
1Scientific REPOrTS | 7: 15296  | DOI:10.1038/s41598-017-15499-y

www.nature.com/scientificreports

Urban Seismology: on the origin of 
earth vibrations within a city
Jordi Díaz   , Mario Ruiz   , Pilar S. Sánchez-Pastor & Paula Romero

Urban seismology has become an active research field in the recent years, both with seismological 
objectives, as obtaining better microzonation maps in highly populated areas, and with engineering 
objectives, as the monitoring of traffic or the surveying of historical buildings. We analyze here the 
seismic records obtained by a broad-band seismic station installed in the ICTJA-CSIC institute, located 
near the center of Barcelona city. Although this station was installed to introduce visitors to earth 
science during science fairs and other dissemination events, the analysis of the data has allowed to 
infer results of interest for the scientific community. The main results include the evidence that urban 
seismometers can be used as a easy-to-use, robust monitoring tool for road traffic and subway activity 
inside the city. Seismic signals generated by different cultural activities, including rock concerts, 
fireworks or football games, can be detected and discriminated from its seismic properties. Beside the 
interest to understand the propagation of seismic waves generated by those rather particular sources, 
those earth shaking records provide a powerful tool to gain visibility in the mass media and hence have 
the opportunity to present earth sciences to a wider audience.

The center of a large European city is clearly not the most suitable location for a seismic station, as the high 
vibration levels resulting from traffic, machinery, electric power lines and people moving around mask most of 
the signals generated by natural seismicity. Nevertheless, urban seismology has become an active research field 
in the last decades, mostly to characterize the subsurface structure and hence improve seismic microzonation 
and seismic risk management in populated areas (e.g.1 and references hereby). The interest on seismic signals of 
non-natural origin has boosted in the last decade following the increasing number of continuously recording dig-
ital broad-band seismic stations and the development of techniques to use ambient noise to retrieve tomographic 
images at different scales e.g. ref.2. Earth shaking from traffic and railways has been used to extract shear waves 
and construct stacked seismic images or to invert surface wave travel times3–5. Seismic sensors have been proposed 
as an efficient way to detect and characterize moving vehicles on roadways6. High density deployments involving 
several thousands of sensors have allowed not only to image seismic wave propagation through urban environ-
ments, but also monitor train and traffic circulation, aircraft landings and other man-made sources of shaking7. 
Most of those studies have been carried on using short period or accelerometric sensors, as they were focused 
in the analysis of high frequency signals. However, some studies based on seismic data recorded by broad-band 
seismometers deployed in urban environments have been published in the last years. Groos and Ritter8 analyzed 
data from a broad-band network installed at Bucharest to investigate the source of seismic signal across the dif-
ferent frequency bands. They conclude that human activity is the dominant source for frequencies below 0.1 Hz 
and above 1 Hz, although contribution from wind is observed in the 0.6–1.2 Hz band for velocities exceeding 
3–4 m/s9. Boese et al.10 have investigated the seismic spectrum recorded by borehole seismometers installed at 
Auckland, New Zealand. The authors identified signals generated by traffic and train passages in the 1–35 Hz 
and 8–35 Hz bands, as well as elevated noise levels during the 2011 Rugby World Cup. Recently, Green et al.11  
have analyzed a network of 5 broad-band seismometers operated in central London during about one month. 
Again, human generated signals dominate most of the seismic spectra, except for the microseismic secondary 
peak (0.16–0.5 Hz) and vibrations related to subway circulation are observed both at high and low frequencies.

A secondary motivation to maintain a seismic station in an urban environment is science dissemination, 
as it can provide eye-catching visualization of distant earthquakes shaking the building, a fact usually surpris-
ing non-seismologists. The ICTJA-CSIC research institute, located in downtown Barcelona (Fig. 1), maintains 
since early 2011 a SEP educational horizontal seismometer installed near the building entrance, allowing to pres-
ent to visitors the principles of operation of the basic instrument in Earth Sciences and to put on evidence the 
huge energy delivered by earthquakes, which often overprints the shaking related to traffic and human activities. 
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Since early 2015, an additional seismic station equipped with a three component broad-band sensor, coded as 
ICTJA, has been installed at the basement of the building and connected to a Seiscomp server to offer real-time 
monitoring of the seismic activity through the institute webpage (http://www.ictja.csic.es). In this case, we use a 
Nanometrix Trillium Compact sensor, a broad-band seismometer with flat response extended till periods of 120 s. 
The sampling has been fixed to 250 Hz, to allow the detection of high frequency seismic signals. Although the 
data were not intended to be exploited scientifically, looking at them has revealed to be an interesting approach. 
In this contribution we document the origin of the features identified in the records, mostly related to man-made 
activities.

An overview of the seismic spectra
It has been widely documented that the seismic signal has different sources and generation mechanisms at differ-
ent frequency bands1,12. One of the best tools to illustrate those differences are the spectrograms, a representation 
in which the seismic acceleration is decomposed to get the evolution of its power spectral density in function of 
time and frequency, expressed in dB and relative to a reference value of 1 (m2/s4)/Hz (Fig. 2). At high frequencies, 
the seismic signal is dominated by man-made activities, as denoted by the large daytime/nighttime variation, with 
large energy during working hours and much less during nighttime and week-ends. The 0.04–1 Hz band, known 
as the microseismic band, concentrates the largest seismic energy in quiet broad-band stations distributed world-
wide and its origin is related to waves in the ocean that couples to elastic waves in the seabed and then propagates 
primarily as surface waves in the Earth13,14. The microseismic band can be recognized at ICTJA, although it is less 
prominent than for typical. The energy at frequencies below 0.05–0.1 Hz is dominated by day-night variations 
which are unrelated with natural source signals and will be discussed later. Within 0.1 and 0.25 Hz the time varia-
tions can be related to oceanic wave height changes in the Atlantic and Mediterranean basins. Above 0.25 Hz, the 
energy variations have a clearly different, more patched aspect, a feature probably related to local wind interacting 
with buildings and structures nearby the station15.

Discussion on the origin of the observed seismic signals
Traffic monitoring.  The spectrogram of the recorded signal shows a large energy variation between daytime 
and nighttime, as well as between working and holiday days, for frequencies above 1 Hz. This pattern can be 
identified for frequencies above 1, with maximum energy between 8 and 35 Hz and denotes the anthropogenic 
origin of the signal (Fig. 2). Exploring the signal in narrower bandwidths, a close inspection of the time series 
once band-pass filtered between 8 and 12 Hz shows that during daytimes, from around 06:30 to 22:30 local time, 
the signal is dominated by a regular pattern of low and high energy cycles about 2 minutes long (Fig. 3a). After 
discarding potential sources as engines located close to the recorder (air-conditioning units, fridges…), we related 
this signal pattern to the traffic activity in the nearby Av. Diagonal, one of the main traffic entrances to Barcelona 
city and located at about 150 m North of our laboratory (Fig. 1). This large avenue is crossed by a street deserv-
ing only local traffic and hence the traffic lights are unevenly regulated. We have verified that traffic along Av. 

Figure 1.  Detailed map of the ICTJA-CSIC site. Red star shows the building location. The onset shows the area 
(identified by a red box) in a general plan of Barcelona. This map has been produced using QGIS 2.18 (https://
www.qgis.org/) and is based on the digital geographic information from CartoCiudad assigned by © Instituto 
Geográfico Nacional (http://www.cartociudad.es/visor/).

http://www.ictja.csic.es
https://www.qgis.org/
https://www.qgis.org/
http://www.cartociudad.es/visor/
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Diagonal is open for 90 s, while vehicles using the transversal street have 30 s to cross, a sequence adjusting nicely 
the 2 minutes cycle observed in the band-pass filtered seismograms (Fig. 3a).

Figure 3b show the time evolution of the seismic noise during a two weeks period. During daytime, ampli-
tudes at working days roughly doubles those observed during week-ends. Nighttime amplitude is about 4 times 
smaller than during daytime and Friday and Saturday nights show larger amplitudes than the rest of nights, 
reflecting higher nocturnal activity in the city during week-ends. Working days show a clear amplitude peak 
between 5:00 and 8:30 UTC (6:00–9:30 local time), related to traffic increase during rush hours. On contrary, an 
evening rush hour is not easy to identify. Sunday afternoons display a relative peak associated to cars returning to 

Figure 2.  Spectrogram of the vertical seismic acceleration during the time interval 01/9/2016–13/9/2016. Red 
box shows the frequency range dominated by ocean activity, blue box shows the band dominated by traffic and 
green boxes show the low frequency (continuous line) and high frequency (dashed line) bands associated to 
subway activity. Week-ends are shown by bold dates. Color scale is expressed in dB referred to 1 (m2/s4)/Hz.

Figure 3.  Seismic signal generated by road traffic. (a) Vertical component of the seismic acceleration band-
pass filtered between 8 and 12 Hz. The image shows the complete record for day 09/07/2016, with each line 
displaying 30 minutes of data. The noise banding reflects the traffic along Av. Diagonal, regulated using a traffic 
light. (b) Envelope of the vertical component of acceleration, filtered between 8 and 12 Hz and decimated to 
1 sample every 10 minutes. Night/day and working day/week-end variations are clearly evidenced. Note the 
rush hour in working day’s morning and the lower amplitude during Saturdays and Sundays (labeled in bold). 
Narrow peaks on days 10 and 13 are associated to traffic increase before and after FC Barcelona football games.
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the city after week-end break. The narrow and energetic peaks observed the 10th and 13th September are related to 
traffic increases before and after two football games in the nearby FC Barcelona Stadium. Therefore, it is clearly 
documented that a seismometer in the city can be used to monitor traffic levels, even if located 150 m away from 
the monitored road.

Vibrations induced by subway trains.  Different studies have analyzed the seismic noise generated by 
railway traffic and proposed models to predict the induced vibrations16–21. Seismic sensors have also been used 
to monitor the vibrations generated by subway trains circulating close to historical buildings, as the Cologne 
Cathedral in Germany or the Bell Tower in Xi’an (China)22,23. Most of those studies use data recorded directly 
beside the railway and focus on the high frequency band of the seismic records. In our case, the high sensibility 
of the broad-band instrument allows to record individual passages of tube trains along a subway line running 
beneath Av. Diagonal, at a distance of about 150 m of the recording site.

The metro system at Barcelona works from 05:00 to 00:00 (local time) Monday to Thursday, 05:00–02:00 on 
Friday and continuously from 05:00 Saturday until 00:00 on Sunday. This rather complex activity pattern allows 
an easy comparison with the signal amplitude variations in the seismic data. The train passage interval during 
peak hours is reported to be close to 200 s and increases during valley hours till 5–7 minutes. Temporal changes 
in the properties of the recorded seismic data consistent with the subway time activity cycles are identified in 
two frequency bands (Fig. 4a). At high frequencies, individual passages of subway trains are recognized in the 
20–40 Hz band, coherently to observations described in different cities worldwide, as Cologne22, Long Beach7, 
Beijing24, London11 or Auckland10. Figure 4a shows a clear relationship between the observed peaks and train 
passages, with in the passage interval increasing progressively after 22:00 local time and during Saturdays and 
Sundays. As the trains circulate in two senses and we can not discriminate among them, it is difficult to fix the 
passage interval, but the data suggest that it is around 4 minutes during working hours and increase to around 
8 minutes during night, consistently with the reported timetable.

The seismic signal related to subway trains can also be identified in the 0.008–0.05 Hz band (periods of 
20–125 s), in the low frequency side of the microseismic peak. This signature can be observed in the temporal 
series of the filtered data (Fig. 4b) and in the spectrogram (Fig. 2), that mimics the subway time activity cycles, 
with shorter periods of low noise on Friday nights and no low noise intervals during Saturday nights. As in 
the case of high frequencies, the envelope of the vertical seismic acceleration allows to identify individual train 
passages (Fig. 4a). The peaks in this band have less amplitude and are somehow blurred, probably because the 
contribution of other sources is more relevant. Sheen et al.25 have reported a similar observation near subway lines 
at Seoul and some more sites sparse worldwide (Palisades, New York; Memphis, Tennessee; and Trieste, Italy) 
without providing a theoretical explanation for them. Green et al.11 reported a short duration, low amplitude dis-
placement signature in a seismic station located almost directly above subway tunnels. This signature was inter-
preted as a quasi-static response to the train passage, following the modeling proposed by Yang et al.26. Under this 
hypothesis, the signal will correspond to the tunnel deformation generated by the weight of the train. However, it 
seems unlike that the observations in our station, located at about 150 m of the tunnels, could be related to those 
tiny tunnel deformations. Wielandt27 has reported that broad-band seismometers are sensitive to variations of 

Figure 4.  Seismic signal related to subway activity. (a) Envelope of the vertical acceleration for the interval 
19:00–24:00 UTC (21:00–02:00 Local time) from Thursday to Sunday, filtered in the 20–40 Hz (black line) and 
the 0.008 and 0.05 Hz (red line) bands and decimated to 1 sample every 10 seconds. Late service during Friday 
and Saturday nights are identified by a box. (b) Envelope of acceleration filtered between 0.008 and 0.05 Hz 
and decimated to 1 sample every 10 minutes. Friday and Saturday nights are identified with orange and red 
arrows and clearly differ from the rest of the week. Large peak on day 01/09 correspond to a 7.0 earthquake with 
epicenter in New Zealand. Other peaks are related to local noise sources.



www.nature.com/scientificreports/

5Scientific REPOrTS | 7: 15296  | DOI:10.1038/s41598-017-15499-y

magnetic field in the ground, in particular in urban environments, which may explain the seismic low frequency 
signals. DC electric railways (subway, tramway) produce magnetic fields both from the intended traction currents 
and from the stray currents leaking to the Earth, although the first ones are only relevant on or near the train28. 
Estimating the intensity of the magnetic field variations induced by railways is complex and depend on multiple 
parameters29. Hence, further developments will be needed to assess if magnetic field perturbations can explain 
our observations. Hereof, at this point we favor the hypothesis of magnetic field variations due to stray currents to 
explain the long period seismic signals related to subway activity detected at relatively far distance.

Vibrations related to Rock concerts.  One rather unusual signal observed in our seismic data corresponds 
to the earth vibrations recorded during rock concerts performed at the FC Barcelona stadium, located about 
500 m southeastwards of the ICTJA building (Fig. 1). Some precedents do exist on this kind of seismic record-
ings; Erlingsson and Bodare30 studied the vibrations induced by rock concerts in Ullevi Stadium (Gothenburg, 
Sweden). Green and Bowers31 have investigated the seismic records generated by an electronic dance music fes-
tival in England, observing high amplitudes within the 2–3 Hz band that remain stable over periods of hours and 
were related to the vibration of the festival loudspeakers coupling into the ground at the festival site and then 
propagating as surface waves. The Institute of Geological and Nuclear Sciences of Australia (GEONET) reported 
the seismic recordings during a Foo Fighters concert in Auckland on December 2011 and during an AC/DC con-
cert on December 2015 (http://geonet-shakennotstirred.blogspot.com.es/). Bertero et al.32 recorded using accelo-
metric sensors the vibrations generated by rock concerts held at River Plate Stadium in Buenos Aires (Argentina) 
on neighborhood buildings and interpreted the signal as Rayleigh waves resulting from the coordinate jumping of 
spectators, with a first harmonic close to 2.1 Hz. Finally, Denton33 has analyzed seismic records during two of the 
songs of a Madness concert in the Reading Festival in 2011, reporting distinct at frequencies of 2.08 and 2.5 Hz, 
with harmonics at 4.16 and 5.0 Hz respectively.

We will refer here to the signals recorded during the Bruce Springsteen & E Street Band concert held in the 
FC Barcelona stadium 14th May 2016. Up to 65000 persons fulfilled the stadium during the more than 3 hours of 
concert. The seismic signal generated during the concert is clearly visible in the three components, although the 
maximum amplitudes are observed in the horizontal components. The recorded seismic amplitudes show very 
large variations, often within the different parts of a single song (Fig. 5a). The spectrogram shows how each song 
results in a characteristic spectra composed by narrow and evenly spaced peaks, corresponding to a fundamental 
tone in the range of 1.8 to 2.5 Hz and two or three additional harmonics (Fig. 5b). Signals dominated by discrete 
vibration frequencies have been observed in seismic data from natural environments, including unrest volca-
noes34, colliding tabular icebergs35 or hydrothermal sites36 and have been interpreted as resulting from regular 
repeating stick-slip earthquakes through the Dirac comb effect, stating that series of evenly spaced pulses in the 
time domain transforms to evenly spaced harmonics in the frequency domain37. This hypothesis can be explain 
our observations, as the synchronized jumps of the audience at a given rhythm can be assimilated to the occur-
rence of regular repeating earthquakes.

The fundamental tone frequency range is consistent with the previous results and with laboratory measure-
ments of the movement of people dancing concluding that large groups tend move with frequencies in the 1.8–
2.3 Hz frequency range38. The seismic amplitudes are strongly increased during the Encores, and, in particular, 
during the “Shout” song (Fig. 5), while the audio band of the concert do not show an increase of the sound vol-
ume. Table 1 presents the tempo of the songs played during the Encores, measured in beats per minute (BPM), 
and the fundamental frequency and harmonics of the corresponding seismic signal as identified in the spectro-
gram. The BPM values refer to recorded versions of the songs and not to the actual version played on this par-
ticular show and hence a formal correlation between BPM and fundamental frequencies can not be established 
properly. However, it seems clear from the data that fast songs (Born to Run, Dancing in the Dark) have higher 
fundamental frequencies, while slow songs (Tenth Av., Born in the USA) have lower values.

Hotovec et al.37 explained the smooth increase of the fundamental and the harmonics frequencies observed 
in the Redoubt volcano by an increase in the pace of earthquake occurrence. This hypothesis is consistent with 
the relationship between fast songs and high seismic frequencies observed in our data and provides additional 
support to the hypothesis that dancing crowd is on the origin of the observed seismic signal, which dominant 
frequency is directly controlled by the music rhythm.

Particle motion diagrams provide and additional tool to investigate this signal, showing that the signal during 
the songs has a mean polarization oriented N50°E, close to the transverse direction between ICTJA and the music 
stage. During the bursts of maximum seismic amplitude (“Shout” song, Fig. 5) the horizontal particle motion 
diagrams show a pattern very similar to a Lissajous curve with a ratio factor of 2 and a phase difference close to 
90° (Fig. 5c). For intermediate amplitudes (e.g. during “Born in the USA” or “Dancing in the Dark” songs) the 
particle motion diagrams show patterns similar to Lissajous curves with frequency ratios of 2 and phase shifts of 
20–30°, while for smaller amplitude events no particular features are observed. These particle motion diagram 
results from the fact that most of the seismic energy is concentrated near the fundamental and first harmonic 
modes (2.54 and 5.1 Hz in this case). Filtering the signal around those frequency peaks it can be observed that the 
fundamental mode is oriented N60°E and shows some ellipticity during the first seconds, while the first harmonic 
is linearly polarized and oriented N50°W. The characteristics of the different modes change for the different 
segments analyzed so far, but phase shifts remain close to 100°. Figure 5c allows also to note that the phase shift 
relationship is only settled after the first 2–3 s of shaking. This is consistent with30, who reported that it takes about 
15–20 load cycles to build up a steady state response of the ground following the beginning of a synchronized 
movement (dancing) of the audience. Hereof, it seems that during interval of large shacking, and after a short 
initial time, the fundamental and first harmonic acquire a phase shift which remain constant during each bursts 
but change for each episode.

http://geonet-shakennotstirred.blogspot.com.es/
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Beside propagating as seismic waves in the soil, the vibrations generated by dancing crowd can also excite 
some of the stadium structures. These structures are difficult to model accurately, but their excitation frequencies 
usually ranges between 1.0 to 3.5 Hz and 2.8 Hz39. Building codes define natural frequency limits for structures 

Figure 5.  Seismic record during the “Encores” part of the Bruce Springsteen rock concert at FCB stadium 
(14/05/2016). (a) North-South component of the horizontal seismic acceleration Trace has been band-pass 
filtered between 1 and 10 Hz. (b) Corresponding spectrogram. Each song has a specific frequency content 
showing a fundamental frequency and harmonics. Titles of the songs are included for reference. (c) Particle 
motion of the horizontal components rotated to N50E/N140E during one of the Encores songs (marked by an 
arrow in the spectrogram). Each frame corresponds to 4 s. Some seconds after the beginning of the signal the 
phase shift between the fundamental and 1st harmonic mode results in a PPM following a Lissajous curve.
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subjected to dynamic loading, which is fixed around 6–8 Hz (ref.39 and references hereby). It is worthy to note 
that the larger amplitudes during the concert have been observed during the song with the highest fundamental 
frequency value, with its first harmonic relatively close to the suggested limit for natural frequencies. Additional 
work, following a more engineering approach, is required to know if structure excitation has a significant contri-
bution to the total shaking.

Seismic record of fireworks.  Firework exhibitions carried on in the FC Barcelona stadium during football 
title celebrations generate seismic signal clearly recorded at ICTJA station (Fig. 6). The signals have a very large 
spectral content, extending from frequencies below 0.01 Hz to the upper limit of our analysis capability (125 Hz), 
although most of the energy is comprised at frequencies exceeding 20 Hz. The stronger energy is identified in the 
final part of the records, correlating with the strong explosions that typically mark the end of firework shows. In 
the 20–80 Hz pass band the energy is distributed rather uniformly, although energy increases are detected around 
35 Hz and 48 Hz. Between 80 and 100 Hz the energy start to increase to reach a maximum between 100 Hz and 
125 Hz (Fig. 6b). The vertical and the North-South components have similar amplitudes, while the East-West has 
about 3 times higher amplitude. The horizontal polarization have a mean value close to N75E, although energy is 
detected in the N65E-N105E azimuth range.

Comparing the seismograms during firework with those recorded during the music concert, we can note 
that significant differences do appear. The energy of the waves recorded during firework extend over the whole 
spectrum and can be identified in the raw signal, while during the music event, the signal is less energetic, lim-
ited to the 2–6 Hz band and distributed in harmonics. During the concert the amplitude of the vertical com-
ponent is lower than in the horizontal ones, while during fireworks the amplitudes of all the components are 
similar. Additionally, the signal generated by the firework explosions have linear particle motion diagrams, in 
contrast with the particle motion following a Lissajous curve recorded during the music concert. We interpret 
that, as the explosions during fireworks occurs on air, the most plausible origin for the detected signals is the 
acoustical-mechanical conversion of the sonic waves generated at each explosion. This distinct mechanism will 
explain the large differences between vibrations related to fireworks and crowd dancing, even if the source loca-
tion is the same. It is well known that acoustic waves can couple to the ground and propagate as seismic waves 
and it has been documented how nuclear and chemical explosions in the atmosphere can generate seismic waves 
recorded at long distances [e.g., ref.40]. Although we have not found references on the seismic recording of fire-
works, it seems plausible to record seismically that such kind of explosions at distances around 500 m. Edwards 
et al.41 analyzed acoustic-seismic coupling of meteor shock waves in a site located over a 60 m thick silt-clay 
layer and found that the coupling was efficient for frequencies above 10 Hz, consistently with our observation of 
seismic energy mostly above 10–20 Hz. A full understanding of such signals seems however difficult to model, 
as air-ground wave conversions can occur in any place around the area and the response of each building would 
need to be taken into consideration.

Footquakes.  Seismic recording of people moving to celebrate goals or relevant plays during sport events have 
been reported episodically, both in soccer and American football. A college American football game played in 
Louisiana on October 1988 (https://en.wikipedia.org/w/index.php?title=Earthquake_Game&oldid=747160712) 
was recorded seismically and is since then know as the “Earthquake Game”. More recently, a game between the 
Seahawks and the New Orleans Saints recorded in Seattle on January 2011 was named the “Beast Quake”42 and 
motivated the installation of a network of seismic instruments in the Seahawks stadium, managed by the Pacific 
Northwest Seismic Network (https://www.pnsn.org/seahawks). This approach seems to be extending, as shown by 
the FanQuakes project, carried on by the Ohio Geological Survey and the Miami University to measure the move-
ment of fans during games at Ohio Stadium (https://sites.google.com/a/miamioh.edu/brudzinski/fanquakes).

In the case of soccer, the first reported example of seismic records of fans celebrations is the so-called “Gol 
del terremoto” (Earthquake’s Goal), recorded in 1992 by a seismometer of the Observatorio Astronómico La 
Plata (Argentina), located about 600 m away from the football stadium. (https://es.wikipedia.org/w/index.php?-
title=Gol_del_terremoto&oldid=95847086). During a temporary broad-band deployment in Cameroon in 
2006, tremor like signals recorded simultaneously all around the country surprised a research team carrying on a 

Song Title Duration
Fundamental Frequency 
(Hz)

1st harmonic 
(Hz)

2nd harmonic 
(Hz)

3th harmonic 
(Hz) BPM

Purple Rain 6:01 2.1 — — — 113

Born in the U.S.A 4:43 1.9 3.9 5.7 7.6 122

Born to Run 6:35 2.2 4.5 6.8 — 146

Dancing in the Dark 7:00 2.4 4.9 7.4 — 149

Tenth Avenue Freeze-Out 5:21 1.9 3.7 5.5 7.4 117

Shout 6:46 2.5 5.1 7.6 — 139

Bobby Jean 6:12 2.1 4.2 6.4 — 133

Twist and Shout (tour debut) 6:56 2.1 4.2 6.4 — 131

Table 1.  Set list for the Encores part of the Barcelona 14/05/2016 Bruce Springsteen and the E-Street Band 
concert. Song duration, observed frequency peaks for the fundamental and harmonic modes and the beats per 
minute of recorded versions of the played songs are included. Bold numbers show the harmonic with maximum 
amplitude. BPM data recovered from http://songsbpm.com.

https://en.wikipedia.org/w/index.php?title=Earthquake_Game&oldid=747160712
https://www.pnsn.org/seahawks
https://sites.google.com/a/miamioh.edu/brudzinski/fanquakes
https://es.wikipedia.org/w/index.php?title=Gol_del_terremoto&oldid=95847086
https://es.wikipedia.org/w/index.php?title=Gol_del_terremoto&oldid=95847086
http://songsbpm.com
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seismic exploration project in the country and were finally attributed to the lively celebrations of people watching 
television broadcasts of the National Football Team in the 2006 African Cup of Nations43. Recent examples of 
seismic records of crowds celebrating soccer goals were presented last year by the University of Leicester and the 
British Geological Survey and had a significant impact in social networks, including a dedicated Twitter account 
(@Vardyquake).

The ICTJA station regularly record this kind of “footquakes” generated by people shaking to celebrate goals at 
the FC Barcelona stadium, hosting up to 90000 persons during first level games. We analyze here the records cor-
responding to the celebrations during the Champions League Semi-Finals game FC Barcelona – Bayern Munich 
played in May 2015, as they may provide some clues to the interpretation of sources of the different features 
described above. The three goals scored by the FC Barcelona team concentrate in the last 15′ of the game, thus 
providing a nice seismogram record (Fig. 7a). The recorded signals are observed clearly in the 1–6 Hz band, 
in a very similar range that those recorded during music events. The onset of the three events analyzed has an 
emergent character and their duration is very similar, 17–18 s. The amplitude of the peak accelerations differs in 
the three cases, the second one being that with largest amplitude, reaching values of +/−3.5 105 nm/s2 for the 
East-West component. In all the cases the amplitude of the horizontal components is about 3 times larger than in 
the vertical one. The particle motion diagrams do not show a well-defined polarization but a detailed inspection 
of the onset of each event shows an elliptical motion in the horizontal plane, suggesting the interaction of multiple 
wavefronts (Fig. 7a). Most of the energy arrive with backazimuthal direction close to N50E, in the approximate 
transverse direction of propagation. The small amplitude of the vertical component and the dominant energy 
along the transverse direction of the horizontal components seems to discard a propagation as Rayleigh wave.

The major difference with the music concert case arises from the analysis of the frequency content of the sig-
nals. As shown at Fig. 7b, the seismic energy in this case is distributed quite uniformly along the 1–10 Hz band, 
without the presence of harmonics. This fact is interpreted as reflecting the characteristics of the crowd movement 
of during a goal celebration, when people jumps suddenly from their seats and remain moving on place for some 
seconds. This sudden jump of up to 90000 people (typical assistance range at FC Barcelona stadium) results in a 
sudden vibration, but it is not enough to build a steady vibration resulting in well-defined harmonics. This is con-
sistent with previous reports pointing that several load cycles are required to build such a steady vibration state30.

Conclusions
The seismic records provided by a broad-band seismometer in an urban environment provides a powerful out-
reach tool, as general public and mass media use to be interested in those kind of curious features. This interest 
can be used to disseminate some aspects of the seismological research to wide audiences. Besides this point, 

Figure 6.  Seismic record of a fireworks show at the FC Barcelona stadium (7/6/2015). Firework exhibition 
carried on in the FC Barcelona stadium the 14th June 2015 during the celebration of the football titles won in 
the 2014–15 season. Single explosions during the firework exhibition can be identified in the seismic record, 
with duration close to 1s. The amplitude of each shot is typically between 2.5 107 and 4 107 nm/s2, but peak 
values of 1.2 107 nm/s2 are reached during the last part of the show. (a) Three components of the seismic 
acceleration during the 12 minutes interval including the fireworks. (b) Spectrogram of the vertical component 
of acceleration.
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a detailed inspection of the recorded data reveals some intriguing aspects which may be of interest for a bet-
ter understanding of unusual sources of seismic signals. A broad-band seismometer has revealed to be a useful 
instrument to monitor the traffic along an avenue located at about 150 m distance. Although mechanic devices or 
accelerometers are much less expensive instruments to monitor traffic, in some specific circumstances the use of 
high sensitivity broad-band instruments can be considered, as it does not need to be installed in the close vicinity 
of the monitored road, it is a robust instrumentation, can be installed in a secured location, can provide real time 
signal and allows to image graphically the traffic level.

This monitoring ability extends to the surveying of subway trains, which tunnel runs beneath the same main 
avenue at 150 m of our site. At frequencies around 30 Hz, the metro noise can be isolated from the traffic gener-
ated signal, hence allowing the identification of single train passages. Subway activity can also be clearly detected 
at very low frequencies (0.005–0.1 Hz) in a range not explored in engineering surveys. The origin of this low 
frequency signals has to be investigated in further detail, as it could be related to ground deformation during the 
train passages or to the effect of the magnetic field variations due to leakage currents. In this moment we privilege 
this last hypothesis, although more theoretical work is needed to understand how the magnetic field variations 
induced by those stray currents are recorded by broad-band seismometers. The seismic signals recorded during 
fireworks are very different from the rest of events here analyzed, supporting the idea that they correspond to a 
acoustic-mechanic wave coupling. Seismic signals recorded during music concerts and football events differs 
in their frequency content; during goal celebrations energy is uniformly distributed between 1 and 6 Hz, while 
during the music concert harmonic modes are clearly recognized and varies even within a single song. These dif-
ferences are evidenced in the particle motion diagrams, showing a simple elliptical motion for goal celebrations 
and Lissajous curves during music concert. We think that both for music concerts and football goal celebrations 
the origin of the seismic signal is the movement of the people jumping or dancing altogether, hence generating 
vibrations on the ground and the structures of the stadium that then propagate as seismic waves. The coordi-
nated movement of people dancing following the music tempo results in the building of a steady response of 
the ground resulting in harmonic seismic signals similar to those observed in some volcano environments. The 
particle motion diagrams show that 2–3 seconds are needed to build this response following the beginning of the 
crowd movement. On contrary, the celebrations after football (soccer) goals, not exceeding 20 s, generate a signifi-
cant amount of shaking but do not result in harmonics. In this sense, different studies have show that a coordinate 
movement of a crowd is more easy when people is prompted my music stimuli, a point that seem to be confirmed 
by seismic data. We can conclude that urban seismology can be used not only to discriminate among the different 
sources of vibrations in urban environments, but also to better understand the multiple mechanisms involving the 
seismic signal generation, including features as diverse as magnetic field variations, acoustic-mechanic coupling 
or resonances in buildings.

Figure 7.  Seismic record during the last minutes of the FC Barcelona vs. FC Bayern Munich (Champions 
League semi-finals, 6/5/2015). (a) Vertical acceleration band-pass filtered between 2 and 6 Hz. Earth shaking 
following FCB goals is shown by red arrows. Lower panels show the particle motion diagram of the horizontal 
components during the onset of the second goal (1 s per panel) (b) Spectrogram of the same time interval. No 
harmonics modes are observed in this case.
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Methods
The instrument response is removed from the raw seismic data using the standard procedures and the signal is 
converted to acceleration.

Data is analyzed using the PQLX software package44 to estimate systematically the background noise Power 
Spectral Density (PSD) and to compute Probability Density Functions (PDFs). PDFs provide a useful tool to ana-
lyze the energy distribution across the seismic spectrum and to monitor its temporal variations. The model typi-
cally used as a reference to assess the quality of new seismic sites is that of Peterson45, defining the standard New 
Low and High Noise level Models (NLNM, NHNM). Background noise in new seismic sites areas is expected to 
lay below NHNM across the spectra.

Spectrograms are obtained by dividing the signal in overlapping intervals of a given length and calculating the 
Power Spectral density in each of them. In this case we have used an own MatLab routine based on the Pwelch 
algorithm. A color palette, expressed in dB and relative to a reference value of 1 (m2/s4)/Hz, is used to show the 
energy distribution.
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