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Abstract

The environmental factors driving the increase in food allergies are unclear and possibly involve 

dual exposure to allergens, microbiome-driven effects or other mechanisms. Until they can be 

better understood, early intervention aiming at establishing oral tolerance provides an effective 

way to decrease the window-of-risk when children may develop allergic sensitisation to foods due 

to the absence of a protective immune response. Thus, the recent LEAP (Learning Early About 

Peanut allergy) and LEAP-On studies achieved a high level of peanut allergy prevention by early 

introduction of peanuts in the infants diet and conveyed more information regarding the evolution 

of IgE and IgG4 antibody responses to food antigens over time.

Introduction

Food allergies are increasing in developed countries [1], reaching in young children a 

prevalence around 4.2% (Germany), 6.8% (Norway), and 8% in the UK [2●] and US [3]. 

Notably, recent studies in China, where food allergy was infrequent in the past, found a 

prevalence of allergy to at least one food between 3.2–7.7% [1].

Given that genes do not change over short periods of time, it must be one or several 

environmental factors which drive this allergy epidemic. Several non-mutually exclusive 

hypotheses regarding the mechanisms underpinning this allergy epidemic have been 

formulated. Apart from the vitamin D hypothesis, which is comprehensively discussed in a 

recent review [4], other key hypotheses are the dual allergen exposure hypothesis and the 

hygiene hypothesis (including the potential role of microbiota diversity for establishing oral 

tolerance to foods).

Immune mechanisms of allergy and early prevention

Until the precise environmental drivers can be disentangled, primary prevention strategies 

have to rely upon early ‘natural’ tolerance induction, which then counters allergic 
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sensitisation. Food allergy is induced when gut (or eventually skin) antigen presenting cells 

drive T helper cell differentiation into Th2 cells that consequently induce B cells to switch 

and mature into predominantly IgE-producing cells [5]. Conversely, food tolerance results 

when antigen presentation in the Gut-Associated Lymphoid Tissue (GALT) leads to the 

development of regulatory T cells that drive B cells to produce predominantly IgG 

antibodies to foods, as well as potentially regulatory B cells that secrete IL10 and drive IgG4 

production. [5] (Table 1)

It is still unclear how dendritic cells (DC) could select between the tolerance and allergy 

responses. It has been known that gut CD103+ DC, that migrate to the mesenteric lymph 

nodes of mice and humans, drive tolerance because they induce gut-homing Foxp3+ Treg 

cells due to their production of retinoic acid [6]. More recently, additional DC subsets that 

drive pro-inflammatory responses rather than tolerance have been identified; one of those 

subsets, the type 2 DC (DCTh2) has a distinct transcription signature expressing IRF4 and 

STAT5 [7]. Since STAT5 is a downstream target of TSLP, this supports a Th2 skewed 

response. Other immune effectors driving allergic responses are the tissue-resident group 2 

innate lymphoid cells (ILC2) that secrete locally high amounts of cytokines, especially IL5 

and IL13 [8]. Therefore one possible mechanism leading to food allergy increase is an 

altered balance between pro-tolerogenic and pro-allergenic DC.

The interplay between antagonistic T cell subsets, especially the effector T cells and the 

regulatory T cells (Treg) is crucial for determining the allergic/tolerant phenotype in animal 

models of food allergy. Thus, allergy to ovalbumin can be transferred by injecting Th2 

effector cells from an allergic mouse into a naive mouse [9]. On the other hand, mice 

rendered tolerant to ovabumin by oral administration were protected against subsequent 

allergic sensitization, suggesting that, once established, oral tolerance is difficult to breach 

[10]. The antagonism between the Tregs underpinnig oral tolerance and food allergy 

effectors is demonstrated by the finding that transferring CD25+ mesenteric lymph node 

Tregs from a mouse orally tolerized to ovalbumin suppressed allergy symptoms [11]. In 

humans the role of Tregs is mainly known by studying the IPEX syndrome (Immune 

dysregulation, polyendocrinopathy, enteropathy, X linked), resulting from mutations of the 

FOXP3 gene that lead to a loss of Treg-mediated tolerance [12]. Nevertheless, peanut allergy 

could be transferred from an allergic donor after liver and kidney transplantation. 

Subsequent investigation demonstrated the persistence microchimerism from the donor in 

the skin but not in the blood of the recipient, presumably due to post-transplantation 

immunosuppression [13].

Therefore it appears that the balance between food tolerance and allergy could be influenced 

at multiple levels during the development of an immune response. Recently three cytokines, 

TSLP, IL25 and IL33, were each found to be necessary for the induction of food allergy in a 

mouse egg white allergy model [14]. Thus the injection, at the time of sensitisation, of a 

blocking antibody to any of these three cytokines was sufficient to block the development of 

allergy. Conversely, once egg white allergy was established, only a blocking cocktail against 

all three (anti-TSLP+anti-IL33R+anti-IL25 antibodies) but not single antibodies or 

combinations of two of those were able to suppress allergic responses [14].
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Conversely, mesenteric lymph node ablation or deficiency of the chemokine receptor CCR7 

that is involved in DC and T cell subset migration prevents oral tolerance induction [15]. 

Other immune effectors, such as secreted IgA antibodies, do not seem to play a role since 

sIgA-deficient piglets are able to develop oral tolerance and transfer it with their memory T 

cells [16].

Once allergy or tolerance is established, this state is relatively difficult to breach since these 

strongly antagonize each other [10, 11]. The absence of a clinical reaction in the presence of 

allergen-specific IgE (i.e. sensitisation) represents a set of distinct phenotypes of tolerance in 

atopic individuals. Five types of sensitisation can be identified: antenatal sensitisation, stable 

sensitisation, pre-allergic sensitisation, post-allergic sensitisation and desensitisation [17–

19]. Understanding the mechanisms of tolerance despite IgE sensitisation may shed light 

into ways to modify and prevent the food allergic response. Different types of sensitisation 

may be underpinned by distinct immune mechanisms. The absence of clinical reactivity 

could be due to passive processes (e.g. elaboration of low-affinity IgE, low epitope spreading 

or IgE that only binds to clinically irrelevant epitopes) or to active inhibitory and/or 

regulatory processes, such as the production of IgG4 antibodies with the same specificity as 

IgE and the induction of Treg cells [20]. The strategy of early oral tolerance induction 

prevents this antagonism between the mechanisms of food allergy and oral tolerance as it 

decreases the temporal window of risk when children can be sensitised to allergens due to 

the absence of a protective immune response. This antagonism underpins the prevention 

strategy of early oral tolerance induction that decreases the temporal window of risk when 

children can be sensitised to allergens due to the absence of a protective immune response.

Dual Allergen Exposure Hypothesis

Routes of exposure to food antigens appear to be crucial in determining whether food allergy 

or tolerance develops. There is a clear association between eczema and the development of 

food allergy, with up to 50% of children with early-onset, severe eczema developing 

challenge proven allergy to peanut, egg or sesame seed allergy [21]. In children with 

moderate to severe eczema recruited to the LEAP study (Learning Early About Peanut study 

at http://www.leapstudy.co.uk/) even by 4 months of age there was demonstrable specific 

IgE to common food allergens such as egg (50%), milk (28%) and peanut (21%). [22] 

Animal and human observational and in-vitro studies support the hypothesis of 

transcutaneous sensitization to food allergens through inflamed eczematous skin [23, 24]. 

Epicutaneous exposure to 100 μg of peanut protein or ovalbumin (OVA) in mice after tape 

stripping the skin induces a potent allergic Th2-type response, high levels of peanut or OVA 

specific IgE respectively and anaphylaxis on subsequent oral exposure [24]. More recently, 

the TSLP-basophil axis was shown in a mouse model to be responsible for the promotion of 

food allergy resulting from. exposure to food allergens through inflamed skin [25].

In humans, observational studies have found that topical application of Arachis (peanut) oil 

onto eczematous skin during infancy is significantly associated with the development of 

peanut allergy; among peanut allergic children with eczema in the ALSPAC study, 90% had 

been topically exposed to creams containing Arachis (peanut) oil in the first 6 months of life 

[17]. In human studies, environmental exposure to peanut during infancy (assessed by 
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household peanut consumption) increased the risk of peanut allergy; however, if the infant 

had consumed peanut in the first year of life then they were protected against developing 

peanut allergy [26]. More recent studies found that eczema severity amplifies the risk of 

peanut sensitization and likely allergy resulting from exposure to peanut antigen in 

household dust [27]. A similar increase of peanut sensitisation and allergy risk was seen in 

children with filaggrin loss-of-function mutations exposed to high levels of peanut allergens 

in the household dust [28]. This provides a good example of gene-environment interactions 

leading to the development of peanut allergy in young infants.

Thus, the dual allergen exposure hypothesis suggests that through this balance of exposures 

during the first year of life (depending on whether the initial exposure to peanut is through 

the skin or gut), the immune system is then primed to develop allergy versus tolerance 

respectively. There is therefore a narrow window of opportunity, during the child’s first year 

of life, where this balance could be influenced towards a tolerogenic response.

The hygiene hypothesis and microbiome role in food allergy and its 

prevention

During early life, environmental exposures are associated with protection from food allergy. 

For instance, analysis of the Finnish national database of state-supported hypoallergenic 

cow’s milk formula prescription demonstrated that having already had more than four 

deliveries and multiple pregnancy were associated with protection from cow’s milk allergy 

[29]. Hygiene factors in the Melbourne based Healthnuts cohort have own that egg allergy is 

less likely amongst children with older siblings and those with a pet dog at home [30].

Germ-free mice have a strong disposition towards developing food allergy. They harbour a 

profoundly under-developed immune system, with less local and lymphoid IgA, fewer 

plasma cells in their gastro-intestinal mucosa and a dramatic reduction in their secondary 

mesenteric lymphoid tissue [31]. Mice with normal gut microbiota (commensal 

communities) are protected from allergic sensitisation by regular oral feeding with 

ovalbumin. By contrast, sensitised germ-free mice are unable to produce the Interferon-γ 
and IgG2a associated with tolerance induction, and instead produce increased IgE and 

Interleukin-4 (IL-4) on ovalbumin challenge [32]. The reconstitution of germ-free mice with 

Bifidobacterium infantis before sensitisation can ameliorate this disposition towards allergy, 

showing that the gut microbiota can facilitate and promote tolerance.

This model has been developed to more closely reflect findings amongst humans. For 

instance, increasing the diversity and richness of gut microbiota donated to germ-free 

models allows greater capacity for the induction of oral tolerance [33]. Similarly in infants, 

lower gut microbiota richness and or diversity is associated with greater sensitisation when 

age matched comparisons are undertaken between those with food sensitisation and controls 

[34]. The introduction of commensal gut microbiota strains to germ-free mouse strains 

induces de novo generation of mucosal CD4+CD25+ Foxp3+ cells, allowing the local 

production IL-10 [35]. By removing these T-regulatory cells from a model of oral tolerance, 

we see a relapse into allergy. Furthermore, specific pathogen-free mice receiving PC61 anti-

CD25 monoclonal antibody are no longer able to support tolerance after oral β-lactoglobulin 
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gavage, and instead demonstrate raised β-lactoglobulin specific IgE and reduced ability to 

suppress IL-5 and IL-13 production from splenic preparations [36]. Oral tolerance and Treg 

cells are likely promoted by short-chain fatty acid metabolites such as butyrate, released by 

commensal Clostridia constituents derived taxa locally at the mucosal surface. Greater short 

chain fatty acid production has also been noted amongst probiotic formula supplementation 

used to treat milk allergy [37]. Whilst environmental exposures may promote Treg activity, 

biomarkers that are correlated with the establishment of tolerance to foods are difficult to 

measure in infants. However, longitudinal assessment of peanut specific IgE, IgG, IgG4 and 

potentially other immunological biomarkers allow some insight into the continued balance 

of sensitisation and oral tolerance amongst infants undertaking early introduction of peanut 

in their diets.

Immune mechanistic insights resulting from peanut allergy prevention by 

early introduction of peanut in the diet

The LEAP [38] and LEAP-On [39] peanut allergy prevention studies have increased our 

insight into the changes that occur with IgE, IgG and IgE:IgG4 ratios over time, when 

developing allergy or tolerance to peanuts (Figure 1). In the LEAP study, 640 high-risk 

children were randomized into two groups – a peanut consumption group who ate peanut 

products at least 3 times a week (average of 6 grams of peanut protein a week) and the 

peanut avoidance group who avoided any peanut products until 60months of age. Peanut 

allergy was determined by oral food challenges. Subsquently, in the LEAP-On study, all 

participants stopped eating for one year and were then reassessed, in order to determine 

whether the protective effect of early peanut consumption persisted in the long term. In the 

LEAP study we saw an early increase in IgG4 production in the consumption group (already 

evident after a few months of consumption). Surprisingly, there were no differences between 

the consumption and avoidance groups regarding their mean levels of IgE to peanut 

throughout the LEAP study, all the way to 5 years of age. However, when children were 

followed after one year of peanut avoidance to 6 years of age (LEAP-On) a statistically 

significant decline in peanut-specific IgE was observed in the initially peanut-consuming 

population, especially in IgE to Ara h 2, the major peanut component. This reflects two 

important points relevant for our understanding of the immunology of food allergy 

prevention.

The first point is that the elaboration of IgE antibodies to foods occurs early in infancy and 

may take a very long time to switch off, likely due to the presence of long-lived memory B 

and plasma cells committed to IgE production. Hence it is extremely important to follow 

children in such studies for a long time in order to gain an insight into the evolution of 

immune responses to food allergens over time.

Children who were allergic to peanut at 60months of age already had higher peanut-specific 

IgE at 12months, 30months and 60months. Peanut-specific IgG and IgG4 levels also 

increased over time in both the peanut consumption and avoidance groups, however the 

peanut consumption group, who were subsequently protected against peanut allergy, had a 

significantly greater and earlier increase (i.e. by 12 months).
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In sensitised patients, the interplay between IgE and other allergen-specific antibodies of 

different isotypes (such as IgG4) may determine whether exposure to the allergen causes the 

activation of mast cells and basophils with degranulation and release of vasoactive and pro-

inflammatory mediators that lead to the allergic symptoms. This could explain the absence 

of clinical responses seen in the five types of sensitisation described above. In the LEAP 

study, the overall balance between peanut-specific IgG4 and peanut-specific IgE reflected 

the participants’ allergic status to peanut. In another peanut study, peanut sensitised tolerant 

patients had higher levels of specific IgE compared to IgG4 to peanut and the three peanut 

major allergens as assessed by IgG4/IgE ratios [40]. The plasma samples of peanut 

sensitised but tolerant children were able to inhibit IgE-mediated peanut-induced basophil 

and mast cell activation to a similar extent as plasma from peanut allergic patients that had 

been submitted to OIT. Depletion of this antibody isotype led to an increase in peanut-

induced mast cell activation, indicating that this effect was partially mediated by IgG4 

(Figure 2).

In children with peanut allergy in the avoidance group of the LEAP study, almost all of their 

IgG4/IgE ratios fell below the mean ratio for the group and it was found that unless IgE 

levels were very high, elevated IgG4 levels were associated with the absence of an allergic 

reaction to peanuts. In the LEAP-On study, after a yearlong period of peanut avoidance in 

previous peanut consumers, peanut-specific IgG4 levels (p<0.001) and peanut-specific 

IgG4/IgE ratios continued to be higher in the peanut consumption group than in the peanut 

avoidance group. However, IgG4 levels started to slowly drift down after 30 months, even in 

the peanut consumption group. In the participants whose became allergic in the LEAP-On 

study (1.1% of the peanut consumption group and 1.1% of the peanut avoidance group), the 

ratio of peanut-specific IgG4/IgE declined between 60 and 72 months. The children from the 

peanut consumption group who were able to tolerate peanut continued to have low levels of 

peanut-specific IgE and high ratios of IgG4/IgE at 60 months in the primary trial but this 

was maintained at 72 months even after a 12-month period of not consuming peanut.

The second point relevant for the immunology of food allergy prevention is related to the 

dilution effect seen in prevention studies. Although there was no difference in mean peanut-

specific IgE during the LEAP Study, extreme value analysis revealed that high level IgE 

production to peanut was increasingly observed over time in the group that went on to 

become peanut allergic. Nevertheless, since these would represent a minority of study 

participants, their data would be ‘diluted’ by the majority of study participants, who remain 

tolerant. This sampling effect has the potential to influence the way in which we interpret 

results on an immunological level and must be considered in future prevention study design. 

As discussed by Bahnson et al [41], most children start as ‘normal’ and without the disease 

of interest (i.e. peanut allergy) so that if a study has a high proportion of healthy participants, 

statistical power decreases causing a dilution effect. Thus, in LEAP, 17% of the peanut 

avoidance group and 3% of the peanut consumption group developed peanut allergy, 

respectively. If peanut consumption were responsible for altering IgE production, it would 

have only been the cause for 14% of the consumption group who would have developed 

peanut allergy. If this was true and immunological differences existed in IgE between 

children consuming peanut and those avoiding peanut, the differences could be “diluted” by 

the 86% children who were likely to be non-allergic to peanut.
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Conclusions

The establishment of oral tolerance to foods is a complex process, resulting from the balance 

between immune effectors that drive the development of ‘healthy’ Treg and IgG/IgG4 

responses and antagonistic immune effectors that promote Th2 dominant responses leading 

to IgE production. This balance may be altered due to environmental factors at the point of 

allergen presentation in the gut or at subsequent levels of the acquired immune response, 

possibly involving Treg cells. Promising areas of intervention have been defined through the 

dual allergen exposure hypothesis and the investigation of the role of microbiota. 

Nevertheless, until the environmental factors that drive the current allergy epidemic are 

identified, early food allergy prevention through the induction of oral tolerance remains the 

most promising approach at a population level. This has been demonstrated by the LEAP 

and LEAP-On studies for peanut allergy and there is further evidence that this could apply 

for egg allergy [42]. More recently, the outcome of the LEAP and LEAP-On studies further 

increased our knowledge of the longitudinal evolution of the immune responses to foods that 

were introduced early in the infant diet.
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Highlights

- Skin exposure to foods may promote allergy whereas tolerance develops in 

the gut

- Local microbiota may influence the balance of tolerance/allergy gut immune 

responses

- Early intervention reduces the window-of-risk when children are not 

protected by tolerance

- Prevention studies require long-term immunological and clinical follow-up

- The dilution effect needs to be considered when assessing prevention 

biomarkers
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Figure 1. 
Changes that occur with IgE, IgG and IgE:IgG4 ratios over time in children who consumed 

or avoided peanuts in the frame of the LEAP and LEAP-On studies [39]. The red lines 

outline the evolution of the levels of peanut-specific IgG4 and respectively the evolution of 

the ratio of peanut-specific IgG/IgE in children who were subsequently found to be peanut 

allergic at 72 months of age.
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Figure 2. 
Depletion of IgG4 decreased the ability of plasma from peanut-sensitized but clinically 

tolerant patients to inhibit peanut-induced activation of mast cells. **p<0.01 [17] In these 

inhibition experiments, LAD2 mast cells were sensitized with plasma from a patient with 

peanut allergy, then were activated with peanut allergens in the presence of either IgG4-

depleted or mock-depleted plasma from 12 peanut-sensitized but clinically tolerant 

individuals. The vertical axis shows the percentage of inhibition of mast cell activation 

achieved by adding the respective plasma samples.
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Table 1

Regulatory immune effectors involved in food allergy pathogenesis.

Site/Effector Expected association with allergy Mechanism and potential role for allergy prevention

Regulatory T cells

 Th1 cells Th1 responses suppress Th2 Use of Th1-inducing adjuvants for immunotherapy [43]

 Induced Tregs Suppress Th2 Multiple subsets have been described. More recently, Duhen et al [44] 
described Tregs subsets ‘mirroring’ effector subsets ie Th1reg, Th2reg, 
Th17reg etc. Tregs may inhibit allergy at multiple levels, acting upon 
the antigen presentation process and directly on T effectors. [5]

 LAP+FoxP3- Treg Gastrointestinal-homing subset TGF beta-dependent suppression of allergic reactions [5]

Regulatory B cells

 B cells producing 
‘blocking’ IgG/IgG4

Suppress allergy IgG/IgG4 cross-link the inhibitory Fc gamma type 2 receptor on 
antigen presenting cells [40]

 CD5+ Bregs Suppress allergy Suppress Th2 responses by secreting IL10 [45]
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