Skip to main content
. 2017 Nov 7;8:1499. doi: 10.3389/fimmu.2017.01499

Table 2.

Synthetic peptides effective against mycobacteria.

Peptide Modifications Source Mechanism/antimicrobial activity Reference
1-C134mer Tetrameric form; oligo-N-substituted glycines (peptoid) and alkylation Design de novo
  • Pore formation

  • MIC (Mtb H37Rv): 6.6 µM

(171)
A18G5, A24C1ac, A29C5FA, and A38A1guan d-enantiomer, alkylation, tetramethylguanidinilation, and polyethylene glycol conjugation Derived from the insect proline-rich peptide Apidaecin Bacterial membrane permeation/inhibition of protein synthesis Hoffmann R, Czihal P Patent WO2009013262 A1. 2009 (172)
CAMP/PL-D Short cationic peptides (10 AA) rich in W and R selected from peptide libraries
  • Pore formation

  • MIC (Mtb H37Rv): 1.1–141 µM

(173)
CP26 Derived from cecropin A: mellitin
  • Bacterial cell wall disruption

  • MIC (Mtb H37Rv): 2 µg/mL

(174)
d-LAK 120 d-enantiomer Synthetic α-helical peptides
  • Pore-formation/Inhibition of protein synthesis

  • MIC (Mtb H37Rv): 35.2–200 µg/mL

(175, 176)
d-LL37 d-enantiomer Derived from LL-37
  • Pore-formation/Immunomodulatory activity

  • MIC (H37Rv): 100 µg/mL

(170)
E2 and E6 Derived from bactenecin (bovine cathelicidin) Bac8c (8 AA)
  • Bacterial cell wall disruption

  • MIC (Mtb H37Rv): 2–3 µg/mL

(174, 177)
HHC-10 Derived from bactenecin
  • Bacteria membrane lysis

  • MIC (M. bovis BCG): 100 µg/mL

(178a, 179)
hLFcin1-11/hLFcin17-30 d-enantiomer Derived from lactoferricin (All-R and All-K substitutions)
  • Bacterial cell wall and membrane lysis

  • IC90 (M. avium): 15–30 μM

(44)
Innate defense regulators [innate defense regulator (IDR)-1002, -HH2, IDR-1018] Derived from macrophage chemotactic protein-1 (MCP-1)
  • Immunomodulatory activity/anti-inflammatory

  • MIC (Mtb H37Rv): 15–30 µg/mL; in vivo [Mtb H37Rv and multidrug resistant TB strain (MDR-TB) infected mice]: 10–71% killing at 32 μg/mouse (3 × week intra-tracheal administration, 30 days)

(180)a(181)a(182)
LLAP Derived from LL-37
  • Inhibition of ATPase

  • MIC (M. smegmatis mc2155): 600 µg/mL

(183)
LLKKK18 Hyaluronic acid nanogel conjugation Derived from LL-37
  • Pore formation/Immunomodulatory activity

  • In vivo (Mtb H37Rv-infected mice): 1.2-log reduction at 100 µM (10 intra-tracheal administrations)

(184)a
MU1140 Derived from Streptococcus mutans lantibiotics
  • Inhibition of cell wall synthesis/On preclinical stage.

  • Effective on active and dormant Mtb MDR

Oragenics Inc Patent WO2013130349A (185)a
MIAP Derived from Magainin-I
  • Inhibition of ATPase

  • MIC (H37Ra): 300 µg/mL

(46)
Pin2 variants Derived from pandinin2 (short helical peptides)
  • Membrane disruption

  • Mtb H37Rv and Mtb MDR: 6–14 µg/mL

(186)
RN3(1-45)
RN6(1-45)
RN7(1-45)
Derived from human RNases N-terminus
  • Bacterial cell wall disruption/cell agglutination and intracellular macrophage killing

  • MIC (M. vacae; M. aurum; M. smegmatis mc2155; M bovis BCG) in vitro: 10–20 µM and ex vivo (M. aurum): 5–10 µM

(117, 167)
Synthetic AMPs (SAMPs-Dma) Dimethylamination and imidazolation Design de novo
  • Cell penetration and DNA binding/

  • synthetic antimicrobial peptide-Dma10: MIC (M. smegmatis mc2155): <20 µM

(51)
  • X(LLKK) 2X:

  • II-D, II-Orn, IIDab, and IIDap

Peptide d-enantiomer, ornithination, 2,4-diaminobutyric acidation, and 2,3-diaminopropionic acidation Short stabilized α-helix amphipatic peptides
  • Pore formation

  • M(LLKK)2M: MIC (Mtb H37Rv): 125 µg/mL; I(LLKK)2I: effective against MDR-TB

(22, 187)

aReported activities tested in vivo using murine infection models.