Skip to main content
. 2017 Nov 8;8:578. doi: 10.3389/fneur.2017.00578

Table A1.

Comparison of logistic regression models.

Model p-Values of each coefficient BIC AIC
1 + Age + roll 0.2 Hz (age adjusted) 0.00017 0.0047 84.9 77.1
1 + First PCA component 0.000075 85.2 80
1 + Age + roll 0.2 Hz 0.013 0.0058 85.4 77.7
1 + Age + first PCA component (age adjusted) 0.00032 0.0087 86.1 78.3
1 + Age + first PCA component 0.098 0.013 86.9 79.1
1 + Roll 0.2 Hz 0.000081 88 82.8
1 + Age + yaw + roll 0.2 Hz 0.014 0.36 0.014 89.2 78.8
1 + Age + roll 1 Hz 0.040 0.036 89.3 81.5
1 + Age + roll 1 Hz + roll 0.2 Hz 0.063 0.42 0.039 89.4 79
1 + Age + sex + roll 0.2 Hz 0.016 0.42 0.0055 89.4 79
1 + First PCA component + second PCA component 0.000087 0.54 89.4 81.6
1 + Age + Z + roll 0.2 Hz 0.063 0.52 0.018 89.6 79.3
1 + Age + Y + roll 0.2 Hz 0.012 0.63 0.0072 89.8 79.4
1 + Age + first PCA component + second PCA component (age adjusted) 0.00033 0.010 0.65 90.5 80.1
1 + Age + Z 0.026 0.090 91.1 83.3
1 + Age + first PCA component + second PCA component 0.12 0.013 0.77 91.4 81
1 + Age + yaw 0.00060 0.11 91.4 83.6
1 + Age + Y 0.0010 0.43 93.4 85.7
1 + Age + Y + roll 1 Hz + roll 0.2 Hz 0.055 0.53 0.37 0.033 93.6 80.6
1 + First PCA component (age adjusted) 0.0052 99.8 94.6
1 + Age + yaw + Y + Z + roll 1 Hz + roll 0.2 Hz 0.084 0.41 0.41 0.75 0.52 0.044 102 83.6
1 + First PCA component + second PCA component (age adjusted) 0.0058 0.63 104 96.4
1 + Age + sex + yaw + Y + Z + roll 1 Hz + roll 0.2 Hz (age adjusted) 0.00026 0.54 0.45 0.46 0.67 0.47 0.047 105 84.3
1 + Age + sex + yaw + Y + Z + roll 1 Hz + roll 0.2 Hz 0.10 0.59 0.48 0.49 0.77 0.50 0.046 106 85.3

Most models included an intercept term (indicated by 1+). Most analyses used log-transformed thresholds, and some used age-adjusted, log-transformed thresholds (indicated by age adjusted). The second column shows the p values for each term, excluding the intercept term. The third and fourth terms show the Bayesian information criterion (BIC) and Akaike information criterion (AIC) for each model, with a lower value indicating a better model.

PCA, principal component analysis.