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Abstract

Noncoding RNAs (ncRNAs), including micro (mi)RNAs, long noncoding (lnc)RNAs, and circular 

(circ)RNAs, control specific gene expression programs by regulating transcriptional, post-

transcriptional, and post-translational processes. Through their broad influence on protein 

expression and function, ncRNAs have been implicated in virtually all cellular processes such as 

proliferation, senescence, quiescence, differentiation, apoptosis, and the stress and immune 

responses. Senescence is a cellular phenotype associated with the physiologic decline of aging and 

with age-related pathologies. Besides their characteristic terminal growth arrest and differential 

gene expression programs, senescent cells are known to secrete potent pro-inflammatory, 

angiogenic, and tissue-remodeling factors. This important trait, known as the senescence-

associated secretory phenotype (SASP), influences many biological processes such as tissue repair 

and regeneration, tumorigenesis, and the aging-associated pro-inflammatory state. Here, we review 

the microRNAs, lncRNAs, and circRNAs that influence the production of SASP factors and 

discuss the rising interest in SASP-regulatory ncRNAs as diagnostic and therapeutic targets.

1. Introduction

Cellular senescence is a state of terminal growth arrest in which cells are unresponsive to 

growth factor stimulation. This phenotype was initially described by Hayflick as the end of 

the lifespan of primary fibroblasts maintained in culture [1]. The senescence program is 

triggered when cells encounter stress conditions such as critically short telomeres, DNA 

damage, oncogenic activation, hypoxia, and oxidative stress [2]. Although senescent cells do 

not divide, they are metabolically active and exibit a distinct metabolic profile. They display 

a flattened and enlarged morphology, altered gene expression patterns, increased activity of 

a neutral β-galactosidase, and senescence-associated heterochromatic foci [3–7]. Another 

major feature of senescent cells is the senescence-associated secretory phenotype (SASP) 

[8], characterized by the production and secretion of regulatory factors including 

interleukins, cytokines, growth factors, angiogenic factors, and matrix metalloproteases [8, 
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9]. SASP affects the function of tissues and organs by attracting immune cells, enhancing 

angiogenesis, and remodeling the extracellular matrix [10, 11].

Cell senescence has numerous and complex effects on tissue homeostasis and health. It is 

necessary for tissue sculpting during development, enhances wound healing, and suppresses 

detrimental tissue fibrosis in response to damage to the liver, the pancreas, and the skin [12–

17]. In addition, in young individuals, senescence has been shown to suppress tumor 

progression [18, 19]. However, senescence can also have detrimental effects. In older 

individuals, the accumulation of senescent cells during aging alters the physiologic function 

of tissues and organs leading to age-related diseases like cancer, cataracts, and 

atherosclerosis [20, 21]. The accumulation of senescent cells during aging has also been 

linked to the excessive production of SASP factors, which facilitate chronic inflammation 

and age-related diseases such as arthritis [15, 22, 23]. In addition, the inflammatory 

cytokines and growth factors secreted from senescent cells may promote tumor growth in 

old age by inducing angiogenesis and tumor cell proliferation [24–26].

Given that SASP is such a critical trait of senescent cells, understanding the regulation of 

SASP factor production provides direct insight into the mechanisms of aging. In this review, 

we discuss the regulatory RNAs that impact upon the SASP phenotype at all levels – 

transcriptional, post-transcriptional, and post-translational (Figure 1). We focus on specific 

noncoding (nc)RNAs that affect subsets of SASP factors, including microRNAs (miRNAs), 

long ncRNAs (lncRNAs), and circular RNAs (circRNAs).

2. MicroRNAs

MicroRNAs (miRNAs) are small ncRNAs spanning ∼22 nucleotides. They are generated 

from primary transcripts (pri-miRNAs) transcribed from the genome by RNA polymerase II. 

Pri-miRNAs are processed in the nucleus by a complex comprising the ribonuclease 

DROSHA (HGNC) and DiGeorge critical region 8 (DGCR8) to generate microRNA 

precursors (pre-miRNAs) [27–31]. Pre-miRNAs are exported to the cytoplasm by Exportin 5 

for further processing [32] and are cleaved in the cytoplasm by ribonuclease DICER1 to 

produce mature microRNAs [33], which are loaded into the RNA-induced silencing complex 

(RISC) [34]. Argonaute (AGO) proteins in the RISC direct microRNAs to specific mRNAs, 

typically forming partial complementarity between the microRNAs and segments of the 

mRNA 3′-untranslated region (UTR), which in turn lower the stability and/or translation of 

the target mRNA [35–38]. A few reports suggest that some microRNAs may instead 

upregulate the expression of target genes by competing with a translation suppressor or by 

other mechanisms [39, 40].

A single microRNA can target multiple mRNAs most human mRNAs are believed to be 

regulated by microRNAs [37]. Through this broad impact on gene expression, microRNAs 

can regulate diverse physiologic processes such as embryonic development and cell 

proliferation, differentiation, and apoptosis [41–45]. Many microRNAs have also been 

implicated in pathological conditions including cancer, diabetes, cardiovascular disease, 

neurodegeneration, and immune diseases [46–48]. Since identification of the first 

microRNA, lin-4, reported to regulate the lifespan of C. elegans [49], many studies have 
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established that microRNAs are among the key regulators of cell senescence and aging [50, 

51] in many species including humans.

2.1. MicroRNAs and SASP

Senescent cells are characterized by profound changes in metabolic and protein expression 

profiles, including SASP. As described above, SASP is characterized by increased 

production and secretion of various cytokines, growth factors and matrix metalloproteases 

[24]. Recently, several microRNAs have been shown to regulate the production and secretion 

of these factors in senescent cells, as discussed in this section (Table 1).

miR-146a/b—miR-146a and miR-146b were found to be more highly abundant in 

senescent than in quiescent fibroblasts. In primary human fibroblasts, miR-146a/b inhibit the 

secretion of SASP factors interleukin (IL)6 and IL8 by acting upon IRAK1 mRNA and 

lowering the production of IRAK1, a key factor of the IL-1α (IL1A) receptor signaling 

pathway [52]. Increased miR-146a/b expression in response to high levels of IL1A was 

proposed to function as a negative feedback loop to prevent excessive SASP activity [52]. 

However, miR-146a was induced in human diploid BJ fibroblasts immortalized by 

overexpression of telomerase, suggesting that in some cases, miR-146a might regulate SASP 

independently of senescence [53]. In trophoblasts, miR-146a-3p expression was elevated by 

antiphospholipid antibody (aPL) treatment through the activation of Toll-like receptor 4 

(TLR4). This upregulation of miR-146a induced IL8 secretion by activating TLR8 [54].

miR-335—A recent report indicated that miR-335 was upregulated in normal senescent 

cells and cancer-associated senescent fibroblasts (CAF). Higher levels of miR-335 lowered 

the abundance of phosphatase and tensin homologue (PTEN), in turn causing a rise in SASP 

factors like MMP2 and IL6 [55]. Senescent cells showed increased secretion of the protein 

cyclooxygenase 2 (PTGS2/COX2) and the signaling lipid prostaglandin E2 (PGE2). The 

levels of miR-335 were downregulated by inhibition of PTSG2/COX2 using celecoxib, 

which restored PTEN expression and decreased SASP [55].

miR-15b—Sirtuin 4 (SIRT4) is implicated in senescence-associated mitochondrial 

dysfunction and SASP. Its high expression in human dermal fibroblasts undergoing 

replicative or stress-induced senescence was associated to decreased levels of miR-15b [56].

miR-187—IL10 is a potent anti-inflammatory molecule that suppresses cytokine expression 

both transcriptionally and post-transcriptionally. Activation of primary human monocytes 

with IL10 induced the expression of miR-187, which in turn suppressed production of two 

major SASP factors, TNF and IL6 [57].

miR-9—The tumor suppressor miR-9, downregulated in cervical adenocarcinoma, was 

found to inhibit the expression of several targets, including the SASP factor IL6 [58].

miR-21—miR-21 is secreted by cancer cells and acts as a ligand for TLR8 in immune cells, 

triggering the secretion of pro-inflammatory cytokines TNF and IL6 [59]. While 

programmed cell death protein 4 (PDCD4), a direct target of miR-21, activates NF-κB and 

suppresses IL10 production, upregulation of miR-21 in human peripheral blood 
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mononuclear cells in response to lipopolysaccharide (LPS) suppressed PDCD4 production 

leading to lower NF-κB activity and greater IL10 production [60].

miR-222—miR-222 is upregulated in less aggressive metastatic cells of oral tongue 

squamous cell carcinoma (OTSCC). Functional analyses suggested that overexpression of 

miR-222 inhibited OTSCC cell invasion by inhibiting the SASP factor matrix 

metalloproteinase 1 (MMP1) [61]. Further analysis revealed that miR-222 inhibited the 

expression of MMP1 by directly targeting the 3′UTR of MMP1 mRNA as well as by 

inhibiting expression of manganese superoxide dismutase 2 (SOD2), an inducer of MMP1 

production.

miR-34—Expression of the longevity-associated protein SIRT1 is repressed by miR-34a. 

An elevation in miR-34a abundance in human aortic smooth muscle cells led to significant 

downregulation of SIRT1 and caused higher production of pro-inflammatory SASP 

molecules, although the secretion of SASP factors did not appear to be influenced directly 

by SIRT1 [62].

miR-125b—Treatment of RAW 264.7 macrophages with LPS reduced the levels of 

miR-125b, a microRNA that targets TNF mRNA and reduces TNF levels [63]. These data 

suggest that the LPS-dependent decrease in miR-125b may contribute to the LPS-triggered 

increase in TNF and SASP. The tumor suppressor miR-125b was less abundant in cutaneous 

squamous cell carcinoma (cSCC) than in healthy skin, leading to higher production of the 

SASP factor MMP13 in cSCCs [64].

miR-152—miR-152 inhibits the expression of the SASP factor MMP3 by binding to the 

3′UTR of MMP3 mRNA. In vitro invasion assays suggested that miR-152 significantly 

reduced the invasiveness of glioma cells, possibly by inhibiting MMP3 production [65].

miR-147—LPS also induced the expression of miR-147 in mouse macrophages via the 

TLR4–NF-κB axis. Overexpression of miR-147 was found to suppress the expression of 

pro-inflammatory cytokines TNF and IL6 in macrophages stimulated with TLR2/TLR3/

TLR4 ligands. These findings reveal the existence of a negative feedback loop through 

which TLR stimulation increases miR-147 levels, in turn suppressing the excessive 

production of inflammatory cytokines [66].

miR-199a—Activation NF-κB requires a kinase IκB kinase-β (IKBKB), a crucial factor 

for the activation of TLR–MyD88–NF-κB pathway in ovarian cancer. Recent reports suggest 

that miR-199a was capable of suppressing the production of IKBKB, which led to the 

reduced secretion of SASP factors IL6, IL8, and MCP1, and suppressed tumor progression 

[67].

3. Long-noncoding RNAs (lncRNAs)

Recent advances in high-throughput transcriptome sequencing revealed that the human 

genome encodes thousands of long noncoding RNAs (lncRNAs) [68]. LncRNAs are defined 

as transcripts longer than 200 nucleotides that generally lack protein-coding capacity but are 
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transcribed and processed like mRNAs [69]. LncRNAs can be classified based on their 

genomic origin into pseudogene-encoded lncRNAs, long intergenic RNAs, antisense 

lncRNAs, long intronic ncRNAs, etc [69]. LncRNAs have been implicated in the regulation 

of gene expression by controlling several key processes such as chromatin remodeling, 

transcription, mRNA stability, translation, and protein stability [70–75]. Recent reports 

indicate that lncRNAs are critical regulators of physiological processes such as cell division 

and differentiation, and numerous human diseases including cancer and neurodegeneration 

[76–78]. Recently, we screened for senescence-associated lncRNAs in human diploid 

fibroblasts and found that the expression of several lncRNAs was altered in senescent cells 

[79, 80]. In this section, we will discuss the role of lncRNAs in SASP.

3.1. LncRNAs and SASP

LncRNA-LET—lncRNA-LET (low expression in tumor) is less abundant in cancers 

including hepatocellular carcinoma, colorectal cancer, and squamous-cell lung carcinoma. 

Silencing of lncRNA-LET stabilizes and thereby allows the accumulation of nuclear factor 

90 (NF90) [81]. Senescent cells express reduced levels of NF90, an RNA-binding protein 

(RBP) that suppresses the translation of several SASP factors including MCP1 (CCL2), 

GROa (CXCL1), and IL6 [82]. Thus, the reduction of NF90 levels in senescent cells is 

linked to the enhanced production of several SASP factors. Accordingly, NF90 appears to 

function as an effector of lncRNA-LET actions to maintain low levels of SASP factors.

LincRNA-Cox2—LincRNA-Cox2 expression is induced in mouse upon activation of TLRs 

through the TLR–MyD88–NF-κB pathway. LincRNA-Cox2 suppresses the transcription of 

different sets of proinflammatory genes by interacting with heterogeneous nuclear 

ribonucleoprotein (HNRNP) A/B and A2/B1. Silencing LincRNA-Cox2 upregulated 

chemokines CCL5 and CX3CL1 as well as chemokine receptor 1 (CCRl), while it 

downregulated other proteins including IL6 following treatment with the TLR activator 

Pam3CSK4 [83].

NEAT1—The lncRNA nuclear-enriched abundant transcript 1 (NEAT1) is required for the 

formation nuclear paraspeckles [84]. Induction of NEAT1 expression by viral infection or 

treatment with poly(I:C), a TLR3 agonist, enhanced the formation of paraspeckles. The 

splicing factor proline/glutamine-rich (SFPQ) inhibits IL8 transcription. Interestingly, 

NEAT1 facilitates the transcription of IL8 mRNA by relocating SFPQ to nuclear 

paraspeckles [85].

Lnc-IL7R—The levels of lnc-IL7R were elevated upregulated in response to treatment with 

LPS. Silencing of lnc-IL7R reduced trimethylation of histone H3 at lysine 27 (H3K27me3) 

leading to a decrease in the levels of the inflammatory mediators E-selectin (SELE), 

VCAM1, IL6, and IL8 [86]. These findings suggest that Lnc-IL7R might contribute to 

regulating SASP factor production [87].

Lethe—The pseudogene lncRNA Lethe was shown to be downregulated in aging tissues. It 

was also reported that aging tissues have highly active NF-κB which could induce several 

pro-inflammatory genes [88]. Lethe interacts with the NF-κB subunit RelA to inhibit the 
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DNA-binding activity of NF-κB, leading to less production of pro-inflammatory cytokines 

[89]. The age-associated reduction in Lethe may be one of the reasons for the increased NF-

κB activity in older individuals.

THRIL—In THP1 macrophages, the lncRNA THRIL (TNF- and hnRNPL-related 

immunoregulatory lincRNA) interacts with the RBP hnRNP L to form a ribonucleoprotein 

complex that promotes TNF transcription through binding to the TNF gene promoter [90].

4. CircRNAs

Circular RNAs (circRNAs) have attracted much interest in recent years. Although circRNAs 

were first identified decades earlier, extensive investigation was not performed due to poor 

knowledge of their function and rudimentary detection techniques [91–93]. Recent work has 

uncovered that thousands of circRNAs are expressed in mammalian cells [94, 95], generally 

arising from the joining of 5′ and 3′ ends of exonic or intronic sequences during splicing, a 

process known as ‘backsplicing’. Due to the lack of free ends, circRNAs are resistant to 

cellular exonucleases. Recent studies have described various functions of circRNA in cells 

including sponging of microRNAs and RBPs, as reviewed recently [96]. Although 

knowledge of circRNAs in SASP is still at early stages, we anticipate that their contribution 

to SASP will become more apparent as our understanding of circRNAs progresses.

Circ-Foxo3

Highly expressed in old organs (heart, intestines, lung, and skin) relative to young organs, 

Circ-Foxo3 is predominantly localized in the cytoplasm and interacts with senescence-

associated proteins FAK, HIF1A, ID1, and E2F1, helping to elicit senescence [97]. In turn, 

Circ-Foxo3 increases the production of SASP factors, likely through indirect mechanisms.

CircPVT1

Hundreds of senescence-associated circRNAs (SAC-RNAs) differentially expressed in 

senescent WI-38 human diploid fibroblasts were recently reported [98]. CircPVT1, a SAC-

RNA generated from the lncRNA PVT1, was identified as being markedly reduced in 

senescent fibroblasts. The high levels of CircPVT1 in dividing cells resulted in the 

sequestration of let-7 and enabling of a proliferative phenotype [98], suppressing senescence 

and SASP.

5. Concluding remarks and perspectives

We have discussed the current knowledge and possible roles of ncRNAs (microRNAs, 

lncRNAs, circRNAs) in one of the major facets of senescence, SASP. As in other areas of 

senescence-associated gene regulation [6, 7], it is interesting that the various levels of 

control of SASP protein production rely on the actions of ncRNAs of all types. We propose 

that this extensive network of regulatory mechanisms underscores the critical role of SASP 

in senescence, and highlight the joint roles of RNA regulators in conjunction with protein 

and DNA to elicit a highly precise control of the SASP program. The reliance on regulatory 

ncRNA for the control of cellular processes may be particularly important in processes such 

as senescence and SASP in which cells experience cumulative damage to protein and DNA 
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and thus transcriptional regulation alone may not control gene expression patterns with 

sufficient accuracy. Alternatively, ncRNAs may provide the ‘checks and balances’ that 

characterize gene regulation driving critical cellular processes. One additional possibility is 

that SASP-regulatory ncRNAs might be shared between cells via extracellular vesicles 

originating from neighboring cells or from distant tissues [99, 100] to ensure that this 

important phenotype is maintained even if cells have impaired transcriptional programs.

As discussed, mounting evidence supports functions for ncRNAs as regulators of the 

production and secretion of SASP factors by modulating the transcription of SASP genes, 

the stability of SASP mRNAs, and the translation and/or secretion of SASP proteins. 

microRNAs target large fractions of mRNAs, and each microRNA can influence hundreds of 

target mRNAs [101]. Given their pleiotropic actions, inhibition of one microRNA using a 

stable antisense RNA molecule (an ‘antagomiR’) that binds to the mature microRNA of 

interest and inhibits its function [102] could have a broad clinical impact. Such approaches 

have been successfully used in cancer therapy [103–105]. In a similar way, microRNA-based 

therapeutics can be used to inhibit SASP-associated microRNAs in senescent cells. 

LncRNAs can interact with DNA, RNA, and protein to alter the expression of specific set of 

genes implicated in various diseases [106, 107]. Accordingly, lncRNAs are also emerging as 

therapeutic targets; an interfering lncRNA was recently shown to suppress carcinogenesis by 

blocking multiple oncogenic microRNAs [108] and might similarly be envisioned to affect 

SASP. Nonetheless, our knowledge of the roles of lncRNAs in cellular senescence is still 

very limited, and this knowledge is even more limited for circRNAs. As our understanding 

of ncRNAs regulating SASP expands and deepens, their potential therapeutic value in age-

associated diseases will come into view.
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Abbreviations

TNF Tumor necrosis factor alpha

IL Interleukin

LPS lipopolysaccharide

SASP Senescence-associated secretory phenotype

TLR Toll-like receptors

NF-κB nuclear factor-κB

lncRNA long noncoding RNA

miRNA microRNA

UTR untranslated region
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Figure 1. Levels of SASP gene regulation by different ncRNAs
ncRNAs affecting SASP factor production and secretion in a senescent cell by influencing 

the transcription of SASP genes (i), the post-transcriptional fate of SASP mRNAs (ii), and 

the secretion of SASP factors (iii), indicated in gray boxes. Red, ncRNAs; green, SASP 

factors; black, mediators through which some ncRNAs affect SASP factor expression. ├, 

inhibition/repression, → direct induction/activation, →→ indirect induction/activation.
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Table 1
ncRNAs affecting SASP factor production

MicroRNAs, lncRNAs, and circRNAs implicated in regulating SASP factors. The specific ‘Target SASP 

factors’ affected by the regulatory ncRNAs are listed; ‘[SASP mRNAs]’ denotes general regulation of the 

SASP phenotype by a given ncRNA. ‘Effector molecules’ are proteins and microRNAs through which some 

ncRNAs affect SASP gene expression programs.

ncRNA Target SASP factor Effector molecules References

microRNAs

miR-146a/b IL6, IL8 IRAK1, TLR8 [52–54]

miR-335 MMP2, IL6 PTEN [55]

miR-15b [SASP mRNAs] SIRT4 [56]

miR-187 IL6, TNF mRNAs [57]

miR-9 IL6 mRNA [58]

miR-21 IL6, TNF, IL10 TLR8, PDCD4 [59, 60]

miR-222 MMP1, SOD1 mRNAs [61]

miR-34a [SASP mRNAs] SIRT1 [62]

miR-125b TNF, MMP13 mRNAs [63, 64]

miR-152 MMP3 mRNA [65]

miR-147 TNF, IL6 (negative feedback?) [66]

miR-199a [SASP mRNAs] IKBKB [67]

lncRNAs

lncRNA-LET CCL2, CXCL1, IL6 mRNAs NF90 [81, 82]

LincRNA-Cox2 IL6 mRNA HNRNPA/B, HNRNPA2/B1 [83]

NEAT1 IL8 mRNA SFPQ [85]

lnc-IL7R SELE, VCAM1, IL6, IL8 (negative feedback?) [86, 87]

Lethe [SASP mRNAs] NF-κB [88, 89]

THRIL TNF mRNA HNRNPL [90]

circRNA
Circ-Foxo3 [SASP mRNAs] FAK, HIF1A, ID1, E2F1 [97]

CircPVT1 [SASP mRNAs] Let-7 sequestration [98]
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