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Abstract

Reliable prediction and diagnosis of concussion is important for its effective clinical management. 

Previous model- based studies largely employ peak responses from a single element in a pre-

selected anatomical region of interest (ROI) and utilize a single training dataset for injury 

prediction. A more systematic and rigorous approach is necessary to scrutinize the entire white 

matter (WM) ROIs as well as ROI-constrained neural tracts. To this end, we evaluated injury 

prediction performances of the 50 deep WM regions using predictor variables based on strains 

obtained from simulating the 58 reconstructed American National Football League (NFL) head 

impacts. To objectively evaluate performance, repeated random subsampling was employed to 

split the impacts into independent training and testing datasets (39 and 19 cases, respectively, with 

100 trials). Univariate logistic regressions were conducted based on training datasets to compute 

the area under the receiver operating characteristic curve (AUC), while accuracy, sensitivity, and 

specificity were reported based on testing datasets. Two tract-wise injury susceptibilities were 

identified as the best overall via pair-wise permutation test. They had comparable AUC, accuracy, 

and sensitivity, with the highest values occurring in SLF (superior longitudinal fasciculus; 0.867–

0.879, 84.4–85.2%, and 84.1–84.6%, respectively). Using metrics based on WM fiber strain, the 

most vulnerable ROIs included genu of corpus callosum, cerebral peduncle, and uncinate 

fasciculus, while genu and main body of corpus callosum, and SLF were among the most 

vulnerable tracts. Even for one un-concussed athlete, injury susceptibility of the cingulum 

(hippocampus) right was elevated. These findings highlight the unique injury discriminatory 

potentials of computational models, and may provide important insight into how best to 

incorporate WM structural anisotropy for investigation of brain injury.
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1. Introduction

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in the United 

States (CDC 2015). Of the estimated 1.7–3.8 million individuals suffering from TBI each 

year in the United States alone, 75% are classified as mild traumatic brain injury (mTBI) or 

concussion (CDC 2015). The public awareness of concussion and its adverse cognitive and 

neurodegenerative consequences is growing ((NRC) 2014). A reliable prediction and 

diagnosis of TBI, including concussion, is important for effective management of this 

prevailing neurological disorder.

Despite decades of active research, the biomechanical mechanisms behind TBI remain 

elusive. Historically, efforts have been focused on characterizing head impact kinematics, 

using linear and/or rotational acceleration peak magnitudes and their variants. However, as 

head rotation is considered the main mechanism for mTBI and that angular velocity, as 

opposed to acceleration, is more predictive of strains (Zhao and Ji 2016), recent metrics have 

explicitly incorporated peak angular velocity (e.g., Rotational Injury Criterion (RIC) and 

Power Rotational Head Injury Criterion (PRHIC) (Kimpara and Iwamoto 2012), and Brain 

Injury Criterion (BrIC) (Takhounts et al. 2013).

Unfortunately, these empirically derived kinematic metrics do not directly inform brain 

mechanical responses that are thought to initiate injury (King et al. 2003). In part, this may 

explain why no consensus has been reached on the most appropriate metric for injury 

prediction. To estimate impact-induced responses, finite element (FE) models of the human 

head are important tools (Yang et al. 2011). Model-estimated brain responses have been 

shown to be more effective in predicting injury than kinematic metrics alone (Zhang et al. 

2004; Marjoux et al. 2008; Takhounts et al. 2008; Giordano and Kleiven 2014a; Hernandez 

et al. 2014). In addition, FE models also enable correlating tissue deformation with specific 

concussion symptomatic measures (Viano et al. 2005), which is not feasible for kinematic 

metrics.

Improving the models’ injury predictive power is an ongoing, constant process. 

Sophisticated head models continue to emerge with more anatomical details (Mao et al. 

2013), representing subject-specific anatomies (Ji et al. 2015), and characterizing anisotropic 

material properties of the white matter (WM) (Sahoo et al. 2014; Giordano and Kleiven 

2014b). Lately, there are also efforts to integrate information from neuroimages (Fahlstedt et 

al. 2015; Miller et al. 2016), e.g., WM structural anisotropy (Wright and Ramesh 2012; 

Garimella and Kraft 2016), into biomechanical modeling for injury analysis. This aligns 

well with in vitro studies that suggest strain component along axonal longitudinal direction 

responsible for axonal injury (Cullen and LaPlaca 2006). Initial evidence indicates that WM 

fiber orientation-dependent strain (termed “fiber strain”, “axonal strain”, or “tract-oriented 

strain”) improves injury prediction performance relative to its isotropic counterpart, 
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maximum principal strain (Chatelin et al. 2011; Wright et al. 2013; Giordano and Kleiven 

2014a; Sullivan et al. 2014; Ji et al. 2015).

Regardless of the injury predictor variables employed, previous model-based studies 

typically utilize responses from a single pre-selected anatomical region of interest (ROI) to 

assess injury risk. The commonly used CSDM (cumulative strain damage measure) relies on 

maximum principal strain of the entire brain (Bandak and Eppinger 1994), while a variant is 

defined on generic ROIs (Weaver et al. 2012). Other generic or more targeted ROIs, 

including the corpus callosum, midbrain, and brainstem, are also common choices. For 

example, the maximum shear stress in the brainstem was found to correlate the strongest 

with the occurrence of mTBI when analyzing 24 NFL head impacts (9 concussions vs. 15 

non-injury cases; (Zhang et al. 2004). Using an expanded dataset (58 impacts; 25 

concussions vs. 33 non-injury cases), Kleiven studied 8 tissue injury predictors in 6 brain 

regions. He found that strain in the gray matter and CSDM0.1 (using a strain threshold of 

0.1) in the WM had the highest accuracy in concussion classification (Kleiven 2007). After 

incorporating WM material property anisotropy, however, their model indicated that instead, 

peak axonal strain within the brainstem had the highest predictive power (Giordano and 

Kleiven 2014a).

These conflicting reports on the “best” predictor variable and brain ROI to achieve the most 

accurate injury prediction highlight current challenges in studying the biomechanical 

mechanisms of TBI. Conceptually, model-based brain injury prediction is analogous to an 

ill-posed optimization problem—using model-estimated responses to “fit” the given binary 

injury data. First, errors in the “input variables”, head impact kinematics, seem unavoidable. 

Laboratory-reconstructed NFL head impacts had a reported error of up to 11% for impact 

velocity and a maximum error of 25% for resultant angular acceleration (Newman et al. 

2005). However, error magnitude in angular velocity was not available, even though it is 

considered as the primary injury mechanism (Takhounts et al. 2013) and more predictive of 

strains (Kleiven 2006); Zhao and Ji 2015; Zhao and Ji 2016). For on-field head impacts, 

temporally validated rotational acceleration/velocity profiles appear yet to be developed 

(Beckwith et al. 2012; Allison et al. 2014).

Second, the “optimizer”, FE models of the human head, could vary substantially due to 

uncertainties in model assumptions (material properties of the brain in particular (Chatelin et 

al. 2010). The lack of high-quality experimental data especially in live humans under injury-

causing impacts (Hardy et al. 2001; Hardy et al. 2007; Sabet et al. 2008) also precludes 

sufficient, reliable model validations (Yang et al. 2011). Consequently, even “validated” 

head models could produce substantially discordant brain responses under identical head 

impacts (Ji et al. 2014a).

Third, and equally importantly, the “objective function” is also under-defined. Well-

documented and accepted brain injury cases including both impact kinematics and clinical 

injury diagnoses are lacking and are subject to errors. Thus, a single “training dataset” has 

been used in previous studies to evaluate injury prediction performance. A separate “testing 

dataset” is not widely available to enable an independent performance verification, even 

though this is considered necessary and important (Anderson et al. 2007; Sullivan et al. 
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2014). Taken together, these uncertainties and lack of high quality, well-accepted injury data 

could yield multiple “local minima” in the optimization, which may explain previous 

conflicting observations based on the same injury dataset. However, they may not 

necessarily correspond to the true “global minimum”.

Given these challenges, potentially there could be data “over-fitting” concerns when 

attempting to pinpoint a specific injury predictor and ROI for the best performance, 

especially when using responses from a single element (e.g., peak maximum strain 

regardless of the location in a given ROI; (Zhang et al. 2004; Giordano and Kleiven 2014a)). 

Therefore, there is a need for more systematic and objective evaluation and comparison of 

the injury predictors’ performances. Here, we employed a repeated random subsampling 

technique to train and optimize injury predictors while reporting their performances using 

independent testing datasets. This is a popular cross-validation technique (Arlot and Celisse 

2010), but does not appear to have been applied in model-based TBI studies to date. Further, 

we analyzed injury prediction performances and vulnerabilities of the entire deep WM ROIs 

as well as ROI-constrained neural tracts from whole-brain tractography (Zhao et al. 2016). 

Instead of relying on peak responses from a single element from a predefined ROI, we used 

data sampling across all of the deep WM ROIs/neural tracts. Similarly, regional 

vulnerabilities were also evaluated via data sampling of predictor responses across all of the 

simulated head impacts.

These injury analyses significantly extended previous model-based TBI studies to formulate 

a more systematic and rigorous approach for evaluation of injury prediction performance. A 

generic head model was also established with the directly associated neuroimages and 

whole-brain tractography, which was a critical stepping stone towards better integration of 

neuroimaging and TBI biomechanics studies in the future. Therefore, findings from this 

work may provide important insight into how best to predict injury for improved mitigation 

and clinical management.

2. Methods

2.1 Image registration and geometrical transformation

Essential to this study was to integrate structural neuroimaging into biomechanical 

modeling. This required transforming all image volumes, their corresponding geometrical 

entities, and the head FE model into a common coordinate system. For convenience, we have 

chosen the coordinate system of the Worcester Head Injury Model (WHIM; formerly known 

as the Dartmouth Head Injury Model or DHIM; (Ji et al. 2015; Zhao et al. 2016) as a 

common reference. The WHIM was created based on high-resolution T1-weighted MRI (at 

an isotropic resolution of 1 mm3) of an individual. It had a resolution of 3.3±0.79 mm for 

the brain. Diffusion tensor imaging (DTI) of the same individual provided WM fiber 

orientations at discrete voxels (at an isotropic resolution of 2 mm3) and real-valued fiber 

sampling points of the whole-brain tractography (at a resolution of 1 mm). In comparison, 

the standard ICBM-DTI-81 WM atlas (Mori et al. 2008) averaged from a group of 81 

healthy adults served as the WM ROI anatomical constraints. This atlas is provided within 

another standard anatomical template (ICBM-152). Fig. 1 schematically illustrates how 

these image volumes were registered to transform their corresponding geometrical entities 
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into the WHIM common coordinate system. A rigid registration was performed between the 

T1-weighted MRI and DTI anatomical image (b=0) of the same individual. In contrast, a 

non-linear registration using the FNIRT tool in FSL was applied to transform the ICBM-

DTI-81 atlas into the WHIM space (Andersson et al. 2007).

2.2 The Worcester Head Injury Model

Details of the Worcester Head Injury Model (WHIM; Fig. 2), including model creation, 

mesh quality, assignment of material properties and boundary conditions, and validation 

performances have been reported extensively in recent publications (Ji et al. 2015; Ji and 

Zhao 2015; Zhao et al. 2016; Zhao and Ji 2016). Therefore, they are not repeated here. 

Importantly, the WHIM has achieved an overall “good” to “excellent” validation (as 

assessed by correlation score based on Normalized Integral Square Error (Donnelly et al. 

1983; Kimpara et al. 2006)) at the low (~250–300 rad/s2 for a live human volunteer), mid 

(~1.9–2.3 krad/s2 for cadaveric impact tests C755-T2 and C383-T1), and high (~11.9 krad/s2 

for cadaveric test C393-T4) levels of head angular acceleration magnitudes provided 

important confidence of the fidelity in WHIM-estimated brain responses.

2.3 Simulation of the NFL reconstructed head impacts

We used the 58 reconstructed NFL head impacts as model inputs (Newman et al. 2000), 

which included 25 concussions and 33 non-injury cases. Details of video recording analysis 

(Pellman et al. 2003) and the procedures of head impact reconstruction (Newman et al. 

2000; Newman et al. 2005) were previously reported. Briefly, all head impact accelerations 

were collected at 10 kHz following the SAE J211 protocol. The acceleration profiles were 

pre-processed according to the CFC 1000 requirements (Newman et al. 2000). Identical to 

previous studies (Newman et al. 2000; Kleiven 2007), all acceleration profiles were filtered 

using the CFC 180 low-pass filter. The resulting time histories of the linear and angular 

accelerations were prescribed to the WHIM head center of gravity (CG) to induce brain 

mechanical responses.

2.4 Voxel- and tract-wise WM fiber strains

Whole-brain tractography was generated using the DTI of the same individual selected to 

develop the baseline WHIM, as previously reported (Zhao et al. 2016). This led to ~35 k 

fibers and ~3.3 million sampling points in total. Using the transformed ICBM-DTI-81 atlas 

(Fig. 1) as anatomical constraints, the 50 deep WM ROIs (see Appendix A) and their 

corresponding neural tracts were identified within the WHIM (illustrated in Fig. 2c and d; 

(Zhao et al. 2016)).

For each impact simulated, element-wise maximum principal strain and strain tensor were 

extracted at every time step during the entire impact simulation (temporal resolution of 1 

ms). Fiber strain at each WM voxel or fiber sampling point was calculated, at every time 

step, using the corresponding fiber orientation and strain tensor of the nearest element (Ji et 

al. 2015). For all strains, their peak values across the entire impact simulation, regardless of 

the time of occurrence, were used. They were denoted as εp and εn for maximum principal 

strain and fiber strain, respectively. Due to the large number of fibers for each WM neural 

tract, a 10% random subset was utilized for improved computational efficiency. This led to 
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an average of 183±42 (range of 88–307) fibers for a given WM neural tract. The down-

sampling did not significantly alter strain or injury susceptibility measures (Zhao et al. 

2016).

2.5 Injury susceptibility measures in the deep WM neural tracts

A tract-wise injury susceptibility index (φtract) was established for a given neural tract as the 

fraction of “injured” WM fibers (i.e., εn greater than a threshold, determined in Section 2.8, 

regardless of the occurrence location along the given fiber):

(1)

However, a potential weakness of this, perhaps over-simplified, definition was that it did not 

differentiate the relative likelihood of injury to a given fiber according to the number of 

sampling points exposed to high strains (e.g., a fiber with either one or 100% of the 

sampling points “injured” would be treated equally). To characterize this “confidence” in 

injury likelihood, a weighting factor, w, was devised:

(2)

Applying w to the binary injury status (0 and 1 for “uninjured” and “injured”, respectively) 

of each fiber led to the following enhanced tract-wise injury susceptibility index:

(3)

Further, a sampling point-based susceptibility index was also established to describe the 

fraction of “injured” fiber sampling points:

(4)

Essentially,  and  extended the concept of CSDM, which was originally 

developed for the entire brain, to individual WM neutral tracts (Zhao et al. 2016). The 

former further accounted for the distribution of “injured” sampling points among fibers.
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2.6 Injury predictor variables

While tissue strain is considered as a primary variable to assess injury risk and severity, no 

consensus exists how best to describe the tissue strain status. Common choices include the 

maximum strain magnitude from a single element in a particular region, regardless of the 

time of occurrence or location (i.e., peak strain (Zhang et al. 2004; Giordano and Kleiven 

2014a)), or a dichotomous variant describing the percentage of tissue volume experiencing 

large strains (e.g., CSDM (Takhounts et al. 2008) or Pop90 (Sullivan et al. 2014)). In this 

study, we evaluated the performances of peak strain, regional average strain, and the 

dichotomous variants based on either εp or εn. Specifically, a total of nine strain-based injury 

predictor variables were evaluated, as summarized in Table 1. All strains were evaluated on 

MR voxel locations by interpolating from neighboring FE elements, except for tract-wise 

injury susceptibilities for which εn was evaluated at higher resolution fiber sampling points. 

For clarity, here we referred to an injury predictor as the predictor variable obtained from a 

given ROI or neural tract.

2.7 Repeated random subsampling and Logistic regression

The 58 NFL head impact cases were randomly split into training (39 cases, or approximately 

two-thirds) and testing (the remaining 19 cases) datasets. This process was repeated 100 

times (considered sufficiently large) (Arlot and Celisse 2010). For each training dataset in a 

random subsampling trial, a standard univariate logistic regression was performed against 

the binary injury statuses (0 and 1 for “uninjured” and “injured”, respectively) for each 

injury predictor. A receiver operating characteristic (ROC) curve was generated to export the 

area under the curve (AUC). The logistic regression model was then applied to the 

corresponding non-overlapping testing dataset for injury prediction. The resulting numbers 

of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

were used to calculate performance measures such as the accuracy, sensitivity, and 

specificity according to the following equations:

(5)

(6)

(7)

For each random trial, this produced four 9-by-50 matrices encoding the AUC, accuracy, 

sensitivity, and specificity, respectively (9 predictor variables and 50 WM ROIs/neural 

tracts). Combining all of the 100 random trials led to four corresponding 9-by-50-by-100 

matrices, which were used for subsequent evaluation.
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2.8 Optimal εthresh for injury susceptibility indices

The dichotomous injury susceptibility indices (Table 1) depended on a strain threshold. A 

definitive εthresh for the human brain has not been established. An in vivo study suggests a 

wide range (0.09–0.47 to induce impairment (Bain and Meaney 2000)). Thresholds from 

other model-based studies also varied depending on the region (e.g., 0.21 in the corpus 

callosum (Kleiven 2007); 0.26 (Kleiven 2007) or 0.19 (Zhang et al. 2004) in the gray matter) 

or type of strain (e.g., 0.21 in maximum principal strain (Kleiven 2007) or 0.07 in axonal 

strain in the corpus callosum (Giordano and Kleiven 2014a)). As even “validated” head 

injury models can produce substantially discordant strains under identical head impact 

conditions (Ji et al. 2014a), these thresholds were not directly applicable here.

Instead, the following method was adopted within the repeated random subsampling 

framework, which was an extension to that applied to determine the threshold for CSDM 

(Giordano and Kleiven 2014a). Specifically, for each training dataset and a given injury 

susceptibility index, a range of candidate thresholds (εthresh; 21 unique values within a range 

of 0.05–0.25 at a step size of 0.01, based on the previous studies) were enumerated to define 

the susceptibility index for a given WM ROI/neural tract. A logistic regression analysis was 

then conducted, from which a Wald χ2 test was performed. A significant relationship was 

said to exist between the injury risk and the predictor when the p-value was less than 0.05, 

with a lower value indicating a more significant relationship. Next, for each WM ROI/neural 

tract, tied rank values were assigned to score εthresh in the order of their corresponding χ2 

test p-values (Wilcoxon 1946), where a lower value led to a smaller rank value. At each 

εthresh value, the average rank value across all WM ROIs/neural tracts was used to represent 

its overall performance. The optimal εthresh corresponding to the smallest rank value was 

then identified (Table 2). Essentially, this was to minimize the overall p-value, or to 

maximize the significance of risk-response relationship, for the group of ROIs/tracts. This 

process is illustrated in Fig. 3 for a typical training dataset. Finally, an average optimal 

εthresh among the trials was obtained for each injury susceptibility index, which was 

subsequently used in a separate round of repeated random subsampling to evaluate injury 

prediction performances. The three εn-based metrics, , and , had an 

optimal εthresh of 0.09–0.10, which was consistent with the lower bound of a conservative 

injury threshold of 0.09 established from an in vivo optical nerve stretching experiment 

(Bain and Meaney 2000).

2.9 Relative injury prediction performance among predictor variables

For each predictor variable, its performance measures in each WM ROI/neural tract were 

averaged across the 100 subsampling trials. This led to a 9-by-50 matrix of average values 

for each performance measure. To assess the relative performances among these predictor 

variables, we performed a pair-wise one-sided permutation test (see Appendix B) based on 

the average AUC, accuracy, sensitivity, and specificity (9×8=72 pairs for each performance 

metric) sampled across all of the 50 deep WM ROIs/neural tracts. The predictor variables 

were then ranked by the number of times that a given candidate was found to have a 

significantly larger average value than others (as determined by the permutation test p-

values).

Zhao et al. Page 8

Biomech Model Mechanobiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.10 Relative vulnerability among deep WM ROIs and neural tracts

Identifying the most vulnerable WM ROIs or neural tracts may be of clinical significance to 

potentially relate impacts to specific brain functional alteration as well as for potential 

targeted therapeutic treatment in the future. Here, we defined the relative vulnerabilities 

among the 50 ROIs/neural tracts as the frequency that each region experienced responses 

larger than others. Similarly, for each injury predictor variable (Table 1), we employed one-

sided permutation test based on paired-sample t-statistics, using the response values of the 

ROIs/neural tracts sampled across the 58 simulated head impacts. A total of 50×49 = 2450 

pairs of permutation test were conducted for a given injury predictor variable. Finally, their 

relative vulnerabilities were ranked.

3. Data analysis

All head impacts were simulated using Abaqus/Explicit (Version 6.12; Dassault Systèmes, 

France). For each impact, element-wise peak strains during the entire simulated event were 

obtained. For injury predictor variables that required a pre-determined threshold, an optimal 

threshold value was determined. Repeated random subsampling was utilized to assess injury 

performances. For each performance measure, average values across all of the WM ROIs/

neural tracts were used to conduct one-sided permutation tests based on paired-sample t-
statistics. For each injury predictor variable, the relative vulnerabilities of the WM ROIs/

neural tracts were ranked to identify the top five most vulnerable ones. Injury thresholds at 

50% injury probability were computed. Finally, representative distributions of strain and 

injury susceptibility responses for a pair of striking and struck athletes (non-concussed and 

concussed, respectively) were also illustrated.

For each head impact (100 ms in duration), the computational cost was ~120 min for impact 

simulation with 8 CPUs and ~60 min for response extraction (parallel processing on 12 

CPUs). All data analyses were performed with in- house MATLAB programs (R2016a; 

MathWorks, Natick, MA) on a 12-core Linux machine (Intel Xeon X5560, 2.80 GHz, 126 

GB memory).

4. Results

4.1 Injury prediction performances

Figs. 4–7 summarize the average AUC, accuracy, sensitivity, and specificity for the 9 injury 

predictor variables across the 50 ROIs/neural tracts. For each predictor variable, the 

performance consistency among the 100 subsampling trials was assessed in terms of 

standard deviation (either further averaged across the 50 regions or using the maximum 

value to represent the “extreme” case). In general, AUC based on training datasets had the 

highest consistency, which was not surprising as this variable was a more stable measure. 

Other performance measures based on independent testing datasets were also largely 

consistent among the subsampling trials, perhaps, with an exception of the original φtract in 

terms of sensitivity and specificity (maximum standard deviation reached 37.3% and 33.6%, 

respectively; Figs. 6 and 7).
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The two tract-wise injury susceptibility indices,  and , consistently achieved 

the highest AUC, accuracy, and sensitivity (averaged from the 50 regions; Figs. 4–7). 

However, without weighting the “confidence” of injury for each fiber within a neural tract, 

the original φtract had the worst average AUC (tied with peak εn; Fig. 4). It was intriguing to 

observe that 5 of the 9 injury predictor variables achieved the best AUC in SLF-R (superior 

longitudinal fasciculus right) among the 50 deep WM regions. Similarly, 4 (3) of the 9 

metrics had the best accuracy sensitivity) in the same region. Overall, the same three 

metrics,  and , performed the best in AUC, accuracy and sensitivity in 

SLF-R (Figs. 4–6). In terms of specificity, however, 5 of the 9 metrics, including 

and , performed the best in CGC-R (cingulate gyrus right; Fig. 7). Pair-wise 

permutation tests based on performances sampled across the 50 regions confirmed that the 

two tract-wise injury susceptibility indices,  and , were the best overall, 

despite the statistically significant but subtle difference in sensitivity between themselves; 

72.5% vs. 71.7%) and specificity (slightly lower than that for average εn; Fig. 8). For each 

best performer (i.e., region of the highest values in each row in Figs. 4–7), its metric value 

was significantly higher than most of the other remaining regions (at least 90% or 44 out of 

the other 49), according to permutation tests.

4.2 Injury vulnerability and threshold

The relative vulnerabilities for ROI-based injury predictor variables using εp and εn are 

reported in Fig. 9 and Fig. 10, respectively. Results for tract-based predictor variables are 

given in Fig. 11. For ROI-based variables, CP-R (cerebral peduncle right) consistently 

ranked within the top five most vulnerable regions (highlighted; Fig 9 and 10). When using 

εn for injury prediction, GCC (genu of corpus callosum), besides CP, was also identified 

within the top five (Fig. 10). When using the tract-wise injury predictors (Fig. 11), however, 

BCC (body of corpus callosum) was consistently found to experience high vulnerability. 

Perhaps most interestingly, for the top five most vulnerable neural tracts identified by the 

two best performing injury predictors,  and , four of them overlapped. They 

were GCC, BCC, SLF-L (superior longitudinal fasciculus left) and ALIC-R (anterior limb of 

internal capsule right; Fig 11b and c). Finally, thresholds at the 50% injury probability are 

summarized for the predictor variables (Table 3).

4.3 Illustration from selected cases

Distributions of εp, voxel- and tract-wise εn are shown for a pair of striking and struck 

athletes (non-concussed and concussed, respectively) involved in the same head collision 

(Case157). For the striking player, large εn responses occurred in the midbrain region (Fig. 

12c). For the concussed player, higher εp and εn mostly occurred in the peripheral 

subcortical areas and the midbrain (Fig. 12b and d). The injury susceptibilities using the two 

best predictors are also illustrated (Fig. 13). Perhaps as expected, most of the tracts in the 

struck/concussed athlete experienced injury susceptibilities greater than the respective tract-

wise thresholds. While the opposite was true for the striking/un-concussed athlete, CGH-R 

(cingulum (hippocampus) right) also experienced elevated  that exceeded its injury 

threshold.
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5. Discussion

Numerous biomechanical (Yang et al. 2011) and neuroimaging (Bigler and Maxwell 2012; 

Shenton et al. 2012) studies exist that attempt to elucidate the mechanisms behind traumatic 

brain injury (TBI). However, their integration remains rather limited. Our study using whole-

brain tractography and a well-established WM atlas to analyze brain injury in contact sports 

is an important extension to previous efforts (Kraft et al. 2012; Wright et al. 2013; Giordano 

and Kleiven 2014b; Sullivan et al. 2014; Ji et al. 2015; Zhao et al. 2016). Instead of similarly 

pinpointing a specific injury predictor variable in a given brain ROI for injury prediction, 

here we systematically analyzed injury prediction performances and vulnerabilities of the 

entire deep WM ROIs and neural tracts. Further, a repeated random subsampling technique 

was employed to objectively evaluate prediction performances in order to avoid or minimize 

“over-fitting” concerns in previous efforts where a single training dataset was used.

5.1 Injury prediction performance

The two tractography-based injury susceptibility indices,  and , consistently 

had the best overall predictive power, while peak εn performed the worst in general (Fig. 8). 

Without weighting the “confidence” of injury in each WM fiber, however, the performance 

of φtract degraded significantly. The two best performers virtually had identical AUC and 

accuracy. Their responses as sampled across the 58 impacts were highly correlated (Pearson 

correlation coefficients close to 1.0 for all of the neural tracts; range of 0.989–0.998, 

p<0.0001). This suggests certain inherent concordance between the two. This was not 

surprising, given that the two predictor variables would become identical if a neural tract 

were to be composed of a single fiber. However, unlike  depends on the total 

number of “injured” sampling points only, and is invariant to their distribution among the 

fibers. Therefore, some subtle, but statistically significant, differences were found in their 

sensitivity and specificity (Fig. 8cd). Further investigation is necessary to discern their 

similarities/differences as well as implications in assessing injury risk.

The regional average εp and εn within a given ROI consistently outperformed their peak 

counterparts found in a single element, regardless of its location, for all of the performance 

measures (Fig. 8). The regional averages were also slightly (but significantly) better in AUC 

than their dichotomized counterparts,  and ; however, their comparisons in other 

performance measures were inconclusive. In addition,  and  did not differ in 

performance between themselves, except that the latter had a larger average AUC than the 

former based on training datasets (Fig. 8a). Regardless, these tract- and ROI-wise findings 

indicated that on a group-basis, fiber orientation-dependent strain along WM neural tracts 

may be more effective in injury prediction than the ROI-based counterparts.

The most injury discriminative WM ROIs/neural tracts were also observed. Note that 

because of head symmetry relative to the mid-sagittal plane (WHIM, WM atlas, and largely 

for whole-brain tractography as well), the ROI/tract results should be interpreted bilaterally. 

For example, findings regarding SLF-R would be equally applicable to its contralateral 

counterpart, SLF-L (e.g., considering mirrored head impacts (Zhao and Ji 2015)).
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SLF appeared to be one of the most injury discriminative neural tracts across a number of 

εn-based predictor variables that consistently achieved the best AUC, accuracy, and 

sensitivity. For example, the two best performers,  and  in this region, had an 

accuracy and sensitivity of 84.4–85.2% and 84.1–84.6%, respectively, and the corresponding 

specificity score was only slightly less than CGC (85.4–86.3% vs. 86.2–87.5%). 

Interestingly, the same neural tract, SLF, was also among the most vulnerable ones, both 

biomechanically (Fig. 11) and in neuroimaging ((Bigler and Maxwell 2012; Gardner et al. 

2012); further see below).

5.2 Injury vulnerability

The relative vulnerabilities depended on the injury predictor variables used. For ROI-based 

predictor variables, CP (cerebral peduncle, near the brainstem and midbrain) was 

consistently found to be among the most vulnerable ROIs, regardless of whether εp or εn 

was used (Fig. 9 and 10). This agreed well with typical reports of vulnerability in this region 

(Zhang et al. 2004; Viano et al. 2005). Large εp and εn occurred near this area even for the 

striking/uninjured athlete (Fig. 9ac; similarly for the other). Regardless, the regional average 

responses and susceptibility measures yielded more consistent findings than when using 

peak values. For example, three of the top five most vulnerable ROIs were identical (CP-R, 

FX/ST-R (fornix and stria terminalis), and IFO-R (inferior fronto-occipital fasciculus)) when 

using average εp and  as predictor variables. In comparison, average εn and 

identified the same top five most vulnerable ROIs (GCC, CP-L/R and UNC-L/R (uncinated 

fasciculus)). These ROI-wise observations agreed well with a previous study utilizing a 

subset of the NFL impact cases, where fornix, midbrain, and corpus callosum were found to 

experience the largest strains (Viano et al. 2005).

For the two best injury predictors based on neural tracts, the top four most vulnerable ones 

were identical (GCC, BCC, ALIC-R and SLF-L; Fig. 11). In general, this agreed well with 

neuroimaging studies in the context of sports-related concussion. Certain neural tracts, 

including GCC (genu of the corpus callosum), SLF, UNC, the inferior longitudinal 

fasciculus, internal capsule, among others, are known to be more susceptible to mTBI 

(Kraus et al. 2007; Niogi et al. 2008; Bigler and Maxwell 2012). For example, using tract-

based spatial statistics (TBSS), significant increase in mean diffusivity (MD) was observed 

in the SLF for concussed collegiate athletes playing football ((Cubon et al. 2011); significant 

changes in DTI parameters are considered indications of damages to the underlying WM). 

An increased fractional anisotropy (FA) was also found in the GCC and BCC in injured 

student athletes (Zhang et al. 2010a), while a decreased FA and increased apparent diffusion 

coefficient (ADC) were found in internal capsule based on a cohort of 81 professional male 

boxers and 12 male controls (Chappell et al. 2006). In general, these results also agreed with 

other neuroimaging findings using data from traffic accidents (Messé et al. 2011; Xiong et 

al. 2014), falls, and assaults (Messé et al. 2011).

Even for un-concussed players,  in CGH-R (cingulum (hippocampus) right) was 

found to have exceeded the corresponding injury threshold (Fig. 12). This appeared to agree 

with the notion that athletes even without a clinically diagnosed concussion could still 

experience significant changes in neuroimaging (Talavage et al. 2014; Bazarian et al. 2014) 
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or cognitive alteration (McAllister et al. 2012; McAllister et al. 2014), presumably a result 

from local tissue deformation.

Taken together, our biomechanical investigation, especially for results based on εn (Fig. 10 

and Fig. 11), appeared to reinforce reports from various neuroimaging studies that have 

identified the corpus callosum, SLF, UNC, and internal capsule as more frequently injured in 

mTBI patients (Bigler and Maxwell 2012). Undoubtedly, further studies and more 

independent models (further see below) are necessary to verify the concordance between 

biomechanical and neuroimaging findings on a same sizable population in the future. 

Nevertheless, collectively, these findings do seem to provide a multi-faceted insight into the 

mechanisms of mTBI.

5.3 Comparison with previous findings

The corpus callosum ranked among the most vulnerable regions for εn-based predictors. 

However, it did not have the best injury predictive power. For example, AUC of 0.812 and 

0.809 for  and  in the main body, respectively, lower than that for SLF-R: 

0.879 and 0.867, respectively; Fig. 4). Further, peak εn in the main body of corpus callous 

achieved relatively poor AUC, accuracy, sensitivity, specificity scores (0.685, 62.3%, 43.9%, 

and 79.0%). In contrast, peak εn in this region was one of the “best” injury predictors for the 

latest KTH model that reported an AUC of 0.9488 (Giordano and Kleiven 2014a). This was 

notably higher than those achieved in our study. Unfortunately, injury prediction 

performances based on independent testing datasets were not available in that study to 

enable a direct, more objective comparison.

Nevertheless, these findings, once again, highlight differences among models. A more 

systematic and objective comparison of brain responses across models may be valuable to 

gain further confidence in model-based injury studies. This is particularly true given the 

challenges for reliable, high-quality model validations at present (Yang et al. 2011) and the 

fact that significant differences exist even among “validated” models (Ji et al. 2014a). The 

approach presented here (random subsampling and evaluation of the entire deep WM ROIs 

and neural tracts via a standard WM atlas) may provide a common framework for future 

model comparisons (vs. simply peak responses in generic regions (Ji et al. 2014a)). With 

more independent models analyzing an identical injury dataset using the same approach, the 

observed concordance between biomechanical and neuroimaging findings may be further 

reinforced.

5.4 Limitations

Limitations of WHIM on the use of isotropic, homogeneous (vs. anisotropic, heterogeneous) 

material properties of the brain, and resolution mismatch between FE elements and DTI 

voxels have been discussed (Ji et al. 2015; Zhao et al. 2016). They are not repeated here. 

Extensive discussions also exist on errors in the impact kinematics (Newman et al. 2005), 

the resulting uncertainties in model results, and implications in injury prediction such as 

under-sampled non-injury cases that could have biased injury thresholds (Zhang et al. 2004; 

Kleiven 2007; Giordano and Kleiven 2014a). These random kinematic errors likely could 

significantly influence results on an individual basis. This will be the subject of a future 
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“sensitivity” evaluation. However, they are unlikely to significantly alter the group-wise 

results presented here such as the relative discriminative power among the injury predictor 

variables (as indicated by the consistency among random trials; Figs. 4–7) or vulnerabilities 

among the ROIs/tracts. Importantly, a model-based TBI study is analogous to an ill-posed 

optimization problem – uncertainties and potential errors will likely persist in virtually all 

aspects involved. A systems or integrated approach is important to ultimately elucidate the 

mechanisms behind TBI (Zhao et al. 2016). When additional injury datasets are available, 

further independent evaluations would reveal whether the findings in this study based on the 

limited NFL dataset could be generalized to other at-risk populations.

There are several other limitations. First, we have used neuroimaging and whole-brain 

tractography from one individual to study the NFL athletes on a group-wise basis. Individual 

variability could not be assessed because their neuroimages were unavailable. Despite this 

limitation, it must be recognized that our generic head model was a critical stepping stone 

towards more individualized integration of neuroimaging with TBI biomechanics studies in 

the future. The model-image mismatch was similar to a recent study that used 2D head 

models (vs. 3D here) developed from images of a normal individual to study injury of a 

reconstructed accident in ice-hockey of a different subject (Wright et al. 2013). Another 

study correlated simulated strain patterns from a generic model with injury findings from 

individual neuroimages for three reconstructed bicycle accidents, where model and images 

differed in size and shape (Fahlstedt et al. 2015). An image-atlas-based model represented 

“averaged” neuroimages but not specific individuals (Miller et al. 2016). Further work is 

necessary to understand the implications of using generic vs. individualized model and/or 

neuroimages in injury characterization; however, this is beyond the scope of this study. 

Nevertheless, importantly, our generic model with the associated neuroimages and whole-

brain tractography may provide a valuable tool to enable better integration of neuroimaging 

and TBI biomechanics studies in the future, especially given that most 50th percentile head 

models do not yet have detailed neuroimages directly associated with (Zhang et al. 2004; 

Kleiven 2007; Kimpara and Iwamoto 2012; Takhounts et al. 2013; Giordano and Kleiven 

2014a; Sahoo et al. 2016).

Second, a more complete WM atlas also exists (containing as many as 130 ROIs (Zhang et 

al. 2010b), which was employed before (Wright et al. 2013). Here, we chose to focus on the 

deep WM ROIs/neural tracts because certain regions deep in the brain appear more 

susceptible to mTBI based on neuroimaging findings (Kraus et al. 2007; Bigler and Maxwell 

2012). In addition, there is inconsistency in representing the brain-skull boundary conditions 

in FE head models (e.g., frictional sliding interface (Kleiven 2007) vs. direct nodal sharing 

via a layer of soft CSF in between the brain and skull (Takhounts et al. 2003; Ji et al. 2015). 

Thus, there could be greater response uncertainty in cortical and sub-cortical regions. 

Although using ROIs/tracts only in the deep WM did not necessarily eliminate the concern, 

it was a reasonable compromise, at least at present, to enable our study along this line of 

research.

Finally, we have used a univariate logistic regression in each WM region (ROI/neural tract) 

independently to assess injury risk. As concussion is diffuse in nature, a binary brain injury 

may well have involved damages to multiple (vs. a single) WM ROIs and/or neural tracts 
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(Fig. 13bd). It is reasonable to assume that combining responses from all of these regions 

could improve injury prediction performance. In this case, responses from each WM region 

(ROI or tract) could serve as unique “features” to enable more sophisticated analysis 

techniques – multi-variate logistic regression or machine learning (e.g., support vector 

machine (Hernandez et al. 2014) – for more effective injury classification. In addition, strain 

rate (Cullen and LaPlaca 2006), the combination of strain and strain rate (King et al. 2003), 

inter-regional differences in injury tolerance (Elkin and Morrison 2007), as well as 

“sustained maximum principal strain” (Fijalkowski et al. 2009) that considers the duration of 

above-threshold strains (vs. peak strains alone in this study) could also be incorporated. 

These will be the subjects of future investigations.

6. Conclusion

Using WHIM to simulate brain strain responses in NFL head collisions, we found that two 

injury susceptibility indices based on fiber strain along WM neural tracts had the best overall 

performance. SLF (superior longitudinal fasciculus) appeared to be among the most injury 

discriminative neural tracts (e.g., AUC and accuracy up to 0.879 and 85.2%, using training 

and testing datasets, respectively, based on tract-wise injury susceptibilities at an optimal 

strain threshold of 0.10). It was also among the top most vulnerable ones, along with corpus 

callosum. These findings highlight the unique injury discriminatory potentials of 

computational models, and may provide important insight into how best to incorporate WM 

structural anisotropy for investigation of brain injury. Future studies include 1) applying 

multi-variate analysis techniques to classify injury, while accounting for inter-regional 

differences in tolerance; 2) investigating the significance of neuroimaging inter-subject 

variability and accuracy of neural tracts on brain injury risk; and 3) assessing the 

generalizability of the findings to other at-risk populations using additional, independent 

injury datasets.
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APPENDIX A: DESCRIPTION OF DEEP BRAIN WHITE MATTER ATLAS

Table A1

ICBM-81 deep brain white matter atlas labels and regions of interest (ROI)

ID Label ROI name

1 MCP Middle cerebellar peduncle

2 PCT Pontine crossing tract (a part of MCP)

3 GCC Genu of corpus callosum

4 BCC Body of corpus callosum

5 SCC Splenium of corpus callosum

6 FX Fornix (column and body of fornix)

7 CST-R Corticospinal tract right

8 CST-L Corticospinal tract left

9 ML-R Medial lemniscus right

10 ML-L Medial lemniscus left

11 ICP-R Inferior cerebellar peduncle right

12 ICP-L Inferior cerebellar peduncle left

13 SCP-R Superior cerebellar peduncle right

14 SCP-L Superior cerebellar peduncle left

15 CP-R Cerebral peduncle right

16 CP-L Cerebral peduncle left

17 ALIC-R Anterior limb of internal capsule right

18 ALIC-L Anterior limb of internal capsule left

19 PLIC-R Posterior limb of internal capsule right

20 PLIC-L Posterior limb of internal capsule left

21 RLIC-R Retrolenticular part of internal capsule right

22 RLIC-L Retrolenticular part of internal capsule left

23 ACR-R Anterior corona radiata right

24 ACR-L Anterior corona radiata left

25 SCR-R Superior corona radiata right

26 SCR-L Superior corona radiata left

27 PCR-R Posterior corona radiata right

28 PCR-L Posterior corona radiata left

29 PTR-R Posterior thalamic radiation (include optic radiation) right

30 PTR-L Posterior thalamic radiation (include optic radiation) left

31 SS-R Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus) right

32 SS-L Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus) left

33 EC-R External capsule right

34 EC-L External capsule left
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ID Label ROI name

35 CGC-R Cingulum (cingulate gyrus) right

36 CGC-L Cingulum (cingulate gyrus) left

37 CGH-R Cingulum (hippocampus) right

38 CGH-L Cingulum (hippocampus) left

39 FX/ST-R Fornix (cres) / Stria terminalis (cannot be resolved with current resolution) right

40 FX/ST-L Fornix (cres) / Stria terminalis (cannot be resolved with current resolution) left

41 SLF-R Superior longitudinal fasciculus right

42 SLF-L Superior longitudinal fasciculus left

43 SFO-R Superior fronto-occipital fasciculus (could be a part of anterior internal capsule) right

44 SFO-L Superior fronto-occipital fasciculus (could be a part of anterior internal capsule) left

45 IFO-R Inferior fronto-occipital fasciculus right

46 IFO-L Inferior fronto-occipital fasciculus left

47 UNC-R Uncinate fasciculus right

48 UNC-L Uncinate fasciculus left

49 TAP-R Tapatum right

50 TAP-L Tapatum left

APPENDIX B: ONE-SIDED PERMUTATION TEST

We adopted a non-parametric, one-sided permutation test (Rice 2006) to compare injury 

prediction performances and vulnerabilities of the deep WM ROIs/neural tracts. A paired-

sample t-statistic is first calculated according to:

(A1)

(A2)

where d̄ is the mean of the difference between two samples, x and y; s is the standard 

deviation of d; and n is the sample size. The pseudo-algorithm for the permutation test is 

described below:

Step 1. For a given pair of data samples, calculate the baseline paired-sample t-
statistic, T0, using Eqns. A1 and A2.

Step 2. Randomly flip the pairs of values from the two samples to generate two new 

samples.

Step 3. Compute a new paired-sample t-statistic, Tperm, using the newly generated 

samples from Step 2.

Step 4. Repeat Steps 2–3 by Nperm times (e.g., 100).
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Step 5. Calculate a probability p-value:

(A3)

where “#(Tperm > T0)” is the number of permutations where Tperm is found to be greater 

than T0. A p-value smaller than a given threshold (e.g., 0.05) is considered a strong 

indication that the given pair has a statistically significant difference.
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Fig. 1. 
Schematic illustration of image volume registrations to transform all geometrical entities 

into the common reference coordinate system of the Worcester Head Injury Model (WHIM).
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Fig. 2. 
The exterior features (a) and intracranial components (b) of the WHIM (formerly known as 

the Dartmouth Head Injury Model or DHIM), along with eight representative WM ROIs (c) 

and four corresponding neural tracts from the whole-brain tractography (showing a 10% 

random subset; d).
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Fig. 3. 
(a) Illustration of the ranking approach to identify the optimal εthresh based on the training 

dataset in a typical round of random subsampling trial. For each WM ROI/neural tract, a tied 

rank was assigned for each εthresh according to the Wald χ2 test p-values. For each εthresh, 

an average rank value was obtained, as shown. (b) Average rank values as a function of 

εthresh. For each injury susceptibility measure, the one that yielded the smallest (i.e., the 

best) average rank value was chosen as the optimal εthresh (Table 2).
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Fig. 4. 
Summary of AUCs averaged from 100 random subsampling trials based on the training 

datasets, shown as a 9×50 intensity-encoded image. Each row corresponds to an injury 

predictor variable while each column represents a WM ROI/neural tract. The average AUC 

value for each injury predictor variable, regardless of the region, is also shown, along with 

the average and maximum standard deviations of the AUC samples across the 100 trials. 

Five of the nine injury predictor variables achieved the largest AUCs (averaged across trials) 

in the SLF-R (arrow).
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Fig. 5. 
Summary of average accuracy measures based on the testing datasets. Four of the nine injury 

predictor variables achieved the best accuracy score in the CGC-R and SLF-R (four for each; 

arrows).
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Fig. 6. 
Summary of average sensitivity measures based on the testing datasets. Three of the nine 

injury predictor variables achieved the best sensitivity score in the SLF-R (arrow).
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Fig. 7. 
Summary of average specificity based on the testing datasets. Five of the nine injury 

predictor variables achieved the best specificity score in the CGC-R (arrow).
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Fig. 8. 
Pair-wise performance comparisons between the injury predictor variables in terms of AUC 

(a), accuracy (b), sensitivity (c), and specificity (d). Each square in a row represents whether 

the performance measure was significantly larger (dark gray; otherwise, white) than that in a 

column (self-comparisons along the diagonal excluded).
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Fig. 9. 
The number of times that a given WM ROI had an average response value (from the 58 

simulated head impacts) significantly larger than others using injury predictors based on εp: 

peak εp (a), average εp (b), and  (c). Their respective top five most vulnerable ROIs are 

highlighted (gray).
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Fig. 10. 
The number of times that a given WM ROI had an average response value significantly 

larger than others using injury predictors based on εn: peak εn (a), average εn (b), and 

(c). Their respective top five most vulnerable ROIs are highlighted.
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Fig. 11. 
The number of times that a given WM neural tract had an average response value 

significantly larger than others using injury predictors established from tract-wise εn: φtract 

(a),  (b), and  (c). Their respective top five most vulnerable neural tracts are 

highlighted.
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Fig. 12. 
Brain strain distributions for a pair of striking/struck athletes involved in the same head 

collision. (a and b): peak εp resampled on a coronal plane; (c and d): peak εn in a coronal 

MR image; and (e and f): peak εn along a 10% subset of the whole-brain tractography. For 

the resampled strain map, only regions corresponding to the brain parenchyma are shown – 

other regions such as falx and tentorium appear as empty space. All responses are peak 

values during the entire impact, regardless of the time of occurrence (vs. a time-frozen 

snapshot (Kleiven 2007)). The peak magnitudes of resultant angular acceleration and 
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velocity were 3807 rad/s2 and 25 rad/s for the striking athlete, and were 7083 rad/s2 and 38 

rad/s for the struck player, respectively.
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Fig. 13. 

Illustration of injury susceptibilities using  (top) and  (bottom) for the same 

pair of athletes. Stars/dashed lines represent tract-wise/average injury thresholds at a 50% 

probability for concussion. Potentially “injured” tracts (i.e., susceptibilities exceeding the 

corresponding tract-wise thresholds) are highlighted in gray. Even for the un-concussed 

athlete,  in CGH-R still exceeded its tract-wise threshold (arrow).
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Table 1

Summary of injury predictor variables used in this study.

Predictor Variable Definition Example References

Largest strain

Peak εp Largest value of εp from a single FE element or 
voxel

(Zhang et al. 2004; Giordano and 
Kleiven 2014a)

Peak εn Largest value of εn from a single FE element or 
voxel

(Giordano and Kleiven 2014a)

Average strain
Average εp Regional average of εp (Ji et al. 2014b; Zhao and Ji 2015)

Average εn Regional average of εn In this study

Injury susceptibility index

Volume fraction of “injured” voxels based on εp in 
a ROI

(Giordano and Kleiven 2014a)

Volume fraction of “injured” voxels based on εn in 
a ROI

In this study

φtract Tract-wise injury susceptibility index, Eqn. 1 (Zhao et al. 2016)

Enhanced tract-wise injury susceptibility index, 
Eqn. 3

In this study

Fraction of “injured” fiber sampling points based 
on εn in a neural tract, Eqn. 4

(Zhao et al. 2016)
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