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Abstract

Background—The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing 

(NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to 

predict psychiatric symptom severity scores. This paper summarizes our methods, results, and 

experiences based on our participation in the second track of the shared task.

Objective—Classical methods of text classification usually fall into one of three problem types: 

binary, multi-class, and multi-label classification. In this effort, we study ordinal regression 

problems with text data where misclassifications are penalized differently based on how far apart 

the ground truth and model predictions are on the ordinal scale. Specifically, we present our 

entries (methods and results) in the N-GRID shared task in predicting research domain criteria 

(RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) 

from psychiatric notes.

Methods—We propose a novel convolutional neural network (CNN) model designed to handle 

ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal 

loss function, a CNN, and conventional feature engineering (wide features) into a single model 

which is learned end-to-end. Given interpretability is an important concern with nonlinear models, 

we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to 

identify important words that lead to instance specific predictions.

Results—Our best model entered into the shared task placed third among 24 teams and scored a 

macro mean absolute error (MMAE) based normalized score (100 · (1 − M M AE)) of 83.86. 

Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with 

the winning shared task entry. Applying LIME to model predictions, we demonstrate the 

feasibility of instance specific prediction interpretation by identifying words that led to a particular 

decision.
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Conclusion—In this paper, we present a method that successfully uses wide features and an 

ordinal loss function applied to convolutional neural networks for ordinal text classification 

specifically in predicting psychiatric symptom severity scores. Our approach leads to excellent 

performance on the N-GRID shared task and is also amenable to interpretability using existing 

model-agnostic approaches.
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1. Introduction

The National Institute of Mental Health (NIMH) created the Research Domain Criteria 

(RDoC) framework to study mental health disorders from genetic to behavioral level 

aspects. It aims at developing a new nosology for mental disorders by also considering 

genetics, neuroimaging, and cognitive science for characterizing both normal and abnormal 

human behavior. This motivation deviates from the existing Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5) framework that relies on presenting symptoms and 

signs [1]. While the RDoC framework evolves, transitioning into concrete approaches to 

assessing mental disorders according to it warrants development of informatics tools that can 

determine symptom severity scores based on RDoC dimensions and constructs. The CEGS 

N-GRID 2016 Shared Task in Clinical Natural Language Processing is a first step toward 

that goal. Specifically, the main prediction problem (track 2) in this shared task is to 

automatically determine ordinal symptom severity scores for the positive valence systems 
(PVS) using natural language processing (NLP) techniques applied to neuropsychiatric 

notes. Here, PVS refers to one of the five main domains under which different RDoC 

constructs are grouped. This particular domain refers to activities where individuals 

knowingly engage in harmful activities such as drug use, drinking, and gambling 

encapsulating positive motivational situations or contexts, such as reward seeking, 
consummatory behavior, and reward/habit learning [2]. The scores are ordinal levels, 

specifically, absent (0), mild (1), moderate (2), and severe (3) with integers shown in 

parentheses being used as numeric representations in both prediction and evaluation tasks. 

For details about the organizational aspects of the shared task including data collection and 

annotation, please refer to the overview paper [3]. Next, we outline the note structure and 

modeling choices for this task.
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1.1. Neuropsychiatric Clinical Note Structure

The textual notes provided for this shared task are very different from other clinical notes 

such as discharge summaries and pathology reports typically used in text mining efforts. In 

fact, they are the first of their kind released to the NLP community and deserve some 

additional treatment. Several identifiers and other pieces of information that constitute 

private health information (PHI) have been changed to arbitrary values. Although the notes 

are in free text format, they still contain semi-structured information grouped under various 

headings. Furthermore, several portions of the note contain questions with Yes/No or 

categorical responses. When the response is affirmative, there is usually a brief text blurb 

elaborating relevant additional information for the corresponding question. Besides some 

essential PHI, the following psychopathology related fields are present in the notes.

1. The history of present illness is a text field averaging 300 words per note and is 

present earlier in the note describing initial assessment and observations made by 

the psychiatrist about the patient’s condition.

2. Additional information is available about histories of suicidal/violent behavior, 

prior inpatient/outpatient treatments, current alcohol/drug/caffeine/tobacco use, 

and family psychiatric history. For some themes, detailed information is 

collected. For instance, the AUDIT-C score [4] is computed based on answers to 

several questions on alcohol consumption patterns. For drug use, details about 

the use of specific types such as hallucinogens, marijuana, cocaine, stimulants, 

and opiates are recorded.

3. The psychiatric review of systems is a sequence of questions related to well 

known mental disorders and Boolean responses are recorded for each of them. 

For example, for depression, one of the questions is – “Has the patient had 

periods of time lasting two weeks or longer in which, most of the day on most 

days, they felt sad, down, or depressed”. There are 19 such questions covering 

conditions such as depression, bipolar disorder, anxiety disorders, dementia, 

eating disorders, and compulsive disorders.

4. Information about the patient’s medical history, medications currently being 

taken, and social aspects such as family and relationships, education, and 

employment are also included. An assessment of risk factors for mental disorders 

is also included.

5. The multi-axial diagnoses segment of the note is legacy information from the 

DSM-4 framework where different diagnoses (typically with ICD-9 codes) are 

listed along five different axes where the first axis is typically the main set of 

clinically diagnosed major psychiatric disorders including major depressive 

disorder, schizophrenic episodes, or panic disorder.

6. The final portion of note includes the formulation text field that describes the 

patient’s case and diagnosis, important etiological factors, plan of treatment, and 

prognosis.

Due to the free text nature of the notes, additional parsing is typically needed to collect the 

Boolean or categorical responses listed under several headings. These, in turn, can be used 
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as additional features on top of the full-text note and its n-grams. For example, drug use can 

be treated as a Boolean variable and its subheadings corresponding to use of cocaine and 

opiates can also be incorporated as such features. On the other hand, smoker status has four 

categories: never, former, current some day, and current every day. Some of these features 

also include real number values such as the AUDIT-C score for alcohol consumption and 

numbers of cups of coffee for caffeine intake. All these features are henceforth called wide 
features given they are typically used as inputs to the final layer in a deep neural network, 

thus making the network wide in that sense, in contrast to the deep features that arise from 

transformations applied to word embeddings of n-grams in the full narrative.

1.2. Predictive Modeling Alternatives

Our main objective is to build supervised models to categorize each note into one of four 

ordered symptom severity degrees as mentioned earlier. There are two conventional 

approaches to modeling positive valence score prediction: as multi-class classification or 

regression problem. In a multi-class framework we would treat each class independently and 

all misclassifications are equally penalized. So a misclassification between absent and mild 
is equivalent to that between absent and severe in terms of the corresponding contribution to 

the cumulative error. Alternatively, we can use numeric {0, 1, 2, 3} representation of the four 

classes to model the task as a regression problem. In this case, the prediction outcome is 

typically a real number and will need to be projected back to one of the four original classes.

Contrary to both regular text classification and conventional regression methods, the RDoC 

score prediction problem exactly fits the ordinal regression modeling approach in statistical 

learning given we are to classify instances into a set of ordered classes where 

misclassifications are penalized differently depending on the distance between the correct 

label and the predicted one. Methodologically, this paper makes several contributions: 

successfully uses wide (auxiliary) features (based on categorical responses to questions 

outlined in Section 1.1) and an ordinal loss function (output layer) applied to a convolutional 

neural network for text classification. We present extensive quantitative and qualitative 

results on the N-GRID dataset, which includes interpretations of predictions made using our 

model.

We organize the remainder of this paper as follows: In Section 2, we discuss related work 

including relevant neural network and ordinal regression methods. In Section 3, we present 

technical details of our model including loss functions and regularization methods. Next, in 

Section 4 we assess our approach from both quantitative and qualitative perspectives and 

discuss results based on the evaluation metric used for the shared task.

2. Related Work

Given the recent widespread use and availability of electronic medical records and textual 

narratives included with them, it is now possible to apply state-of-the-art methods in 

machine learning and NLP to the biomedical domain. In this section, we review related work 

in the context of methods we propose in this effort: neural networks for natural language 

processing (Section 2.1) and prior work on ordinal regression problems (Section 2.2).
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2.1. Neural Networks for Text Classification

A recent resurgence in neural networks has paved ways to more general alternatives to 

supervised learning, especially in object classification. Deep neural networks (deep nets) 

prevent the complicated process of feature engineering and take upon the burden of 

automatically learning high-level representations of input instances that are better suitable 

for the classification problem at hand. Deep nets have been initially applied to problems in 

computer vision but have recently been adapted to NLP tasks [5, 6, 7] especially through 

learning distributed representations of textual segments (words, sentences, documents) as 

vectors in ℝd. These vectors directly guide primitive natural language processing tasks such 

as part-of-speech tagging and statistical parsing as well as high-level tasks such as text 

classification and machine translation. Convolutional neural networks have been used in a 

wide array of natural language processing tasks including relation extraction [8], sentiment 

analysis [9], and other text classification tasks [10, 11, 12].

In this effort, we make use of recent advances in convolutional neural networks for text 

classification [9, 10]. Unlike previous work which focuses on standard classification tasks 

(multi-class and multi-label), we expand these models to ordinal regression tasks. Deep 

neural networks learn a suitable feature representation from the textual data. However, there 

are instances when we need to augment the neural network with structured information [10, 

13] to achieve additional performance gains. Cheng et al. [13] show the usefulness of adding 

such auxiliary features (like those typically used for linear models) in conjunction with 

standard neural network inputs such as word vectors.

Unlike probabilistic models, neural networks suffer from the lack of a posterior predictive 

distribution. Recent work [14, 15] focuses on training probabilistic neural networks. Gal and 

Ghahramani [15] show that the dropout regularization approach can be used to approximate 

Bayesian techniques. Intuitively, by making multiple predictions per test instance with 

dropout activated, the predictions can be treated as samples to estimate a predictive 

distribution. We use these approaches to output probability estimates for our ordinal 

framework in this effort.

2.2. Ordinal Regression

Ordinal regression has a long history in statistical literature [16, 17, 18]. Specifically, Rennie 

and Srebro [16] modify multiple classical machine learning methods to ordinal regression 

problems. Many methods are threshold based; for example, logistic regression can be 

adjusted such that the score returned should fall within a particular range depending on the 

ordinal class. Other methods have been modified for ordinal regression [19, 20], including 

support vector machines modified by Herbrich et al [21].

In this work, we expand on recent work for estimating age in images [22]. Specifically, we 

adapt their multiple output ordinal regression layer to CNNs more appropriate for text. We 

also show how they can be added to an ensemble to improve performance as well as provide 

a method to convert the multiple outputs to a probability distribution over classes.

Rios and Kavuluru Page 5

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Methods: Ordinal Convolutional Neural Networks with Wide Features

In this section, we will describe a convolutional neural network (CNN) used in our prior 

work [10] and its adaptation to suit the current task with wide features and ordinal loss. 

Intuitively, a CNN will map each successive n-gram in a document to a real number. This 

mapping is accomplished using “convolutional filters” (CFs). Each CF will learn to extract 

informative n-grams from a document toward making the correct decision.

Word embeddings are dense vector representations that have been shown to capture both 

semantic and syntactic information of the corresponding language. A few recent approaches 

learn word vectors [5, 6, 7] (as elements of ℝd, where d is the dimension) in an unsupervised 

fashion from textual corpora. Henceforth, the input clinical note is represented by the 

corresponding document matrix where the i-th row corresponds to the word vector 

corresponding to the i-th word in the narrative.

3.1. Deep and Wide Neural Networks for Text Classification

The input to our CNN is a text document represented as a matrix, D ∈ ℝn×d, where each row 

represents a word vector, with n total words in the document, and the word vector has 

dimension d. CFs are defined as Wq ∈ ℝh×d, where h is the number of words we wish the 

convolution filter to span, that is, the length of the sliding window. Let the 2-D convolution 

operation * be defined as

Next, we map a length h word window, Dj:j+h−1, of the document to a real number cj ∈ ℝ 
using a non-linear function (rectified linear unit [23, 24]) f as

where b ∈ ℝ represents the bias term. After convolving over the entire document using Wq, 

we get the corresponding convolved feature map

To overcome the issue of varying document lengths we perform a max-pooling [25] 

operation

which gives a single feature ĉWq corresponding to the feature map generated by Wq. 

However, several CFs will be trained, say k of them, , to create multiple feature 
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maps leading to the corresponding single max-pooled features . These form 

a final max-pooled feature vector

(1)

where .

Given the question-answer structure of some portions of the note (as outlined at the end of 

Section 1.1), we want to explicitly leverage such information in the model. We parse this 

data from each psychiatric report. For example, we extract Boolean responses whether the 

patient takes drugs as mild as caffeine (hx_drug_caffeine in Figure 1) as well as extracting 

answers to questions about hard drugs, such as cocaine (hx_drug_cocaine in Figure 1). 

These form the wide features while the convolved full text provides deep features.

Let z ∈ ℝC represent a feature vector encoding all parsed information extracted from a note. 

For this current study we had C = 121 explicit structured features. Most of the information is 

represented as a categorical variable using a one-hot encoding scheme. A few variables are 

treated as real numbers (e.g., AUDIT-C score for alcohol consumption or number of cups of 

coffee) and represented as such in z. Both ĉ q (from equation (1)) and z are combined

(2)

where ‖ represents the concatenation operation such that f ∈ ℝC+k. f now gives a final 

representation of our document, including both the deep features ĉ q and the engineered 

wide features z.

Overfitting is a major problem with deep neural networks. To alleviate this weakness, we 

utilize dropout [26] regularization. Instead of passing f from equation (2) directly to the 

output layer during training, we randomly let values of ĉ  pass through to the output such 

that

where ◦ refers to element-wise multiplication and g ∈ {0, 1}k is constructed with each gi 

drawn from the Bernoulli distribution with parameter p (typically set to 0.5). Intuitively, this 

means that gradients are backpropagated only through unmasked elements where gi = 1. 

During test time we scale the weights such that

This down weighting is essential since at training, on average, only half of the activations are 

non-zero, which is not true at test time.
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The vector f̂ can now be passed to an output layer. Next we present two possible options for 

the output layer: softmax (Section 3.2) and ordinal output (Section 3.3).

3.2. Multi-class Output and Loss (CNN and CNN-Wide)

The easiest way to approach an ordinal regression problem is to treat it as a multi-class 

classification task. For example, in the case of positive valance classification, we can treat 

each class independently (absent, mild, moderate, and severe). This is a well studied 

problem and can be addressed by using a softmax layer.

After obtaining f̂, we transfer it to the softmax layer. Let U ∈ ℝ4×(C+k) and bU ∈ ℝ4 be the 

parameters of the softmax layer (assuming four classes) with weighted inputs

The corresponding output label probability estimates

are calculated using the softmax function. Given ŷj the model can be trained by minimizing 

the multi-class log-loss

where yl represents the true label; that is, yl = 1 for the correct label and 0 otherwise.

3.3. Ordinal Regression Output and Loss (CNN-Ord and CNN-Ord-Wide)

Based on recent work by Niu et al. [22], we now formulate an ordinal output layer that maps 

the multi-class problem to have multiple outputs. In the case of positive valence, the problem 

is transformed from four to only three output units denoted by t1, t2, and t3. Intuitively, we 

would like the j-th output unit to fire if the rank of the correct class r is equal or greater than 

j. That is,

(3)

where r is the ordinal rank of the true class (0 for absent, 1 for mild, 2 for moderate, and 3 

for severe). This means, when the level is absent, no units are expected to fire and when it is 

severe all units ought to fire. Thus, unlike Section 3.2, the ordinal layer can have multiple 

output units firing for an input instance.
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What we show in equation (3) is the ground truth output expected. However, to approximate 

this using our CNN, for the ordinal regression output layer, we redefine U ∈ ℝ3×(C+k) and 

bU ∈ ℝ3, and output

where oj is the score for the j-th output unit that is passed through a sigmoid unit to obtain 

the final firing probability estimate

(4)

At test time, predictions are made by summing all activations that fire (based on equation 

(4))

(5)

where r̂ directly determines the corresponding severity class and 𝟙() evaluates to 1 if its 

parameter condition is true, and 0 otherwise. It should be noted that the threshold (0.5) can 

be tuned, but we found 0.5 to work well for our task.

We differ from Niu et al. [22] by using a multi-output loss function [27]. If there are γ 
ordinal classes, we use γ − 1 sigmoid units, while Niu et al. have γ − 1 binary softmax 

layers. Because of our use of sigmoid units, we train using a binary cross-entropy loss 

function

summed over all three output units given γ = 4 for us.

Finally, we note that this approach predicts the correct ordinal class based on the number of 

units firing without actually computing a probability estimate. However, it is reasonable to 

want to have such an estimate for each class to have an explicit fine-grained representation 

rather than the coarser #units-firing. The ordinal output layer does not return such an 

estimate. We take advantage of recent work in approximating Bayesian models using 

dropout regularization [15]. Instead of using dropout only during the training process, we 

keep it activated at test time. However, instead of a single run of the test instance through the 

model, we make T different sample runs each time getting a potentially different outcome. 

We define the probability of an ordinal class

Rios and Kavuluru Page 9

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which counts the number of times we predict r over T trials and then normalizes to the [0, 1] 

range. Here 𝟙(r̂i = r) determines cases when equation (5) evaluates to r for the i-th trial.

4. Evaluation

For evaluation, we wish to answer three questions. First, how does the the wide CNN model 

with ordinal loss compare against other common neural networks? Second, how does our 

method perform against other track 2 participants of the N-GRID shared task? Finally, can 

we qualitatively interpret how our model is making predictions?

4.1. Evaluation Measure

The evaluation measure used for the shared task was the macro mean absolute error 
(MMAE). Let A be the set of classes (absent, mild, moderate, and severe), i be the index 

set of instances with ground truth class label i with  = ∪j
j, and Mi be the maximum 

ordinal difference for class i ∈ A. For the current problem we have M0 = M3 = 3 and M1 = 

M2 = 2 given predicting the opposite boundary generates maximum penalty of 3 for 

boundary classes and predicting farthest boundary produces the maximum error of 2 for the 

two middle classes. We now have

where |r̂j − rj| represents the absolute difference between the ordinal rank of the correct and 

predicted classes for the j-th instance. Intuitively, the mean absolute error is being calculated 

for each class independently, then all MAEs are averaged together. This approach weights 

each ordinal class equally, independently from the number of times it has occurred in the 

training dataset. For comparison purposes for the N-GRID shared task, the organizers scale 

MMAE to a normalized version

such that each score will be in the range 0–100 where 100 is the maximum possible score.

4.2. Implementation Details and Model Configurations

Our main approach presented in Section 3 involves the use of a CNN that operates on neural 

word embeddings with additional wide features and an ordinal loss function. We used the 

dataset of a total of 433 records (combining 325 with gold annotations and 108 annotated by 

a single annotator) supplied to all participants during the training phase to build our models. 

Because of the relatively small size of the dataset, the nonlinear models such as deep nets 

turn out biased toward certain classes. To address some of these issues, we also present 
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ensemble models with a few simple rules that we outline in this section. The dataset has a 

few common question-answer pair patterns. Given this structure, we used a straightforward 

regular expression approach to extract structured features (Boolean, categorical, ordinal) 

from the text note component of the training XML files. These extracted components are 

used to supplement our method as wide features.

For the deep learning models outlined in Section 3, we ran Google’s word2vec [7] system on 

Medline citations (2014 PubMed baseline) to obtain 300-dimensional pre-trained word 

vectors, which are used as initial vectors to populate a document matrix. Note that these are 

also neural net parameters and are thus modified as part of the training process. The 

tokenizer used is a simple splitter on non-word characters (those excluding the English 

alphabet, ten digits, and underscore symbol). We used convolutional filters of three, four, 

and five tokens wide, and considered 300 feature maps per each fixed filter size. The initial 

convolution filter W values are drawn uniformly from [−0.1, 0.1]. The weights from the 

max-pooled output to the final sigmoid unit layer are initialized to values drawn from a 

normal distribution with mean 0 and standard deviation  where the input 

size is 900 given 300 feature maps for each of the three window sizes. This initialization is 

in line with standard practices used for initializing deep net parameters [28].

The models were trained using AdaGrad [29], an adaptive learning rate method for 

stochastic gradient descent with a maximum of 25 epochs per classifier. We also used mini-

batches of size 5 and we zero-padded the document at the beginning and end as needed. The 

dropout regularization parameter was set to p = 0.5 as mentioned in Section 3.1. We also 

employed early-stopping to help combat overfitting. Typically early stopping is done by 

terminating the training of the model when the desired score on a held-out validation dataset 

does not increase in performance. However, we found this caused us to stop too early. To 

combat this, we stopped training if there were five consecutive epochs in the training 

procedure that did not increase the validation NMMAE score. We only saved the model on 

epochs that had an increase in NMMAE score on the validation dataset. Next, we outline 

various configurations we implemented.

1. CNN: This is the basic CNN model outlined in Section 3 with the multi-class 

loss from Section 3.2 and without the wide features. This model is typically used 

as the baseline in deep learning methods for text classification. For this method, 

we average the softmax layer outputs of 20 individual models trained on the 

entire dataset. This model averaging is mostly deemed indispensable with CNNs 

to achieve a more stable predictive model, especially for small training datasets 

owing to the randomized initialization of parameters.

2. CNN-Ord: This model is the basic CNN model listed above with the ordinal 

loss function described in Section 3.3. At test time, the ordinal class is equal to 

the number of units firing with none firing equivalent to the absent class 

prediction.

3. CNN-Wide: This is essentially the basic CNN model (the first one in this list) 

with additional wide features (outlined in Section 1.1).
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4. CNN-Ord-Wide: This corresponds to the full model from Figure 1 with wide 

features (outlined in Section 1.1) and ordinal loss from Section 3.3. For both 

CNN-Ord and CNN-Ord-Wide, just like for the basic CNN, we averaged 

sigmoid output units (of 20 models) occupying the same position and determined 

whether a unit fired based on this average.

5. CNN-Wide-LIWC: This model is the basic CNN-Wide model with the addition 

of Linguistic Inquiry and Word Count (LIWC [30]) scores (generated from the 

psychiatric notes) as wide features. LIWC (http://liwc.wpengine.com/) is a 

licensed software program that analyzes free text documents and returns scores 

for various psychological and other types of dimensions. Employing peer 

reviewed linguistic research [31] on psychometrics of word usage, LIWC 

aggregates scores for different dimensions (e.g., negative emotions such as 

anxiety, anger, sadness; personal concerns; and cognitive processes) based on 

specific dictionaries with words that are pre-assigned (by linguistic experts) 

scores for each dimension. Given these dimensions are closely associated with 

mental health and given our prior experiences with exploiting them for text 

classification in the context of suicide watch [32], we included them as part of 

the wide features.

6. CNN-Ord-Wide-LIWC: Since the competition, we have improved CNN-Ord-

Wide with the addition of LIWC scores as wide features as outlined earlier. The 

remaining details of this configuration are identical to that of the CNN-Ord-Wide 

model.

7. Lin-Ens: This model is based on averaging multiple linear models including 

support vector machines, logistic regression, ridge regression, and logistic 

ordinal regression, each of which is trained on TFIDF weighted uni/bigrams of 

the full psychiatric note and structured wide fields parsed from note text as 

mentioned earlier.

8. CNN-Ens-1: This ensemble prediction is essentially an average of the predicted 

classes 0–3 (not of sigmoid outputs) of constituent three models: CNN, CNN-

Ord, and Lin-Ens. When the average has a fractional component, we round to the 

nearest integer to obtain the final class. Even with ensembling, due to the 

imbalanced nature of the dataset, mild and moderate predictions are more often 

than the boundary classes. To counter this we 15 devised a simple rule that is 

recall oriented. If the prediction is moderate, and the second best prediction 

(based on sigmoid output scores) from CNN and CNN-Ord models is severe, we 

change the prediction to severe. To avoid changing too many decisions, we do 

this to qualifying instances in the moderate class based on the descending order 

of scores from second best severe predictions; we stop the class changes if either 

the moderate class proportion goes below the training estimate or the severe class 

proportion goes above the corresponding training estimate. The intuition is that if 

the second best prediction is an infrequent class and the best prediction is an 

adjacent frequent class, in the interest of recall, it might be worth considering a 
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change in the prediction to the infrequent class as long as the resulting 

proportions do not violate training estimates.

9. CNN-Ens-2: This is exactly like CNN-Ens-1 except we also add CNN-Ord-

Wide, a fourth model, into the ensemble. With four models, unique rounding is 

not always viable, as the fractional value could be exactly 0.5 (e.g., an average of 

1.5 can be rounded to mild or moderate). We break ties between the two classes 

by picking the more frequent one (in the training dataset). After this, similar to 

the rule in CNN-Ens-1, we move instances with moderate predictions to the 

severe class, if the newly added model CNN-Ord-Wide predicts moderate with 

the second best prediction being severe.

10. CNN-Ens-3: This is similar to CNN-Ens-2 where the CNN-Ord-Wide model is 

replaced with the CNN-Ord-Wide-LIWC model. The tie breaking is done as in 

CNN-Ens-2. As a post-processing rule, we move instances with moderate 
predictions to the severe class, if the newly added model CNN-Ord-Wide-LIWC 

predicts moderate with the second best prediction being severe.

4.3. Quantitative Evaluations

We present two sets of performance evaluations: comparisons against different neural 

network configurations from Section 4.2 and comparing against other track 2 competitors on 

the 2016 N-GRID shared task’s test set of 216 notes. We begin by comparing against 

multiple CNN variations and ensembles. The test set performances using CNN variations are 

shown in Table 1 where we show the NMMAE scores. The IDs of the models correspond to 

list position in the enumeration in Section 4.2. The systems we submitted as our final runs to 

the shared task correspond to models 1, 2, and 8 in the table and the ensemble model 8 is the 

best performer among them. We did not submit the CNN-Ord-Wide (model 4), CNN-Ord-

Wide-LIWC (model 6), and the best performing ensemble models (IDs 9 and 10). This is 

because in our ten-fold cross-validation experiments using the training dataset, we did not 

obtain noticeable performance gains with the wide features. Given the cross-validation 

configuration leaves out a fold in each train-test split, 10% fewer training data points were 

used per fold than for building the final full models applied to test set. Given the relatively 

smaller size of the dataset, this could have masked the superior performance of CNN-Ord-

Wide. We see that the addition of LIWC scores to the wide features makes a small 

improvement. Our best ensemble, CNN-Ens-3, achieves an NMMAE of 85.55 and seemed 

to benefit by involving the wide model CNN-Ord-Wide-LIWC as a component. This model 

when used without the post-processing rule described earlier, has a final score of 85.25. So 

using the rule has only benefited marginally in this case.

Interestingly, all CNN models involving ordinal formulation seem to perform more 

consistently across all classes than the standard CNN models. The ordinal models (models 2, 

4, and 6) also outperform the corresponding regular CNN models (models 1, 3, and 5) in 

terms of overall NMMAE scores based on the first six rows of Table 1. Adding wide features 

seemed to help the ordinal models more than the vanilla CNN models. Furthermore, if we do 

not perform model averaging and simply look at the mean NMMAE scores of the 20 

individual models, the CNN-Ord setup achieved a mean score of 81.23 but the plain CNN 
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model scored 78.89. This further demonstrates that the ordinal formulation leads to more 

stable individual models when compared with conventional multiclass loss. We believe these 

desirable traits including consistency across classes, model stability, and overall superior 

performance are due the ability of models with ordinal loss to account for ordinal 

associations between classes. Thus, overall, incorporating the ordinal nature of the 

classification task into a deep architecture produced the best outcome for our team. Note that 

all scores reported here do not involve tweaking model parameters based on performance on 

the test set. As such, these scores are achieved without assuming any knowledge of the test 

set including class distributions.

Table 2 shows the competition results, where our ensemble model Sys3 (model 6 from Table 

1) is placed third behind the top two teams: (1). SentiMetrix Inc. researchers use a large 

ensemble approach that also involves association rules learned from structured fields and 

(2). The University of Texas at Dallas participants use a pair-wise learning to rank approach 

combined with linear regression. The full details of methods used by these teams were not 

disclosed at the time of this writing. Our updated best ensemble (CNN-Ens-3) shown in the 

2nd row of Table 2 performs on par with the top performer. Our single approach non-

ensemble model (CNN-Ord-Wide-LIWC) shown in the third row of the table also does 

reasonably well without any additional ensembling.

4.4. Qualitative Analysis

Model interpretation is of great importance in the clinical setting beyond model 

performance. In this section, we use recent advances in the analysis of neural networks [15, 

33] toward interpreting decisions made by the best single approach model CNN-Ord-Wide-

LIWC from Section 4.3. Because we make use of wide features passed directly to the output 

layer, the interaction between each wide feature and the ordinal output unit is linear. We first 

discuss the influence of these wide features in the prediction process.

4.4.1. Wide feature significance—Table 3 shows the top ten coefficients among the 121 

wide feature connections to each of the three ordinal output activation units. Each activation 

models the probability that the correct ordinal class rank is higher than or equal to the rank 

represented by the output unit. For example, unit-1 should fire for all instances where the 

correct class is at least mild, while unit-3 is expected to fire only when the actual class is 

severe. All numerical entries in Table 3 correspond to ICD-9-CM codes that are specified in 

the multi-axial diagnoses portion of the note. The largest coefficient for unit-1 is wide 

feature 303.9, which represents the ICD-9-CM code for alcohol dependence (but not 

involving acute intoxication). Intuitively, patients who use alcohol have a higher chance of 

being classified as at least mild for positive valence. It becomes more interesting as we study 

the differences between units 2 and 3. Specifically, ICD-9-CM code 305 (nondependent 

abuse of drugs) has a high weight for unit-2, while wide feature 304 (drug dependence) is an 

important code for unit-3. This means a patient may be misusing drugs, but if they are not 

dependent on them, then they are not as likely to be classified as severe. Usage of different 

drugs seems to be a general indicator across all three units. The flag for affirmative response 

for cocaine use for unit-1 indicates that such cases should at least be classified as mild. A 

relatively large negative coefficient for hx_drug_use=No in unit-3 denotes that without a 
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history of drug use it is not as likely to be considered a severe case. The feature 

alcohol_six_use_occasion in the table refers to the real-valued answer to the question – 

“How often did you have six or more drinks on one occasion in the past year?”. This seems 

to play a major role in cases that are at least mild or moderate. Although all high coefficients 

may not lead to meaningful insights, from Table 3 we note that many are pertinent in the 

context of positive valence symptom severity.

4.4.2. Instance specific interpretability—Besides gleaning model level insights, it is 

also important to obtain clues or explanations about why the model predicted a particular 

severity level for a specific input instance. This knowledge can inform a psychiatrist to 

appropriately vet the model’s decision before making a final call. These explanations can 

both expedite scoring and also identify any areas that might otherwise be ignored sometimes 

due to human error. When automating such severity score prediction to get rough aggregate 

estimates, this can be used for sampling and assessing a few reports for quality control. 

Linear models lend themselves to interpretability but do not perform as well relative to 

nonlinear models such as deep nets. However, deep nets suffer from interpretability issues 

and are often treated as black boxes leading to the well known trade off between 

interpretability and performance. We can analyze the wide features in our model but that 

alone would ignore the CNN aspect of the model.

Here we utilize recent work in interpreting neural networks and other nonlinear models to 

highlight text portions that led to particular decisions. The local interpretable model-agnostic 

explanations (LIME) framework by Ribeiro et al. [33] addresses this by approximating a 

linear model in the vicinity of the current instance for which interpretation is being sought. 

Intuitively, this is done based on features that are interpretable (such as words for text) rather 

than features that do not lend to such insights (e.g., word embeddings). The nonlinear model 

is still involved in making its predictions on a local training dataset of perturbed instances 

(obtained by removing certain words) in the vicinity of the current instance needing 

explanation. Finally, a linear model is fit to this perturbed dataset with local weighting of 

instances with more importance given to those that are more similar to the instance whose 

prediction needs interpretation.

In Figure 2, on the left hand side we show an expert annotated sample note supplied to 

participants as part of the N-GRID shared task manual. Due to the portions highlighted in 

red color, experts classified this as a severe case. Our CNN-Ord-wide-LIWC correctly 

classified this sample but furthermore when we run our prediction through LIME, we obtain 

the blue colored highlighted terms shown in the right hand side of Figure 2. As we can see, 

there are nontrivial overlaps between text segments identified by experts and those identified 

through LIME, thus demonstrating the potential of LIME in generating instance specific 

interpretations. For this note, the words ranked in order of importance determined by LIME 

are shown in Figure 3. We see the word ‘yes’ has a relatively large weight. This LIME 

weight is because it is the answer to an inpatient history question in the report. Higher 

symptom severity scores align with more affirmative responses to several questions of this 

nature. We can also see that the severe alcohol dependence of the patient (seen with terms 

‘alcohol’ and ICD-9-CM code 303) are predictive terms used by the model to make its 
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prediction. The classifier prediction scores are also shown, where the probabilities per class 

are calculated using the dropout method as described in the last paragraph of Section 3.3.

Our method misclassified five test notes (out of 216) with an ordinal error distance of two. 

Specifically, we incorrectly classified two reports as absent when the correct label is 

moderate. We classified three reports as mild when the true class was severe. CNN-Ord-

Wide-LIWC did not misclassify any reports with an ordinal error distance of three. In Figure 

4 we display our predictions along with the LIME based important features for one of the 

reports misclassified as absent when the correct class is moderate. When we manually 

examined the note, we notice that the patient had no prior psychiatric history, never drinks, 

never smokes, and has no history of drug use. Hence ‘no’ was an important word retrieved 

from LIME given most of the answers to positive valence related questions were negative. 

The patients’ lack of a drug history seemed to be the overwhelming reason why our 

classifier predicted absent. The main indication seemed to be social withdrawal following a 

surgery for meningioma. We hypothesize that given common causes for positive valence 

appear to be from the abuse of drugs, alcohol, and other addictions with reward seeking 

behavior, our model is not able to generalize to these types of atypical reports with no 

psychiatric history.

5. Conclusion

In this paper, we presented a neural network architecture that combines recent advances in 

text classification based on max-pooled convolutions with a loss function that fits ordinal 

outcomes. We study the performance of this architecture and its variants through our 

participation in the CEGS N-GRID 2016 Shared Task in Clinical NLP (track 2) to predict 

RDoC positive valence symptom severity scores. Using a performance measure set by 

challenge organizers, our best model achieves a score that is within 1% of the highest score 

in the challenge achieved using a complex ensemble that also involves deep net models. 

Besides detailing our methods and results, we also present a qualitative analysis of our 

outcomes in terms of explainability of instance specific predictions for further examination. 

As such, we believe our effort demonstrates the potential of deep nets for superior 

performance in text classification with the application of additional approaches such as 

LIME to also support model interpretability.
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Highlights

RDoC positive valence symptom severity scores are predicted from psychiatric notes 

Ordinal convolutional neural networks outperform other supervised models in this task 

Ensemble approaches achieve a normalized macro mean absolute score of 85.55 Our 

performance is within 1% of best score reported on the CEGS NGRID 2016 dataset Deep 

nets with ordinal loss and wide features are suitable for ordinal text classification
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Figure 1. 
This figure displays the overall architecture of our method. The input is a matrix, followed 

by a convolutional layer and max-over-time pooling. The max-pooled vector is concatenated 

with the wide features and passed to an output layer.
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Figure 2. 
Expert vs LIME annotated sample note correctly classified by the CNN-Ord-Wide-LIWC 

model
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Figure 3. 
Top 10 words retrieved using LIME for the example shown in Figure 2.
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Figure 4. 
Important words for an instance which we incorrectly predicted as absent with the correct 

score being moderate
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Table 2

Final results from the CEGS N-GRID 2016 NLP shared task (track 2).

Rank Institutions NMMAE

1 SentiMetrix Inc. 86.3019

new CNN-Ens-3 (UKY) 85.5491

new CNN-Ord-Wide-LIWC (UKY) 84.7079

2 The University of Texas at Dallas 84.0963

3 University of Kentucky (Sys3) 83.8615

4 University of Pittsburgh 82.5594

5 Med Data Quest Inc. 81.7474

6 Harbin Institute of Technology Schzhen Graduate 81.6844

7 University of Minnesota 81.4971

8 Antwerp University Hospital 80.6356

9 LIMSI-CNRS 80.1738

10 The University of Manchester 80.1143
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