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Abstract

Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for 

successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis 

methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal 

tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multi-atlas-based hybrid 

synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately 

synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to 

the target MR images by multi-channel deformable registration, from which the atlas CT images 

are deformed and fused by locally-weighted averaging using a structural similarity measure 

(SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same 

weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the 

assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on 

the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on 

brain cancer patient data, and showed a noticeable improvement for the tumor region.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) has been actively used in radiotherapy planning. Its 

superior soft tissue contrast offers improved visualization of tumor and organs at risk 

(OAR), and multi-parametric MRI facilitates the differentiation between normal and 

pathological tissues [1]. MRI can significantly improve the segmentation accuracy compared 

to CT-based approaches that suffer from large intra- and inter-observer variability due to the 

poor soft tissue contrast and image artifacts [2]. MRI is therefore considered the imaging 

modality of choice for detecting and staging tumors as well as for delineating structures in 

various sites such as the brain, head and neck (HN), and prostate [3]. These advantages have 

motivated efforts to develop MRI-based radiotherapy planning. However, MRI does not 

contain electron density information, and is therefore not intrinsically useable for radiation 
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dose computation [4]. As a consequence, many clinics use MRI primarily for target 

detection and delineation in support of CT for radiotherapy treatment planning.

In recent years, there has been increasing efforts to carry out radiotherapy treatment 

planning and image guidance using MRI alone. By eliminating the CT scan, unnecessary x-

ray dose to the patient is avoided and the MR-CT image fusion process is no longer needed. 

Consequently, the overall workflow is simplified and more cost-effective with improved 

target localization leading to potentially improved tumor control rates with reduced normal 

tissue toxicity. A major obstacle to achieving this goal is the lack of robust methods to 

accurately map MR image intensity to electron density which is necessary for dose 

computation. Currently, there are only a handful of MRI-based CT image synthesis methods, 

including tissue classification-based electron density assignment [5], single or multi-atlas 

registration approaches [6], and patch-based matching and machine learning approaches [7, 

8]. These approaches have been applied mostly in the brain showing potential to synthesize 

normal tissue regions, but none of them are able to synthesize abnormal tissue regions such 

as tumors that are always present in radiotherapy cases.

In this research, we propose to use a multi-atlas and multi-channel registration approach for 

CT synthesis to improve the synthesis accuracy while reducing the effect of registration 

errors. We also combine a patch-based image synthesis algorithm [9] to refine the synthetic 

CT image quality on regions where the atlas-based approach does not perform well due to 

significant geometrical differences, e.g., tumor regions. Figure 1 shows the overall workflow 

of our combined multi-atlas registration and patch-based refinement (i.e., hybrid) CT 

synthesis algorithm. The CT synthesis process consists of four key steps; (1) Multi-atlas 

registration, (2) initial CT synthesis by atlas intensity fusion, (3) iterative CT synthesis 

refinement, and (4) patch-based CT synthesis refinement. We now describe the details of 

each step.

2.1. Atlas database

The atlas consists of co-registered MR and CT images. Our method is not limited to a 

specific MR pulse sequence, but uses multi-parametric MR images such as standard T1 and 

T2-weighted MRIs as long as they are consistent with the target image data. In this study, T1 

and T2 FLAIR (Fluid Attenuated Inversion Recovery) MR images were obtained using 

Siemens Magnetom Espree 1.5T scanner (Siemens Medical Solutions, Malvern, PA) and CT 

images were obtained using Philips Brilliance Big Bore scanner (Philips Medical Systems, 

Netherlands) under the routine clinical protocol from brain cancer patients treated by 

stereotactic-body radiation therapy (SBRT) or radiosurgery (SRS). The MR images were 

corrected for geometric distortions using a 3D correction algorithm available in Siemens 

console workstation (Syngo). The obtained MR images were registered to CT images 

(reference image for radiotherapy planning) in a semi-automatic way. For the patch-based 

refinement step, we separately created a tumor and soft tissue atlases that consist of 3×3×3 

patch triplets extracted from T1, T2 FLAIR, and CT images. For consistent patch matching, 

atlas images were first resampled on a 0.7×0.7×1 mm3 grid before the patch extraction.
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2.2. Multi-atlas registration

When MR images of a subject are obtained, the first step is to register the atlas and the 

subject MR images. It is then straightforward to map the atlas CT images to the subject 

image space by the computed deformations. We use a multi-channel registration to 

maximally utilize multi-parametric MR image information, thus improving the registration 

accuracy. Since our data set uses T1 and T2 FLAIR MR images (Figure 1, Row 1), we 

performed two-channel b-spline deformable registration with mutual information as the 

similarity metric [10]. In our data set, T1-weighted MRI has higher resolution and better 

image quality than the T2 FLAIR, and we empirically determined the relative weight for 

each channel as 0.7 (T1) and 0.3 (T2 FLAIR). Once the atlas T1 and T2 FLAIR images are 

registered to the target T1 and T2 FLAIR images, the atlas CT images are deformed to the 

subject image space using the computed deformation vector fields.

2.3. Atlas intensity fusion

To synthesize CT images from multiple registered atlas CT images, unlike Burgos et al. [6] 

who rank atlas patches based on local normalized cross-correlation (LNCC) and apply pre-

determined weights to the selected number of top candidate intensities, we use a structural 

similarity measure (SSIM) [11] to measure the local similarity of two images. SSIM consists 

of three components, luminance l(x,y), contrast c(x,y), and structural s(x,y) similarity terms, 

and provides the following overall structural similarity score between two images x and y

(1)

where α>0, β>0, γ>0, and . In these 

equations, μx, μy, σx, σy are the mean and standard deviation of x and y, respectively, and we 

set α, β, γ, C1, C2, C3 values as recommended in [11]. SSIM is less sensitive to mean 

intensity shift and contrast stretching while being sensitive to structural differences, thus 

more robust to intensity inhomogeneities and inconsistencies which are commonly present 

in MR images. Since we have both T1 and T2 FLAIR images, the overall local similarity is 

computed by SSIM(T1atlas,T1subject)+SSIM(T2atlas,T2subject) based on patches centered on 

each voxel location. The measured local similarity is used to determine the relative weights, 

and the target CT image is synthesized by locally-weighted averaging. In this way, we do not 

select an arbitrary number of top candidate atlases (among all registered atlases) nor apply 

pre-determined weights for fusion. Instead, the weights are determined based on the actual 

similarity between the atlas and the target. Note that this weighted average is performed 

voxel-by-voxel with different relative weights (i.e., spatially-varying). This approach is 

superior to a single-atlas-based approach as each voxel is synthesized using the atlases that 

show the best local agreement to the subject, thus reducing the effect of registration errors.

2.4. Iterative CT synthesis refinement

Although the initial synthesis step synthesizes missing CT images with reasonable quality, 

bone and soft tissue boundaries may not be accurate as T1 and T2 FLAIR images do not 
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carry sufficient information about bone. To further refine the bone–soft tissue boundary 

synthesis, we iteratively refine the CT synthesis by another multi-channel deformable 

registration in the same way as Burgos et al. [12]. The initial synthetic CT is included, and 

three-channel deformable registration with T1, T2 FLAIR, and CT is performed between the 

initially registered atlas and the subject. At this step, no affine registration is necessary, and 

the registration can be done faster than the initial atlas registration step. Once atlas 

registration is refined, the target images are synthesized in the same way as the initial 

synthesis (Figure 1, Row 2). Although multiple iterations might continue to improve the 

synthesis quality, a single iteration produced reasonable refinement for the bone–soft tissue 

boundaries.

2.5. CT synthesis fidelity

Previous studies have shown that multi-atlas registration-based approaches can produce 

good synthetic images [6]. However, these approaches cannot accurately synthesize regions 

where there are significant anatomical differences between the atlas and the subject, e.g., 

tumor regions. Even though our goal is to synthesize missing CT image intensities, we can 

synthesize T1 and T2 FLAIR images of the target as a by-product using the same weights 

used in CT synthesis. These syntheses are beneficial as they can be directly compared to the 

given T1 and T2 FLAIR images of the target subject to assess the registration-based 

synthesis fidelity (Figure 1, Row 2). The underlying idea is that the CT synthesis on a region 

where the similarity between the target T1/T2 FLAIR and the synthetic T1/T2 FLAIR 

images is low is likely to be inaccurate. Therefore, erroneously synthesized regions can be 

detected. We use sum of squared difference between the target T1/T2 FLAIR pair and the 

synthetic T1/T2 FLAIR pair to detect the erroneously synthesized regions.

2.6. Patch-based synthesis refinement

For the detected low fidelity synthesis regions, we refine the synthesis by using a patch-

based synthesis approach (Figure 1, Row 3) [9]. We extract 3×3×3 cubic patches p1(x) and 

p2(x) centered at location x from T1 and T2 FLAIR images, respectively, and search K 
nearest neighbor patches of the stacked patch P(x) = [p1(x)T p2(x)T]T among the atlas patch 

dictionary using the squared L2-norm distance defined as . Then, the 

target synthetic CT value at location x will be computed by a similarity-weighted average as

(3)

and dk is the squared L2-norm distance of the kth patch. In our study, we use K = 5.

Patch-based synthesis is a time-consuming process as a large number of patches in the atlas 

dictionary have to be compared unless a patch-based intensity mapping is learned. Unlike 

other approaches that synthesize entire images by patch matching, our method synthesizes 

only small regions where registration-based synthesis fails. Therefore, our refinement 

process does not require significant computation time.
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3. RESULTS

We applied our hybrid CT synthesis method on brain cancer patient data. Each patient data 

has a radiotherapy planning CT and T1-weighted and T2 FLAIR MRIs; these data are 

consistent with our atlas data. T1 and T2 FLAIR scans were taken at the same patient 

position as the CT scan, and rigidly registered to the CT. Finally, images were resampled to 

have a 0.7×0.7×1 mm3 resolution to be consistent with our atlas patch dictionary. A total of 

20 atlas data sets were used, and a combined tumor (10,000 patch triplets) and soft tissue 

(100,000 patch triplets) patch dictionary was created from two atlas data sets. Atlas T1 and 

T2 FLAIR images were registered to the target patient’s T1 and T2 FLAIR images (Figure 

1, Row 1) by two-channel b-spline deformable registration with mutual information as the 

similarity metric, and the atlas CT images were deformed and fused to reconstruct the 

synthetic CT images of the patient (Figure 1, Row 2). To assess the CT synthesis fidelity, we 

also synthesized the patient’s T1 and T2 FLAIR images (Figure 1, Row 2) using the same 

local weights used in CT synthesis. As shown in the example case in Figure 1, the initial 

multi-atlas registration-based synthesis produces synthetic images with reasonable quality 

for normal tissues. However, the tumor region cannot be accurately synthesized as the 

atlases do not carry sufficient information about the tumor, thus producing normal-looking 

tissue. This inaccuracy was automatically detected by the synthesis fidelity assessment step 

(Figure 1, Row 2) in which synthetic T1 and T2 FLAIR images are directly compared to the 

given T1 and T2 FLAIR images of the patient. We then refined the CT synthesis for the soft 

tissue regions with low synthesis fidelity (extracted regions with synthetic CT intensity 

between −100 and 300 HU, and T1/T2 FLAIR difference larger than 200) using the patch-

based synthesis. In this example case, only 5% of the volume was refined by the patch-based 

synthesis. As shown in Figure 1, Row 3, the patch-based refinement significantly improved 

the synthesis in the tumor region where registration-based synthesis failed. In addition, 

refined synthetic T1 and T2 FLAIR images are given as a by-product of CT synthesis 

refinement, and can be used to assess the quality of the patch-based refinement process. As 

shown in Figure 1, Row 3, the patch-based refinement improved the synthesis of the T1 and 

T2 FLAIR, implying that the refinement was correct.

We processed a total of 4 cases, which includes the above example case. As shown in Figure 

2, the proposed hybrid synthesis method was able to reliably synthesize both normal tissues 

and tumor regions. Table 1 summarizes absolute CT number (HU) differences between 

multi-atlas registration synthesis and hybrid synthesis compared to the ground truth CT. We 

compared the entire CT field of view (Overall) as well as tumor regions only (Tumor). The 

HU difference in the entire field of view was larger than the tumor regions because there 

were still mismatches on the boundaries of the bone and soft tissue or air. Due to the large 

CT number of the bone, slight boundary or intensity (within the bone) mismatches caused 

large HU differences. For tumor regions, there was noticeable synthesis improvement when 

there was relatively larger HU difference on tumor regions, i.e., cases 1 and 2. However, 

when the multi-atlas registration synthesis intensity was already close to that of the true CT, 

i.e., cases 3 and 4, the synthesis quality improvement was relatively minor.
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4. CONCLUSIONS

We have proposed a hybrid MR to CT synthesis method that combines multi-atlas 

registration-based synthesis and a patch-based refinement. The key benefit of the proposed 

method is its capability of accurately synthesizing both normal tissues as well as abnormal 

regions. Especially, the initial multi-atlas registration-based CT synthesis can be naturally 

extended to multi-atlas autosegmentation of normal tissues with minimal additional 

computation, i.e., label fusion, which will significantly reduce the physician’s contouring 

burden in radiotherapy planning. The synthesis fidelity assessment step based on the 

synthesis of the given modalities (T1 and T2 FLAIR in this study) allows us to automatically 

detect erroneous synthesis regions for which the patch-based refinement can further improve 

the synthesis efficiently without involving a large number of regions. We showed promising 

synthesis results on brain cases here, and additional tests on larger data sets are under way. 

Although we focused on CT synthesis in this paper, our method can be applied to any 

modality synthesis with improved synthesis quality for which conventional registration-

based and patch-based methods may fail.

Acknowledgments

This work was supported by the NIH/NIBIB under the grant R01EB017743.

References

1. Ng SH, Chang TC, Ko SF, Yen PS, Wan YL, Tang LM. Nasopharyngeal carcinoma: MRI and CT 
assessment. Neuroradiology. 1997; 39(10):741–746. [PubMed: 9351114] 

2. Brouwer CL, Steenbakkers RJHM, van den Heuvel E, Duppen JC, Navran A, Bijl HP, Chouvalova 
O, Burlage FR, Meertens H, Langendijk JA, van ‘t Veld AA. 3D variation in delineation of head and 
neck organs at risk. Radiat Oncol. 2012; 7(32):1–9. [PubMed: 22214341] 

3. Chong V. Oral cavity cancer. Cancer Imaging. 2005; 5(A):S49–52. [PubMed: 16361136] 

4. Jonsson JH, Karlsson MG, Karlsson M, Nyholm T. Treatment planning using MRI data: an analysis 
of the dose calculation accuracy for different treatment regions. Radiat Oncol. 2010; 6:62.

5. Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, 
Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V. MRI-based attenuation correction for hybrid 
PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/
Dixon MRI sequence. J Nucl Med. 2012; 53:796–804. [PubMed: 22505568] 

6. Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, Barnes A, Ahmed R, 
Mahoney CJ, Schott JM, Duncan JS, Atkinson D, Arridge SR, Hutton BF, Ourselin S. Attenuation 
correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med 
Imag. 2014; 33(12):2332–2341.

7. Roy S, Carass A, Jog A, Prince JL, Lee J. MR to CT registration of brains using image synthesis. 
Proc of SPIE Medical Imaging. 2014; 9034:903419.

8. Roy S, Wang W-T, Carass A, Prince JL, Butman JA, Pham DL. PET attenuation correction using 
synthetic CT from ultrashort echo-time MR imaging. J Nucl Med. 2015; 55:2071–2077.

9. Andreasen D, Van Leemput K, Hansen RH, Andersen JAL, Edmund JM. Patch-based generation of 
a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain. Med Phys. 
2015; 42(4):1596–1605. [PubMed: 25832050] 

10. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: A toolbox for intensity-based 
medical image registration. IEEE Trans Med Imag. 2010; 29(1):196–205.

11. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to 
structural similarity. IEEE Trans Imag Proc. 2004; 13(4):600–612.

Lee et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Burgos N, Cardoso MJ, Guerreiro F, Veiga C, Modat M, McClelland J, Knopf A-C, Punwani S, 
Atkinson D, Arridge SR, Hutton BF, Ourselin S. Robust CT synthesis for radiotherapy planning: 
application to the head and neck region. MICCAI 2015, Part II, LNCS 9350. 2015:476–484.

Lee et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
MRI-based CT synthesis workflow.

(Row 1) T1 and T2 FLAIR images of the patient.

(Row 2) Registration-based synthesis and synthesis fidelity map.

(Row 3) Final synthesis after patch-based refinement.

(Row 4) Ground truth CT of the patient for comparison.

CT images are displayed using two window ranges of [−1000, 1000] and [0, 50] HU. T1 and 

T2 FLAIR images are displayed using window ranges of [0, 1400]. The synthesis fidelity 

map uses cold (blue) to hot (red) color map with a window range of [0, 500].
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Figure 2. 
Examples of MRI-based CT synthesis. All images are displayed with a window range of 

[−50, 100] HU

(From top to bottom) Cases 1–4.

(Left) Patient’s ground truth CT.

(Middle) Multi-atlas registration synthesis.

(Right) Hybrid synthesis. Red arrows indicate tumor regions.
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Table 1

Mean±standard deviation absolute CT number differences between multi-atlas registration synthesis and 

hybrid synthesis compared to ground truth CT.

Case
Overall Tumor

Registration Hybrid Registration Hybrid

1 86.02 ± 193.38 86.37 ± 193.60 11.21 ± 16.21 7.47 ± 14.40

2 75.29 ± 163.69 76.29 ± 164.01 11.06 ± 43.73 8.49 ± 43.27

3 91.27 ± 213.26 92.73 ± 213.82 5.98 ± 4.36 5.84 ± 4.45

4 78.80 ± 173.47 79.62 ± 173.86 8.76 ± 6.26 6.73 ± 5.30
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