summarized below.

AWGN is used on tampered medical images in the dataset
as the first experiment for the robustness test. Thirty decibel
and 60 dB signals are used to hide the clues of the forgery
operations on the tamperedmedical images. Figure 15b shows
average DR of the method and other scenarios. The method
yields higher average DR compared to others as shown in the
bar chart. Average DR for the proposed method is

Fig. 15 Comparison test results.
a Simple attack. b Noise addition
attack. c Gaussian blurring attack.
dRotation attack. e Scaling attack

Fig. 14 a, b Original medical
images with symmetric
properties. c, d Detection results
of the proposed method for these
images
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approximately 7.8, if tampered images are distorted with
30 dB AWGN. SIFT-based method has the best result of the
three scenario after the proposed method with approximately
4.8 DR. However, for 60 dB AWGN, SURF-based method
becomes second best with approximately 7.7 DR after the
proposed method with 36.86 DR. The third scenario is unsuc-
cessful for even with 30 dBAWNGwhere the proposed meth-
od yields higher DR compared to the others. The method also
has higher DR for 60 dB AWGN as shown in Fig. 15b.

One of the most common post-processing operations is
blurring with a kernel which removes artifacts on the tam-
pered region boundaries. Another robustness test is realized
for blurring tampered images with a Gaussian kernel of win-
dow size 5 and σ = 1.5 and 3. The proposedmethod has higher
DR compared to the three other scenarios. The third scenario
(LBPROT + SURF) has approximately a DR of 23 for two
conditions, and DRs of 49.29 and 46.05 are obtained by the
proposed method for the same blurred images as shown in
Fig. 15c. The figure indicates that the proposed method de-
tects 100 times more keypoints in forged regions compared to
the third scenario. The other two scenarios (SIFT based and
SURF based) have approximately DRs of 7 and 19, respec-
tively, and have worse results compared to the proposed
method.

Another test is performed for 48 tampered images where
the forged region is rotated before pasting as given in BDataset
and Evaluation Metrics^ section. This experiment provides a
closer look to the capabilities of the scenarios under rotation
operation. Figure 15d shows DRs for rotation 20°, 90°, 180°,
and 220°. SURF-based two scenarios yield better results for
90° and 180°. However, the first scenario (SIFT based) is
more successful than the other two for 20° and 220°. The
proposed method gives higher DRs compared to others re-
gardless of the rotation angle. It yields 16.06, 33.48, 36.15,
and 19.07 DRs for 20°, 90°, 180°, and 220°, respectively. DRs
for 90° and 180° are higher than that of 20° and 220°. On the
other hand, the method has the best results compared to others
for all rotation angles.

In the last experiment, 59 test images are created by scaling
copied regions by 80, 90, 110, and 120% before pasting to test
the robustness of the method against scaling. Figure 15e
shows average DRs for all methods with 59 test images. The
figure indicates that the proposed method yields higher aver-
age DR compared to others for scaling. While the proposed
method has approximately 6.2 DR for scaling 80%, the others
have approximately 0.9, 0.2, and 0 DRs, respectively. The
difference between DRs becomes more noticeable for scaling
90 and 110%. DR of the proposed method decreases for 120%
scaling compared to 80%. However, the other methods have
still approximately a DR of 1 for all scaling operations.

In this section, average DRs of the proposed method and
the three other scenarios are reported for various post-
processing operations performed to hide forgery clues.

Results show that the method has higher DR compared to
the others.

Conclusion

Region duplication or region covering attacks is possible on
medical images, and passive authentication mechanisms can
detect tampered regions created by these attacks. A novel
passive image authentication scheme is proposed for tampered
medical image detection in this work. It eliminates the need to
embed a watermark during or after image capture as in active
authentication methods. Watermarking techniques use either
ROI or keypoint-based approaches. Since keypoint-based
techniques make use of structural information such as image
texture, they cannot detect forgery on the smooth regions
mostly encountered in medical images. The proposed method
is based on keypoint selection and uses LBPROT before SIFT
to emphasize texture information. LBPROT extracts texture
information from medical images with seemingly smooth re-
gions. Thus, keypoint extraction algorithms are applicable on
the structural information and extract keypoints from the
structural information of the smooth regions. Thus, one of
the most important disadvantages of the keypoint-based pas-
sive authentication mechanisms reported in the literature is
eliminated by the proposed method.
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