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Mapping functional diversity from remotely sensed
morphological and physiological forest traits
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Assessing functional diversity from space can help predict productivity and stability of forest

ecosystems at global scale using biodiversity–ecosystem functioning relationships. We pre-

sent a new spatially continuous method to map regional patterns of tree functional diversity

using combined laser scanning and imaging spectroscopy. The method does not require prior

taxonomic information and integrates variation in plant functional traits between and within

plant species. We compare our method with leaf-level field measurements and species-level

plot inventory data and find reasonable agreement. Morphological and physiological diversity

show consistent change with topography and soil, with low functional richness at a mountain

ridge under specific environmental conditions. Overall, functional richness follows a loga-

rithmic increase with area, whereas divergence and evenness are scale invariant. By mapping

diversity at scales of individual trees to whole communities we demonstrate the potential of

assessing functional diversity from space, providing a pathway only limited by technological

advances and not by methodology.
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Understanding community structure and the impact of
changing biodiversity on ecosystem functioning are key
tasks in ecology. Progress has been made on a wide variety

of taxa, including plants1, fish2, birds3 and insects4, amongst
others. In plant ecology, biodiversity research has focused on the
distribution of species based on taxonomic identity5. More
recently, with the emergence of functional biogeography6, tree
species or individuals of a community are described in relation to
their functional identity and distribution in space. Functional
traits are of particular interest due to their response to environ-
mental conditions and direct link to growth, reproduction and
survival7, 8. Trait-based approaches are emerging rapidly in plant
ecology, underpinning community assembly and structure, spe-
cies interactions and interlinkages between vegetation and bio-
geochemical cycles9.

The assessment of plant functional traits and plant functional
diversity is of particular relevance when predicting ecosystem
productivity and stability. A multitude of experimental studies
demonstrated positive relationships between plant diversity and
ecosystem functioning10–12 and increasingly such positive rela-
tionships are also found in comparative observational studies13,
14. A positive relationship over extended time scales is mainly
driven by functional diversity due to an increased resource use
efficiency and utilization as well as sampling effects in a changing
environment, allowing plant communities to sustain high pro-
ductivity over time15–17. Besides productivity, higher functional
diversity has been linked to enhanced tree growth and ecosystem
stability due to complementarity effects, better adaptability to
changing environmental conditions and lower vulnerability to
diseases, insect attacks, fire and storms18–20. However, to make
use of the increasing knowledge about biodiversity–ecosystem
functioning relationships in forest ecosystems, it would be
necessary to develop methods to assess plant functional diversity
efficiently over large continuous areas. Our first aim is therefore
to develop such a method for a regional test area, see Fig. 1, as a
base for larger scale biodiversity scoping studies.

Spatial variation in plant functional traits and diversity depend
on community structure21 and thus represent a potential signal of
community assembly processes. However, plant traits and func-
tional diversity do not only depend on community structure
represented by particular species abundance distributions within
a specific geographical unit, but may vary as much within species
as they do between species22. Different species can also be
redundant in terms of their functional traits, and thus not con-
tribute to functional diversity16, 23. Therefore, functional diversity
is best derived from a given set of traits including their intra-
specific variability24, 25. By incorporating individual-level func-
tional traits, functional diversity may better predict ecosystem
functioning than species-level means16.

A multitude of forest monitoring networks exist26 as well as
trait-based studies in forested ecosystems27, fostered by standar-
dized measurement procedures28 and global trait databases29.
However, these procedures usually require taxonomic informa-
tion about tree individuals and indirectly assess trait variation and
functional diversity combining information about species abun-
dances and mean traits, thus ignoring variation in tree functional
traits within species, which can be large even within individuals30.
In addition, there is a global bias in the distribution of forest
plots, leading to large data gaps particularly in remote areas31.
Furthermore, trait measurements in forests are typically limited
in extent and magnitude due to the complexity of destructive
crown-level measurements, as well as associated georeferencing
challenges and plot representativeness32. Consequently, con-
tinuous spatial data of traits and especially on trait diversity are
still very sparse. Recent advances in remote sensing provide the
opportunity to map traits and trait diversity, thus filling the

existing data gaps33–35. Here, we use three morphological and
three physiological functional traits that we assess directly, i.e.
without reference to taxonomic information, to provide a spa-
tially continuous description of functional diversity in a forest at
local scale (≈925 ha), with the potential to scale up to regional
and to the global level.

The selected morphological and physiological traits can be
assessed with high-resolution airborne remote sensing methods33,
36 and are relevant for plant and ecosystem function. Three
morphological traits, namely canopy height (CH, vertical distance
between canopy top and ground), plant area index (PAI, pro-
jected plant area per horizontal ground area) and foliage height
diversity (FHD, measure of variation and number of canopy
layers), are essential to describe canopy architecture, encom-
passing the horizontal and vertical structure of forests and
influencing light availability, thus affecting competitive and
complementary light use and ecosystem productivity18, 37. Three
physiological traits, namely leaf chlorophyll (CHL, relative con-
tent of chlorophyll a+b per unit leaf area), leaf carotenoids (CAR,
relative content of carotenoids per unit leaf area) and equivalent
water thickness (EWT, leaf water content per unit leaf area), do
not modify light availability but rather describe light use at the
level of single leaves. The chlorophylls are functionally important
pigments, since they control the amount of photosynthetically
active radiation absorbed for photosynthesis38. Carotenoids are
contributing to the chlorophylls by absorbing additional radiation
for photosynthesis and protecting leaves from over-exposition to
high amounts of incoming solar radiation by releasing excess
energy38. The third, EWT, is important for plant responses to
drought, which could reduce the physiological performance
through decreased photosynthetic carbon assimilation and elec-
tron transport rate39.

We use the above traits to derive measures of functional
diversity separately for the morphological and leaf physiological
traits. Our functional diversity measures are combining multiple
traits, as is typically done for such measures23. We calculate three
measures, related to different aspects of functional diversity—
functional richness, divergence and evenness40, 41. Functional

Southern slope

Northern slope

Flat areas

A

B

C

Fig. 1 Laegern mountain temperate mixed forest site in Switzerland. The
test site is located near Zurich and covers about 2 × 6 km. The mountain
range is divided by a ridge running from east to west, separating the
forested area in north facing (blue) and south facing (orange) slopes. Flat
areas are defined with a slope <10° (green). Areas not covered by forest
(agriculture, grassland, urban areas) are shown in grey

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01530-3

2 NATURE COMMUNICATIONS | 8:  1441 |DOI: 10.1038/s41467-017-01530-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


richness is calculated as the convex hull volume of the community
niche42, as illustrated in Fig. 2a for an assemblage of pixels
mapped in the morphological trait space. It corresponds to the
niche extent and defines the outer boundary of the occupied
functional space. A disadvantage of this measure may be a strong
influence by extreme values. In contrast, functional divergence
and evenness describe how sample points are distributed within
the community niche (Fig. 2b, c). Functional divergence is a
measure of how sample points are spread with regard to the mean
distance to the centre of gravity, whereas functional evenness
indicates how evenly traits are distributed with regard to spacing
among similar sample points in functional space. These three
indices have mainly been applied to functional diversity of
plants43, where sample points represent species, with an
increasing number of studies on forest ecosystems44. However,
this concept has not yet been applied to continuously measured
trait data independent of taxonomy, vegetation units or even
plant individuals. Remote sensing methods offer to measure
functional traits continuously and directly across large spatial
extents. This has a twofold advantage: (1) there is no need to
identify species, vegetation units or individuals and (2) prediction
of ecosystem functions using independently established func-
tional diversity–ecosystem functioning relationships are con-
sistent across large scales. In contrast, recent efforts to map forest
biodiversity have used forest functional classes as remotely sensed
vegetation units with constant trait values assigned to these
units35.

Our second aim is to test the consistency of our method. For
this, we compare the results obtained with the two independent
sets of traits. Morphological diversity was found to be the main
driver of forest productivity in poly- and monocultures of mature
forests45–47, whereas physiological diversity reflects different
resource allocation strategies to maximize light capture and
protective mechanisms and is more closely linked to species
diversity48, 49. Since most functional traits show consistent var-
iation along broad environmental gradients, we expect both
morphological and physiological diversity to show similar pat-
terns at larger scales. For the leaf physiological traits, we also
compare the remotely sensed trait values with those directly
obtained from spectroscopic measurements on single leaves. This
should indicate how well the retrieval method can be scaled from
the leaf to the canopy level. Furthermore, we test the general
agreement of trends in trait relationships between community
weighted means of the functional trait database TRY and the
retrieved traits for communities composed of the 13 tree species
present in our test area.

Finally, we examine scale dependency of different functional
diversity measures. We demonstrate that functional diversity
measures can be quantified at any desired unit area within the
sampled region, limited only by the spatial resolution of the trait
maps. This will allow—in future efforts—for direct and con-
tinuous mapping of functional diversity from space. Functional
diversity, due to redundancy and trait plasticity, may not show
the same increase with area as is typically found for species
richness. Nevertheless, scale dependency of functional diversity
could still lead to scale-dependent functional diversity–ecosystem
functioning relationships. Such effects would be expected if eco-
system functions are not scale-dependent above a certain mini-
mum area, which is likely the case, such as for example for
productivity per area. Studies on spatial patterns and scale
dependency of functional diversity are still sparse50. We expect
functional richness to increase with scale. A strong increase at
small scales would indicate high diversity within communities,
which can mean higher resilience to disturbance51, while an
increase at larger scales would indicate high diversity between
communities. The exact slope and shape of the relationship,
however, cannot be predicted by known species–area relation-
ships, since functional richness is influenced by trait correlations,
redundancies among species and intra-specific trait variation.
Even less is known about other components of functional
diversity. A study based on four plant communities on the San-
torini Archipelago found no relationship with area for functional
divergence and evenness52.

Results
Functional traits. Figure 3 shows the spatial distribution of
morphological and physiological traits, as derived from airborne
laser scanning and airborne imaging spectroscopy, respectively.
Blue areas in the morphological trait map are characterized by
high canopy density, low canopy height and little canopy layering.
When comparing with independent community data, around
83% of these areas are classified as juvenile forest with tree height
below 21 m and diameter at breast height below 30 cm (Supple-
mentary Fig. 1). The largest such area is marked as subregion A,
covering ∼1.4 ha, and is likely affected by disturbance caused by a
winter storm. Physiologically, these patches are characterized by
very high chlorophyll concentration as compared to an undis-
turbed, mature forest canopy.

Larger patches with a dense and closed canopy as well as high
relative chlorophyll and carotenoids content are represented by
pink and orange areas in the morphological and physiological
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Fig. 2 Three aspects of functional diversity based on morphological forest traits of a circular area with a radius of 120m. The three traits are foliage height
diversity, plant area index and canopy height in relative units from 0 to 1. a The shaded volume is functional richness, b the distance from the surface of the
shaded sphere is functional divergence and c the variation of segment length in the minimum spanning tree is functional evenness
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trait maps (Fig. 3). According to community data, these areas are
dominated by beech trees (>50% Fagus sylvatica, see Supple-
mentary Fig. 1). They appear mainly in submontane locations
with shallow, but fertile alkaline soils (e.g. Rendzina), as well as in
lower altitudes on southern slopes with deeper neutral to acidic
Podsol and Cambisol soils. On the physiological trait map, blue
areas with a high relative water content and low relative
chlorophyll and carotenoids content are dominated by evergreen
coniferous needle trees. They are more abundant in flatter areas
and on southern slopes with deeper, acidic soils. These areas can
further be characterized by morphological traits. A managed
plantation, marked as subregion C, with 20 m tall conifers (green
areas covering about 25%) can be distinguished from up to 55 m
high and complexly structured canopies (yellow areas covering
around 3%). The Laegern mountain is forested up to the top of
the ridge, but tree height decreases to a shrub type forest with a
layered but low and sparse canopy covering about 25% of the
forested area. On dry and rocky habitats, sessile oak (Quercus
petraea) and beech (Fagus sylvatica) are the dominating tree
species.

PAI, CH and FHD have a mean and standard deviation of 0.46
±0.21, 0.49±0.17 and 0.59±0.20, respectively, when normalized
between 0 and 1 (Supplementary Fig. 2a). CH and FHD are
correlated with r2= 0.70, CH and PAI with r2= 0.31, and FHD
and PAI with r2= 0.35 (Supplementary Fig. 3). Figure 4 shows
median and standard deviation of the functional traits along
altitudinal belts. 5.5%, 10.5% and 5.6% of the variance in CH, PAI
and FHD can be explained by soil and topography (Supplemen-
tary Fig. 4). Soil variables alone explain 1.4%, 8.2% and 4.1% of

the variance, respectively. CHL, CAR and EWT have a mean and
standard deviation of 0.58±0.18, 0.50±0.21 and 0.39±0.18,
respectively, when normalized between 0 and 1 (Supplementary
Fig. 2b). CHL and CAR are correlated with r2 = 0.57, CHL and
EWT with r2= 0.004, and CAR and EWT with r2 = 0.08
(Supplementary Fig. 3). 11.9%, 20.3% and 34.8% of the variance
in CHL, CAR and EWT can be explained by soil and topography.
Soil variables alone explain 9.9%, 14.1% and 27.5% of the
variance. Radiation is correlated with soil and topography (r2=
0.56) and therefore only explains an additional 0.1–0.5% of
variance of the functional traits (Supplementary Figs. 4 and 5).

Estimated physiological trait ranges based on imaging spectro-
scopy correspond with modelled ranges based on leaf optical
properties measured in the field (Supplementary Fig. 6). General
trends of community-weighted mean trait values agree with the
functional trait database TRY (Supplementary Fig. 7). Although
TRY is not suitable for assessing intra-specific trait variation or
trait plasticity, we find a positive relationship to remotely sensed
trait estimates of chlorophyll (r2= 0.36) and EWT (r2= 0.48).
Simulations using lab measurements of traits and leaf optical
properties in a 3D forest model show that spectral indices can be
applied at the canopy level, if high quality imaging spectroscopy
data with little influence of shadows are available (Supplementary
Figs. 8 and 9). Canopy reflectance-based estimates of chlorophyll
and carotenoids (<15 μg/cm2) correlate with traits measured in
the laboratory (r2= 0.86, r2= 0.74). The weakest correlation
between lab measured traits and estimates from canopy spectra
could be observed for EWT (r2= 0.51, Supplementary Fig. 9),
since water absorption was measured in the near infrared where
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scaling from leaf to canopy level is hampered by multiple
scattering effects.

Functional diversity. Maps of functional richness, divergence
and evenness are shown in Figs. 5–7. Patterns of morphological
and physiological richness exhibit strongest correlation at med-
ium scale between 60 and 240 m radius. The correlation coeffi-
cient (r) is 0.37, 0.44 and 0.40 at 12, 60 and 240 m radius,
respectively. Differences among northern, southern and flat areas

are significant for both morphological (DF= 2, F= 5.8, p< 0.01)
and physiological richness (DF= 2, F= 9.1, p< 0.01) based on a
generalized linear model and an ANOVA test. Figure 4 shows a
consistent decrease of functional richness towards the mountain
ridge for morphological and physiological richness. Soil and
topography together explain 24.2% and 40.1% of variance in
morphological and physiological richness, whereas 19.6% and
34.6% of variance is explained by soil alone and 15.3% and 37.9%
by topography alone (Supplementary Fig. 4). For morphological
richness, altitude (DF= 1, F= 48.4, p< 0.001) and curvature (DF
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= 2, F= 3.8, p< 0.05) explain most of the variance. Physiological
richness is more strongly linked to slope (DF= 1, F= 121.5,
p< 0.001), being steepest on the south side of the ridge and
indirectly linked to radiation, followed by altitude (DF= 1,
F= 20.5, p< 0.001). With slope explaining most of the variance,
aspect is not significant any more (Supplementary Table 1).

The correlation (r) between patterns of morphological and
physiological divergence is 0.36, 0.13 and 0.21 at 12, 60 and 240 m
radius, respectively. Divergence remains in a relatively small
range, leading to small relative differences between high and low
diversity areas. Only altitude is significantly related to morpho-
logical divergence (DF= 1, F= 8.4, p< 0.01) based on a general-
ized linear model and an ANOVA test, whereas variance in
physiological divergence is mainly explained by slope (DF= 1,
F= 23.4, p< 0.001). Soil and topography together explain only
7.7% and 17.4% of total variance, with soil being the more
important factor. Functional evenness patterns of morphological
and physiological traits strongly correlate at small scales, for
example with a correlation coefficient (r) of 0.54 at 12 m radius.
The correlation decreases towards 0.19 and 0.23 at 60 and 240 m
radius, respectively. Evenness is slightly higher on southern than
on northern slopes and flat areas, but the deviation from the
average is below 2% for morphological and below 3% for
physiological traits. Morphological and physiological evenness
vary mainly with altitude (DF= 1, F= 14.0, p< 0.001) and slope
(DF= 1, F= 14.8, p< 0.001) respectively. Similar to divergence,
soil and topography explain 10.7% and 12.1% of variance,
respectively.

Figure 8 shows how functional richness of morphological and
physiological traits change as a function of spatial scale (see
Supplementary Fig. 10 for mean and standard deviations of all
pixels in the subregions). Fitting a power-law function to the
observed mean functional richness–area relationship results in a
slope of 0.195 and 0.213 for morphological and physiological
richness, respectively (Supplementary Fig. 11). This is close to

previously reported slopes for species richness–area relationships
of 0.161 and 0.177 for the biome ‘temperate broadleaf and mixed
forest’ and the land-cover class ‘temperate mixed forest’53. The
increase of functional richness with the logarithm of the area is
linear for areas above 1 ha. Therefore, a logarithmic function fits
the mean observed values better than the power-law, although
both r2-values are very high (r2> 0.9). In contrast, mean
functional divergence and evenness are scale invariant. They
remain stable with changing extent (<1.3% change between
radius 60 and 240 m) and do not vary between different trait
values and distributions (Fig. 8c–f). The main difference between
observed and random spatial distribution of traits is the
magnitude of the variance.

A modelled random spatial distribution of functional traits
(Fig. 8, null model), preserving the relationship among the three
traits of a pixel, leads to a relatively high functional richness.
Especially at smallest scales below 50 m radius, richness following
a random distribution is one to five times higher than based on
the observed distribution of traits. Null model richness is 35% and
37% higher at 240 m radius, decreasing to 15% and 11% at the
largest scales for morphological and physiological traits respec-
tively. A simulated distribution of traits following the assumption
of under-dispersion, where trees being close in functional space
are assumed to be close in geographic space, leads to a very low
functional richness at all scales (<19% (a) and <15% (b) of
observed values).

Discussion
Various measures of functional diversity, with different advan-
tages and disadvantages54, 55, have the common aim to map
species in functional trait space using mean trait values and
weighted species abundances40, 41. With our new method we
create continuous maps of functional diversity without a need to
identify species or individuals, since inter- as well as intra-specific
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variability is inherent to remotely sensed functional traits. Espe-
cially in relatively species-poor temperate forests, such as the one
studied here, functional diversity might be strongly under-
estimated when ignoring intra-specific variability16, 56. Our
method avoids this pitfall, because it is fully continuous in space
and only depends on resolution, it can thus even be applied below
the individual level. Within-individual variation, for example in
leaf traits, is common in plants and can reflect different light
competition or leaf ages30. With evolving sensor technologies and
miniaturization, higher spectral and spatial resolution of remotely
sensed data will allow to study within-individual tree functional
diversity.

The resulting spatial distribution of morphological and phy-
siological diversity generally agree with regard to the spatial
patterns, especially for functional richness. This is related to the
environmental gradient on the mountain in the observed test area
and the coinciding reduced trait variability towards the ridge
(Fig. 4). The mountain ridge is the most prominent landscape
feature of our study area with shallow and rocky soil, steep slopes
and high incoming radiation on the south side of the ridge
(Supplementary Fig. 5). We can therefore show that both mor-
phological and physiological diversity change consistently with
topography and soil. In this case, the abiotic conditions at the
ridge might act as an environmental filter, only allowing trees
with particular functional traits to exist. This is important because
functional richness represents the total extent of the community
niche. The lower functional richness at higher elevation with dry,
rocky and shallow soil suggests a smaller range of resource
availability. Thus smaller biotope space constrained the com-
munity niche in this area, which as a consequence may reduce the
performance of the present plant community57 and its adapt-
ability to changing environmental conditions40. Therefore, we
would expect the forest communities on the ridge to have lower
ecosystem functioning and stability.

Besides similarities in the spatial distribution of functional
diversity following broad environmental gradients, there are also
expected differences between morphological and physiological
diversity. These differences are more pronounced for functional
divergence and evenness than for functional richness. On the one
hand, physiological divergence is mainly driven by differences
between tree functional groups (needle, broadleaf), because they
have different leaf structure and composition of pigments and
compounds related to different resource allocation strategies and
are therefore clearly divergent in their biochemical characteristics.
In areas with mixtures of broadleaf and needle trees, as for
example in subregion C or generally in lower altitudes, pro-
ductivity might be increased because the resource use is parti-
tioned among the different functional groups leading to lower
resource competition40. At the same time, functional evenness is
higher too, indicating that the niche is filled evenly and available
resources can potentially be fully exploited. In higher altitudes
where the trait range is reduced, lower divergence and evenness
could mean that there is a stronger competition for resources
(nutrients, water) and that some of the resources might be unused,
leading to lower productivity and stability of the community.

Morphological diversity, on the other hand, is more strongly
linked to the different stages of forest development (e.g. due to
disturbance) and management. For example, subregion A shows
high morphological diversity at larger scales because there is a
juvenile forest patch in the centre surrounded by structurally
different mature trees. In contrast, morphological richness,
divergence and evenness are low in the managed forest in sub-
region C due to equal canopy height and structure. This may
result in lower productivity due to a lower efficiency in light
capture, although higher physiological diversity could indicate
better resource use partitioning among functional groups. The

strong link to the development stage is clearly reflected in the
morphological traits themselves. Differences in functional traits
between juvenile and mature forest communities can be explained
by changing physiology and morphology with tree age, ranging
from densely and fast growing highly productive juvenile to
mature trees, being characterized by lower growth rate, similar
height, smaller leaves and greater leaf thickness and longevity58.
Since the occurrence of patches of juvenile forest is mainly driven
by disturbance and forest management, there is no clear altitu-
dinal gradient in functional traits.

In contrast, physiological traits are linked more closely to
topographic and soil variables. Equivalent water thickness in
particular shows the strongest altitudinal gradient, because there
is a gradient in soils and steepness leading to lower potential
water availability towards the top of the ridge. Furthermore,
needle trees mainly occurring in lower altitudes show higher
EWT and lower relative chlorophyll and carotenoids content
compared to broadleaf trees. This is in accordance with values
from the TRY database (Supplementary Fig. 7) and a study
conducted at three sites in Switzerland, reporting higher water
and lower nitrogen content, being closely linked to chlorophyll
content59. In general, our remotely sensed functional traits are
consistent with independent in situ knowledge of the forests in
the study region. We could show that functional traits are map-
ped in the correct range and that our measurement values are
compatible with values derived from optical and functional trait
databases. To map functional diversity, relative trait values can be
used but they need to be measured consistently over space. The
proposed remote sensing method has the advantage that it is
based on continuous and consistent large-scale measurements
without bias due to subjective interpretation or differences in
measurement techniques or protocols, which can occur when
traits are measured over large areas in the field.

Given the continuous nature of the remotely sensed functional
trait maps, we were able to study functional diversity at multiple
scales and to develop a highly resolved scaling relationship. The
relationship of functional richness and area should be related to
the species–area relationship, which is one of the most studied
ecological patterns due to its relevance for predicting biodiversity
patterns and species extinction rates53. Typically, the power-law is
used to model species–area relationships resulting in a linear
relationship on the log–log scale. Our results are generally con-
sistent between morphological and physiological richness. Fur-
thermore, the slope of the relationship on the log–log scale is very
similar to large-scale species models for temperate mixed for-
ests53. However, we also found deviations of the relationship from
the power-law, as was also reported by Pereira and colleagues for
smaller spatial scales60. Increased within-community diversity
when considering intra-specific variability might explain the
steeper slope at small scales, whereas species might be redundant
with regard to their functional traits at large scales, leading to a
flattening of the log–log relationship. Therefore, we found that a
logarithmic function could better predict functional richness than
did the power-law.

Deviations from the average can be observed locally, when
looking at particular subregions within the test area. Exemplary
for a steep transition from low to high functional richness with
increasing area is subregion A. Juvenile trees that grow in a dis-
turbed area result in low within and high between community
diversity. In this case, underdispersion at local scale might not
only be driven by abiotic conditions (e.g. environmental filtering)
or anthropogenic influence but also by competitive exclusion61.
Beech trees might have been planted in disturbed areas or
favoured by environmental conditions, or both, but at the same
time only the fastest growing beech trees with similar functional
traits might have survived and occupied the new space. When
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competing for light, a competitive ability difference leads to the
elimination of individuals that grow slowly and are therefore too
short to gather enough light61. According to Siefert62, local
under-dispersion leads to locally decreased functional divergence
and increased divergence between environmental patches. This is
in agreement with what we observed in subregion A (Fig. 8).

By comparing functional richness–area relationships of
observed with randomly distributed traits, we found trait con-
vergence to be predominant in our forest. However, a general link
between community structure and underlying assembly processes
can not easily be established, because many processes can lead to
trait divergence or convergence, including anthropogenic factors
due to certain management strategies. Opposing processes can
balance each other and not be disentangled any more44, 63, 64. The
latter might be the case when looking at the average signal of
functional divergence and evenness, which is scale invariant and
almost similar to the null model. This, however, does not mean
that there is no spatial variation of these two aspects of diversity
at all. To study the scale dependency of biodiversity, it is therefore
crucial to not only focus on general relationships but also on
spatially continuous diversity patterns at different scales.

In conclusion, combined airborne imaging spectroscopy and
laser scanning allow for mapping functional diversity con-
tinuously across large areas of forest using a trait-based, pixel-
level approach. We evaluated the diversity of six key traits at a
variety of spatial scales and were able to validate these mea-
surements against in situ data, as well as to assess community
structure across an entire landscape. By concentrating on func-
tional traits at a continuous spatial resolution without reference to
species identities or individuals, we were able to include intra-
specific variability, which is crucial to assess functional diversity
of temperate forests and often neglected when functional diversity
is indirectly calculated from taxonomic data. Future studies can
advance the integration of remotely sensed functional data with
databases of plant functional traits, environmental and ecosystem
data, and dynamic vegetation models to increase our under-
standing of the mechanistic linkages between functional diversity
and ecosystem function.

To map functional diversity from space and predict global
patterns of ecosystem functioning, our method could also be
applied to satellite measurements, even though at lower spatial
resolution. To test the scalability of our approach we suggest
looking at changing extent and grain in a combined fashion.
Supplementary Figure 12 indicates how well richness patterns
correlate at a given neighbourhood radius when changing grain as
pixel size. For example, satellite data at 30 m spatial resolution
might be able to capture richness patterns at 200 m radius with a
correlation coefficient of 0.7–0.8. This paves the way for possible
large-scale applications, but further research is needed to quantify
how much small-scale variability would be lost when pixel size is
increased, and how this would affect diversity–productivity
relationships.

Methods
Study area. The study area is a temperate mixed forest at the Laegern mountain in
Switzerland (47° 28′43.0 N, 8° 21′53.2 E). The Laegern is characterized by a
mountain ridge spanning in east–west direction with an altitudinal gradient of
450–860 m above sea level (Fig. 1). The extent of the study area is ∼2 km × 6 km. In
December 1999, the Laegern mountain was affected by a winter storm. The western
part of the temperate forest was severely hit, resulting in disturbance areas filling in
with beech trees as new stands are initiated. Since forest clear cuts are limited to a
maximum area of 0.5 ha, larger patches of juvenile trees likely exist due to the
storm. In 2010, the juvenile trees were 10–15 m high and growing in dense patches
with a growth rate of around one metre per year65. The mainly closed canopy
consists of a total of 13 species and seven canopy structure types, from single- to
multi-layered canopies66. Roughly 70% of the total forested area is covered by
deciduous broadleaf trees, whereas the remaining 30% of the area is covered by
evergreen coniferous trees (forest inventory data). The dominating deciduous

species are common beech (Fagus sylvatica), European ash (Fraxinus excelsior) and
sycamore maple (Acer pseudoplatanus). The dominating coniferous species are
Norway spruce (Picea abies) and silver fir (Abies alba). Most of the conifers at
Laegern were introduced anthropogenically. Naturally, the whole Laegern forest
would be dominated by different hilly to submontane beech communities with few
scattered coniferous needle trees. There are mature trees up to 165 years of age,
150 cm of diameter and canopies up to 55 m of height. The study area comprises a
reference site for forest ecosystem research with an extensive set of ground mea-
surements36, 66.

Airborne remote sensing data. The data of the Laegern study area was acquired
in 2010 using airborne laser scanning based on the principle of light detection and
ranging (LiDAR) and airborne imaging spectroscopy. The LiDAR acquisition was
flown on 1 August 2010 using a helicopter-based scanner system with a rotating
mirror (RIEGL LMS-Q680i, scan angle ±15°). The campaign was flown under leaf-
on conditions with a nominal height of 500 m above ground, resulting in a foot-
print size of 0.25 m and an average point density of 40 pts/m2. The 3D point cloud
was extracted from the full waveforms of individual laser pulses using Gaussian
decomposition. The LiDAR data was registered to the Swiss national grid CH1903+
with a positional accuracy of <0.15 m in vertical and <0.5 m in horizontal
direction.

Imaging spectroscopy acquisitions were flown on 26 June and 29 June 2010
under clear sky conditions using the APEX imaging spectrometer34. The study area
was covered with three flight lines on each of the acquisition dates. The average
flight altitude was 4,500 m a.s.l. resulting in an average ground pixel size of 2 m.
APEX measured at-sensor radiances in 316 spectral bands ranging from 372 nm to
2,540 nm. APEX data were processed to hemispherical-conical reflectance factors
in the APEX Processing and Archiving Facility67. Processing started with the raw
instrument data, which was split into image, dark current and housekeeping data,
thus forming level 0. Level 1 (L1) calibrated radiances were obtained by inverting
the instrument model, applying coefficients established during calibration and
characterization at the APEX Calibration Home Base68. The position and
orientation of each pixel in 3D space was based on automatic geocoding in PARGE
v3.269, using the swissALTI3D digital terrain model. L1 data were then converted
to HCRF by employing ATCOR4 v7.0 in the smile aware mode. This essentially
accounts for the spectral response function of each individual pixels of the
spectrometer to reduce biases due to spectral shifts34.

Environmental data. Stand polygons of Kanton Aargau and Zurich include forest
stand information on development stage, the percentage coverage of the six most
dominant species, and the percentage coverage of deciduous broadleaf and con-
iferous needle trees. The data from Kanton Aargau was provided by Aargauisches
Geografisches Informationssystem (AGIS), Departement Bau, Verkehr und
Umwelt, Abteilung Wald (last updated on 27 February 2015). The data from
Kanton Zurich was provided by Geographisches Informationssystem (GIS-ZH),
Amt für Landschaft und Natur, Abteilung Wald (last updated on 16 September
2015). Soil data corresponds to Bodenkarte Baden (Landeskarte der Schweiz 1:25′
000, Blatt 1070), provided by Eidgenössische Forschungsanstalt für Agrarökologie
und Landbau (FAL).

Topographic variables (altitude, slope, aspect, curvature) were calculated based
on the digital terrain model derived from a LiDAR acquisition on 10 April under
leaf-off conditions. The campaign was flown with a nominal height of 500 m above
ground, resulting in a footprint size of 0.25 m and an average point density of 20
pts/m2. Radiation was simulated as incoming photosynthetically active radiation at
the top of canopy (see Supplementary Note 1 for details). Supplementary Fig. 13
shows a comparison between simulated and measured radiation at the fluxtower in
the Laegern forest.

Field data. At the Laegern reference site, field survey was conducted on an area of
∼5.5 ha to map the exact ground location and taxonomic identity of all dominant
and co-dominant trees (1,307 trees with dbh >20 cm). The positions measured on
the ground were linked to a detailed crown map derived from high-resolution
drone images. Leaf optical properties of sunlit leaves were measured for ten Acer
pseudoplatanus, Fraxinus excelsior, Fagus sylvatica, Ulmus glabra and Tilia platy-
phyllos trees in June 2009 and for 50 Fagus sylvatica trees in July 2016. For the 50
trees, SPAD measurements were taken of the same leaves. Leaf optical properties
and lab measured traits (chlorophyll, carotenoids, EWT) of 168 Acer pseudopla-
tanus trees were used from the ANGERS spectral database.

Functional traits. Functional traits were measured and mapped using state-of-the-
art airborne remote sensing methods. A set of three morphological and three
physiological traits was selected and mapped based on airborne laser scanning and
imaging spectroscopy data respectively. The whole work-flow from remote sensing
data to functional diversity measures is illustrated in Supplementary Fig. 14.

We selected CH, PAI and FHD as the three main morphological traits, being of
high ecological relevance and measurable using airborne laser scanning methods.
CH was measured as the distance between the highest laser return from the canopy
and the corresponding ground point following Schneider et al.36. PAI was retrieved
as the projected surface area of plant material per unit ground area. This includes
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woody as well as foliar material, since laser returns from twigs or leaves can not be
distinguished. PAI was derived from the LiDAR point cloud data on a 2 × 2 m
grid36, 65. FHD is a measure of canopy layering and has been recognized as a major
functional trait for characterizing biodiversity of a variety of species and habitats70.
FHD was calculated by applying the Shannon–Wiener diversity index on vertical
PAI profiles as described by MacArthur and MacArthur71:

FHD ¼ �
X

i

pi � logepi; ð1Þ

where pi is the proportion of the total foliage which lies in the ith canopy layer.
FHD is a combined measure of how different the layers are with respect to layer
density (PAI) and how many layers there are in total. Therefore, a certain
correlation to CH can be expected, since the maximum possible number of layers is
given by the canopy depth in conjunction with the vertical resolution of the laser
system. The three morphological traits were normalized to values between 0 and 1
and resampled to 6 × 6m spatial resolution using bilinear interpolation,
approximating the average basal crown area of the Laegern forest.

Gitelson et al.72 developed a band specific model to derive CHL and CAR from
imaging spectroscopy data in relative units. It has been applied to a wide range of
ecosystems, from crops to grasslands and forests38, 73. To derive CHL and CAR
using the three-band model72, the following band combinations were used:

CHL ¼ 1
R540�560

� 1
R760�800

� �
� R760�800; ð2Þ

CAR ¼ 1
R510�520

� 1
R690�710

� �
� R760�800; ð3Þ

where Ri−j is the mean reflectance in the spectral range of i to j nanometre. The
model includes anthocyanins as a third pigment72. We decided not to include it in
our study, since anthocyanins can mainly be observed during leaf development or
leaf senescence38. Concentrations are generally low during the summer months
and are difficult to detect, since the absorption features are strongly overlapping
with chlorophyll and carotenoids absorption.

As a third physiological trait, we included EWT. We estimated relative EWT
with a simple ratio water content index based on Underwood et al.74:

EWT ¼ 1� R1;193

R1;126
; ð4Þ

where Ri is the reflectance at i nanometre.
To reduce the effects of shadows in the traits retrieval, we combined two

airborne imaging spectroscopy acquisitions flown at different times of the day and
aggregated 3 × 3 pixels to 6 × 6 m resolution trait data by averaging the three
brightest pixels. To fuse the flight lines, we performed an additional geometrical co-
registration using scale-invariant feature transform and random sample consensus
algorithms of the VLFeat package (VLFeat, sift_mosaic, Matlab). Finally, we
normalized to values between 0 and 1.

Estimating physiological forest traits from airborne observations is a
challenging task due to the difficulty of linking leaf and canopy level biochemistry.
Airborne imaging spectroscopy measures a spatially integrated signal of the sunlit
upper canopy of the forest. The mapping of functional diversity relies on relative
trait values being derived from these consistent radiometric measurements. The
relationship of relative trait values and their physical counterparts can be
demonstrated by parametrizing the radiometric simulation of selected species with
field data and generic data from two functional trait databases. The ranges of
physiological traits were compared with modelled trait ranges based on the leaf
optical properties measured in the field in July 2009 (Supplementary Fig. 6). The
same modelling framework as in ref. 36 was used to simulate canopy reflectance
spectra and subsequently derive physiological traits. Constant optical properties for
broadleaf and needle trees were expected to result in a narrower trait range due to
the lack of intra- and inter-specific trait variability within functional groups. For
further details on the modelling approach, see Supplementary Note 2.

Field data of the 5.5 ha area at Laegern was used to calculate community-
weighted mean chlorophyll and EWT. Species abundances and mean traits were
calculated per 30 × 30 m plot. Remotely sensed mean trait values were then
compared to community-weighted means of the functional trait database TRY29,
based on the plot-level species abundances and species-level trait values from TRY
(Supplementary Fig. 7). There were not enough measurements in the TRY database
to calculate community-weighted means of carotenoids.

To illustrate the scalability of the spectral indices from the leaf to the canopy
level, we used the field data to simulate canopy reflectances for the 518 Fagus
sylvatica and the 168 Acer pseudoplatanus trees on the 5.5 ha area. We used the leaf
optical properties of 50 Fagus sylvatica trees measured in July 2016, and randomly
distributed them over the 518 Fagus sylvatica trees according to field survey.
Chlorophyll values were then derived from the reflectance spectra at leaf and
canopy level, to be compared to the SPAD measurements of the same leaves
(Supplementary Fig. 8). Additionally, we simulated canopy spectra for the 168 Acer
pseudoplatanus trees with leaf optical properties of the ANGERS database. Lab
measurements of chlorophyll, carotenoids and EWT from the database were then

compared to traits estimated using spectral indices at leaf and canopy level
(Supplementary Fig. 9). Since we did not expect very high carotenoids
concentrations at Laegern in summer, we fitted a second linear regression in
Supplementary Fig. 9c, d for values below 15 μg/m2. For further details on the
modelling approach, see Supplementary Note 2.

For mapping in Fig. 3, we used red, green and blue (RGB) colour composites of
the three normalized morphological and physiological traits respectively. We define
blue areas in the morphological trait map as values of CH<0.5, FHD<0.5 and
PAI>0.5, pink areas as CH>0.5, FHD>0.5 and PAI>0.5, and green areas as
CH<0.5, FHD>0.3, PAI<0.5. A small area appearing yellow is defined by CH>0.7,
FHD>0.7 and PAI<0.6. In the physiological trait map, we define blue areas as
values of CHL<0.5, CAR<0.5 and EWT>0.5, bright green areas as CHL>0.8,
CAR>0.5 and EWT<0.5, and green areas as CHL>0.5, CAR<0.5 and EWT<0.5.
Orange areas are characterized by CHL<0.7, CAR>0.7 and EWT<0.5.

The forested area was determined based on CH. To derive the forest mask, we
first applied a threshold of 10 m CH to select the mature forest pixels and remove
possible agricultural fields. We then filled the gaps within the forest to include
juvenile forest patches again. Finally, a threshold of 4 m CH was applied to remove
gaps and understorey vegetation. We defined a tree to be four or more metres high,
as was done in Schneider et al.36 to separate understorey and the canopy.

Functional diversity. Having tens to hundreds of thousands of pixels to map is
computationally demanding, guiding our choice of index. As a consequence, we
selected functional richness, divergence and evenness being computationally
manageable and relatively easy to interpret, since different aspects of functional
diversity are covered by separate indices. The indices for functional richness,
divergence and evenness were calculated based on the remote sensing derived
physiological and morphological traits. We mapped pixels within a certain radial
neighbourhood in the functional trait space, using a moving window approach with
varying neighbourhoods to cover the whole study area. Figure 2 shows an example
of functional richness, evenness and divergence calculated based on pixels in a
radius of 120 m mapped in trait space. Abundance weighting is not needed since
every pixel represents a set of trait measurements, not averaged by communities or
species. With continuous area-based data, however, a single pixel does not
necessarily cover an individual crown. Contributions of more than one individual
or species to the functional traits of a singular pixel is possible and therefore
represents no direct link to species. Detailed information on the three indices and
pixel based application is given in the following paragraphs.

Functional richness is a measure of niche extent, where niche is the functional
space occupied by a species, community or assemblage of trees. It was calculated by
mapping pixels of a certain neighbourhood in functional space, whose axes are
defined by the functional traits. Richness was then calculated as the convex hull
volume of the mapped pixels (convhull, Matlab). Supplementary Figure 15 illustrates
an artificial example of an increasing functional richness from 0.17 to 0.31.

Since we assign equal weighting to all pixels (no abundances), we calculated
divergence (FDiv) based on Villéger et al.41 as follows:

Δjdj ¼
XS

i¼1

1
S
� jdGi � dGj; ð5Þ

FDiv ¼ dG

Δjdj þ dG
; ð6Þ

where S is the number of pixels mapped in the functional space, dGi is the
Euclidean distance between the ith pixel and the centre of gravity and dG is the
mean distance of all pixels to the centre of gravity. In this specific case, a functional
divergence of 1 would mean that all pixels lie on a sphere with equal distance to the
centre of gravity (Supplementary Fig. 15).

The functional evenness index (FEve) was calculated based on the minimum
spanning tree (Fig. 2). A distance matrix with Euclidean distances between all the
points in the functional space was the basis for deriving the minimum spanning
tree using the algorithm of Prim75 (graphminspantree, Matlab). Finally, evenness
was calculated following Villéger et al.41:

PEWl ¼ EWl

PS�1

l¼1
EWl

; ð7Þ

FEve ¼
PS�1

l¼1
min PEWl ;

1
S�1

� �� 1
S�1

1� 1
S�1

;
ð8Þ

where EWl is the Euclidean distance of branch l in the minimum spanning tree,
PEW is the partial weighted evenness and S is the number of pixels mapped in the
functional space. Thus S−1 corresponds to the number of branches in the
minimum spanning tree. A weighting by species abundance is not necessary when
mapping pixels, since abundance is inherent in the data (Supplementary Fig. 15).
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Scaling. To calculate the functional diversity indices for the whole forest, we used a
moving window approach (Supplementary Fig. 16). This means that the index
values were calculated for each pixel by iterating through all pixels of the functional
trait maps. Since diversity is always measured within a certain geographical unit,
we used a radial neighbourhood of pixels to calculate the indices. Therefore, the
initial pixel size of 6 × 6 m of the functional trait maps corresponds to the grain,
whereas the neighbourhood of pixels corresponds to the extent (Supplementary
Fig. 16). We calculated the diversity indices for an increasing neighbourhood of
6–1,020 m radius with steps of 6 m, resulting in an extent ranging from 113 to
3.27×106 m2. To derive diversity–area curves, we averaged the index values of all
forested pixels for each of the 170 extents. For display in Figs. 5–7 and visual
assessment, we applied a circular averaging filter (fspecial, disk, Matlab).

Null models. We created a null model of randomly distributed trees, or here pixels,
to test if the functional traits distribution follows a random distribution, over- or
under-dispersion. For each tree or pixel, we kept the traits relationship among the
three morphological and physiological traits constant. We then reshuffled the
pixels to create random distribution in geographic space (rand, Matlab). Opposed
to randomly distribute each trait individually, the trait relationships still hold in the
null model. However, there is no spatial autocorrelation any more.

A second null model is used to simulate maximal under-dispersion, which
could be resulting from maximal environmental filtering. In this case, we assume
that neighbouring pixels in geographic space are also neighbours in functional trait
space. For each pixel, it is not the neighbouring pixels in a certain radius which are
used to calculate the diversity indices. Instead, the same number of neighbouring
pixels are selected from the trait space according to minimal Euclidean distance.
This results in a purely theoretical null model, where closest neighbours in
geographic space would be closest neighbours in trait space.

Statistical analysis. We tested whether patterns of functional traits and trait
diversity can be explained by abiotic factors related to topography, soil and
radiation (see Supplementary Fig. 4 and Supplementary Table 1). To account for
spatial autocorrelation, we used a spatially simultaneous autoregressive error model
estimation based on first order neighbours (R package spdep, errorsarlm76) to fit a
generalized linear model.

Subsequent analysis of variance (ANOVA) with type-I sum of squares was
performed at 60 m radius scale. The forest was sampled using 467 pixels projected
on a regular grid such that their circular neighbourhood areas did not overlap and
remained fully within forest boundaries. Continuous explanatory variables were
averaged within 60 m radius, whereas simple majority was used for categorical
variables. Continuous explanatory variables were altitude, slope, soil depth and
amount of rocky materials. The categorical variable aspect was subdivided in three
categories, namely north, south and flat slopes. Curvature was grouped in
categories valley, ridge and flat areas. Soil type consisted of eight soil classes
(Dystric Cambisols, Luvisols, Endogleyic Cambisols, Stagnic Cambisols, Cambisols,
Calcic Cambisols, Leptosols and Regosols, see Supplementary Fig. 5). Supplementary
Figure 4 shows the variance explained based on type-I sum of squares of soil (top
panels) and topography (bottom panels), as well as additionally explained factors
when adding topography or soil, and radiation to the model. Within groups, the
order of the explanatory variables was kept constant. For Supplementary Table 1,
the order of the explanatory variables related to topography were determined by
the significance when tested individually, with the most significant used first in the
combined model.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request. An example of the air-
borne laser scanning and imaging spectroscopy data is available at http://www.geo.
uzh.ch/microsite/3dveglab/eod/ for a subset of 300 × 300 m. Community and soil
data has to be requested directly from the Swiss cantons Zurich or Aargau.
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