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ABSTRACT

The key to preventing brain aging, mild cognitive impairment (MCI), and Alzheimer disease (AD) via vitamin intake is first to understand

molecular mechanisms, then to deduce relevant biomarkers, and subsequently to test the level of evidence for the impact of vitamins in the

relevant pathways and their modulation of dementia risk. This narrative review infers information on mechanisms from gene and metabolic

defects associated with MCI and AD, and assesses the role of vitamins using recent results from animal and human studies. Current evidence

suggests that all known vitamins and some “quasi-vitamins” are involved as cofactors or influence $1 of the 6 key sets of pathways or

pathologies associated with MCI or AD, relating to 1) 1-carbon metabolism, 2) DNA damage and repair, 3) mitochondrial function and glucose

metabolism, 4) lipid and phospholipid metabolism and myelination, 5) neurotransmitter synthesis and synaptogenesis, and 6) amyloidosis

and Tau protein phosphorylation. The contemporary level of evidence for each of the vitamins varies considerably, but it is notable that B

vitamins are involved as cofactors in all of the core pathways or pathologies and, together with vitamins C and E, are consistently associated

with a protective role against dementia. Outcomes from recent studies indicate that the efficacy and safety of supplementation with vitamins to

prevent MCI and the early stages of AD will most likely depend on 1) which pathways are defective, 2) which vitamins are deficient and could

correct the relevant metabolic defects, and 3) the modulating impact of nutrient-nutrient and nutrient-genotype interaction. More focus

on a precision nutrition approach is required to realize the full potential of vitamin therapy in preventing dementia and to avoid causing harm.
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Introduction
Aging of populations worldwide is increasing the numbers
of people at high risk of degenerative diseases, including Alz-
heimer disease (AD), for which no cure exists (1–6). Mild
cognitive impairment (MCI) is the prodromal stage of AD,

and the risk for both increases with malnutrition (2–6).
An understanding of which nutritional factors are associated
with the risk of MCI and AD is essential in order to design
appropriate preventive strategies based on dietary interven-
tion. It is well recognized that prevention of AD requires in-
tervention before or very early during the onset of MCI (5,
6). For this reason, biomarkers associated prospectively with
eventual risk of MCI and AD are an important tool to deter-
mine the potential preventive effects of vitamins ingested ei-
ther via nutrient-rich whole foods or as supplements. This
review focuses on current knowledge regarding vitamins
that have been associated with MCI and AD in animal
models and in human epidemiological and interventional
studies. It identifies important knowledge gaps and sug-
gests new research directions, based on precision nutrition,
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to achieve more successful outcomes with vitamin therapy
for preventing dementia.

Current Status of Knowledge
Biomarkers associated with MCI and AD
Although specific tissues and organs may age in unique
ways, fundamental hallmarks of aging that occur at the cel-
lular and genome levels are common to all tissues; these in-
clude genomic instability at the chromosomal and DNA
sequence levels; telomere attrition and dysfunction; shifts
in epigenetic marks at the DNA and histone levels, which af-
fect gene expression; and loss of mitochondrial function due
in part to mitochondrial DNA mutations. These fundamen-
tal genomic deficits may then lead to increased cellular se-
nescence, reduced capacity for stem cell regeneration, altered
nutrient sensing, loss of proteostasis, and deleterious changes
in cellular phenotypes and in intercellular communication
(7, 8). Assuming that MCI and AD are manifestations of accel-
erated aging occurring systemically within the body, one could
reasonably hypothesize that those at higher risk may already be
exhibiting a heightened level of the above-mentioned hall-
marks of aging in easily accessible peripheral tissues (e.g.,
blood, buccal cells, and urine) before the symptoms of MCI
start to become evident.

Age-related changes that are biochemically more directly
associated with MCI and AD have been identified and are
progressively being better characterized as knowledge accu-
mulates (1, 9, 10). The best-characterized temporal sequence
of pathology indicative of increased risk of MCI and AD is re-
duced amyloid b-42 (Ab42) in cerebrospinal fluid (CSF); am-
yloid accumulation in the brain, which is detected by positron
emission tomography using Pittsburgh compound B (PIB-
PET); followed by accumulation of tau protein in CSF, after
which brain atrophy and reduced uptake of glucose become
evident in the brain, as detected by MRI and fluorodeoxy-
glucose positron emission tomography, respectively (1, 10).
The accumulation of these biomarkers precedes the onset of
cognitive impairment that is measured using a defined set of
cognitive function tests specific for memory, attention, and ex-
ecutive function (1, 6).

Total tau, phosphorylated tau, neurofilament light pro-
tein, and Ab42 in CSF have the strongest diagnostic value
(1, 9, 10), but CSF collection is a more invasive procedure
than blood collection, requiring highly skilled personnel to
achieve success and minimize adverse effects. Total tau and
chitinase-3-like protein 1 (an inflammatory protein) in
blood are also associated with MCI and AD risk and may
be useful in a research setting. Tau, neurofilament light pro-
tein, and chitinase-3-like protein 1 are biomarkers of axonal
damage. Ab42 is a toxic form of amyloid generated through
the inappropriate processing of amyloid precursor protein
(APP) and can accumulate intracellularly or extracellularly
to a concentration that induces neuronal cell death and
brain atrophy (11, 12).

Untargeted approaches have also yielded several metabo-
lomic and proteomic biomarkers in blood that indicate sig-
nificant risk for AD. These include biomarkers associated

with cell growth (insulin-like growth factor binding protein),
pancreatic function (pancreatic polypeptide), stress (cortisol),
1-carbon metabolism (homocysteine), antioxidant function
(superoxide dismutase), and kidney function (b-2 micro-
globulin) (13–15). Other studies showed strong associations
of single FAs or combinations of specific SFAs,MUFAs, PUFAs,
and v-3 FAs with MCI (16–19). Such biomarkers, when
combined with other risk factors such as age, sex, and APOE
genotype may provide a stronger predictive potential for
identifying those with an increased probability of MCI
and AD.

We recently reviewed the various biomarkers in periphe-
ral tissue that are associated with risk for MCI and AD (20).
One of the increasingly investigated tissues are buccal cells
because they are easily obtained in a minimally invasive
manner. It has been hypothesized that buccal cell tissue
could be a good candidate to reflect AD-related pathology
if the disease was systemic, given that both brain and buccal
cells are of ectodermal origin (21). In a pioneering study, we
showed that buccal cells of patients with AD and patients
with Down syndrome have increased levels of DNA damage,
measured as micronuclei, reduced frequencies of dying cells,
and a much reduced frequency of basal cells, which repre-
sents the regenerative capacity of the tissue. The combina-
tion of the low frequency of karyorrhexis cells (biomarker
1) and basal cells (biomarker 2) was strongly associated
with AD [positive predictive value: 98%; negative predictive
value: 77%; sensitivity: 82%; specificity: 97%; likelihood ratio:
25, OR: 140 (95% CI: 17, 1165); P = 0.0001 for biomarker 1 +
2 <41/1000 cells] (22, 23). The area under the receiver operat-
ing characteristic curve (AUROC) for the association of basal
cell frequency with AD was 0.96 (P < 0.0001), for karyorrhexis
cells it was 0.88 (P < 0.0001), and for both basal and kary-
orrhexis cells the AUROC was 0.91 (P < 0.0001). We observed
that the lower frequency of basal cells and karyorrhexis cells in
patients with ADmay be explained by lower vitamin B-12 and
higher homocysteine concentrations in plasma, respectively
(22, 23).

The association with low basal cell frequency was further
verified using the basal cell–specific cytokeratin 14 (CK14)
marker. CK14 was significantly reduced in buccal cells of pa-
tients with MCI and AD, and its diagnostic risk value was
better than that of plasma homocysteine (24). The diagnos-
tic value for detecting a case of MCI based on the AUROC
was 0.57, 0.90, and 0.93 for homocysteine, CK14, and the
CK14-to-homocysteine ratio, respectively. The diagnostic
value for detecting a case of AD based on the AUROC was
0.67, 0.77, and 0.79 for homocysteine, CK14, and the CK14-
to-homocysteine ratio, respectively. Furthermore, it was also
noted that CK14 was positively correlated with vitamin B-12
in the MCI and AD groups (r = 0.51 and 0.63, respectively).
In addition, Ab1–42 was detectable in buccal cells and in-
creased significantly in MCI and even further in AD relative
to controls (21, 24, 25). Telomere shortening in buccal cells,
like lymphocytes, was also associated with increased risk for
dementia, but the association tended to be stronger with
blood lymphocytes in our studies (26, 27). It is interesting
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to note that some of the dietary and metabolic factors asso-
ciated with protection against (e.g., Mediterranean diet and
higher v-3 FA intake) or aggravation of (e.g., high homocys-
teine and obesity) telomere shortening are also often linked in
the same directions with AD risk (28–33).

Which vitamin combinations might provide an
effective metabolic tune-up to prevent brain aging
and the early stages of MCI and AD? Does it depend
on genotype?
It is essential to understand the biology of brain aging and the
metabolic pathways involved, before attempting to work out
which vitamin combination (nutriome) might be required to
optimize (tune up) metabolic function in a manner that decel-
erates brain aging and the pathologies that lead to MCI and
AD (34). Which metabolic pathways matter most can be thor-
oughly understood by examining 1) genetic risk factors, 2)
changes in gene expression in the brain with age and with
MCI or AD, 3) using bioinformatics, to identify which meta-
bolic pathways are affected by such genetic changes, and 4)
metabolic imbalances that indicate where metabolic blocks
may be occurring. Once the metabolic pathways are identified,
it becomes possible to establish which vitamins might be re-
quired as cofactors and substrates in these pathways and there-
fore reasonably have a putative role in preventingMCI and AD.
These could then be considered as legitimate candidates for a
metabolic tune-up to prevent brain aging and dementia. The
aim would be to intervene with the appropriate vitamin intake
combination well before the symptoms of MCI emerge; current
evidence indicates AD-related brain pathology and atrophy
commence several years before the onset of MCI (6, 35, 36).

Highly penetrant mutations have been identified that in-
crease risk of dementia, and recent studies have shed some light
on the protective effects of vitamins in these genetic back-
grounds. The most important of these mutations occur in
the APP, presenilin (PSEN) 1, and PSEN2 genes, which cause
AD through their role in the metabolism of the APP by shifting
APP processing toward the generation of Ab1–42 and fibrillo-
genesis, leading to amyloid plaque formation (37). Such muta-
tions have strong causative effects, but they are relatively rare
(<1%) and are associated with early onset of AD. Dietary fac-
tors that influence APP processing have not yet been system-
atically defined, but several studies of mouse models with
mutations in the App and Psen genes indicate the potential of
folate, thiamine, nicotinamide, and vitamins C, D, and E to
exert a substantial beneficial modifying effect on either APP
processing, amyloidosis, or amyloid plaque formation (38–48).

Other gene mutations increase risk of AD through alter-
native mechanisms. One of the more common of these mu-
tations associated with AD risk is the APOE34 mutation,
which occurs at a frequency of 2–5% in the homozygous
state and 10–20% in the heterozygous state, depending on
ethnicity. Relative to non–34 carriers, APOE34 carriers
have a higher cholesterol concentration in their blood and
show higher Ab deposition in the form of senile plaques in
the brain (49). Emerging evidence of the interactive effects

of the APOE34 genotype with specific vitamin status (e.g., vi-
tamin B-12 deficiency) in modifying risk for AD suggests the
possibility that APOE34 carriers may respond differently to
micronutrient intervention relative to noncarriers. For example, a
significant positive correlation between serum concentrations
of vitamin B-12 and volume of brain regional gray matter was
observed in APOE34 carriers with AD but not in noncarriers
(50). Furthermore, in cross-sectional studies in the elderly in
Norway and Singapore, researchers observed that cognitive
decline was increased with low vitamin B-12 status, but only
in those carrying the APOE 34 allele (51, 52).

Other gene mutations that confer lower risk for AD but are
common (15–50% frequency) include those related to choles-
terol metabolism [ATP binding cassette subfamily A member 7
(ABCA7) and solute carrier family 24 member 4 (SLC24A4)],
endocytosis [Ras and Rab interactor 3 (RIN3), phosphatidyl-
inositol binding clathrin assembly protein (PICALM), and
bridging integrator 1 (BIN1)], immune response [comple-
ment C3b/C4b receptor 1 (CR1), CD33 molecule (CD33),
and inositol polyphosphate-5- phosphatase D (INPP5D)],
and cytoskeletal function or axonal transport [CUGPB
Elav-like family member 1 (CELF1) and NME/NM23 fam-
ily member 8 (NME8)] (37). Mechanisms for some of these
mutations are known; for example, ABCA7 deficiency alters
the brain lipid profile and accelerates the processing of APP
to amyloid b by increasing b-site APP cleaving enzyme
1 (BACE1) (53). However, whether vitamin status might
substantially alter the impact of the genetic susceptibilities
conferred by these mutations remains untested.

Age-related changes in brain gene expression due to
oxidative damage and DNA methylation of gene
promoter methylation, and the role of vitamins in
mitigating these effects
Apart from inherited genemutations, it is also possible that nor-
mal genes associated with MCI or AD risk could be silenced by
DNA damage in the promoter sequence or as a result of meth-
ylation of cytosine-guanine dinucleotide islands sites within it.
Limited evidence shows differential DNA methylation of pro-
moters between normal and AD brains for coding genes
involved in myelination and microRNA genes that express
microRNAs which control expression of genes required for
the myelination process (54, 55). Furthermore, methylation
of promoters of nucleolar ribosomal RNA (rRNA) genes are
decreased in MCI and AD relative to healthy control brains
(56, 57). This observation is consistent with other evidence
that nuclear ribosomal RNA expression and nucleolar size is di-
minished in the cells of AD brains (58). The synthesis of rRNA
is carefully tuned to match nutritional conditions such that
rRNA gene expression is depressed when intracellular energy
status is diminished (59). Furthermore, rodent studies suggest
that maternal protein calorie malnutrition downregulates ribo-
somal DNA transcription in fetal tissues and that such effects
might be carried over throughout the life span with the conse-
quence that inhibition of rRNA gene expression could lead to
neurodegeneration (60). The effects of vitamin deficiencies on
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nucleolar structure and rRNA gene expression is barely ex-
plored, and the limited evidence available suggests that vitamin
E deficiency can adversely affect nucleolar structure and func-
tion and reduce RNA transcription rate, similar to aging (61).

Oxidation of DNA in gene promoters is another impor-
tant mechanism affecting gene expression in the aging brain.
Lu et al. (62), using transcriptomic profiling, showed pro-
gressively reduced expression of key genes involved in syn-
aptic plasticity, vesicular transport, calcium homeostasis,
and mitochondrial function in frontal cortex brain tissue
from human subjects aged $40 y. Furthermore, the pro-
moters of these genes were selectively susceptible to oxida-
tive damage as a result of reduced base-excision repair of
oxidized DNA bases. The results of this study suggest that
oxidative stress may reduce the expression of selectively vul-
nerable genes involved in learning, memory, and neuronal
survival by damaging their promoters. In further studies,
the same group showed that repressor element 1–silencing
transcription factor (REST) provides protection against ox-
idative damage and amyloid b toxicity by repressing genes
that promote cell death, thereby improving survival of neu-
rons, and that expression of REST is lost in MCI and AD
(63). These observations indicate the potential importance
of dietary factors that protect against oxidative damage by sup-
porting antioxidant defenses (e.g., vitamin C and vitamin E)
and by improving efficiency of base-excision repair (zinc,
magnesium, niacin, and folate) to remove oxidized guanine
in DNA (64–69). However, the impact of dietary factors on
the expression of REST remains unknown.

In this context, it is important to note the strong depen-
dence of the human brain on vitamin C and folate; concen-
trations of these vitamins are much higher in the brain than
in plasma (70, 71). Arguably, this could be mainly to prevent
oxidative damage to DNA and optimize its repair. However,
alternative explanations have emerged relating to regulation
of promoter methylation since the 2009 discovery of the
sixth deoxyribonucleoside 5-hydroxymethyldeoxycytidine
in DNA, which is most abundant in neurons (72), and the
concurrent discovery of the three 10–11 translocation (TET)
enzymes, which not only synthesize but also oxidize 5-hydroxy-
methyldeoxycytidine in DNA, before removing glycosylase
and repairing base excisions (73, 74). TET enzymes require
vitamin C as a cofactor to demethylate DNA, whereas re-
duced folates are needed to maintain DNA methylation, to
synthesize mitochondrial and nuclear DNA, and to perform
DNA repair synthesis (75, 76). A study in knockout Tet1 ro-
dents suggest that neuronal Tet1 is critical for extinction of
memory and regulation of the expression of key neuronal
activity–regulated genes and neuronal plasticity (73).

It is also interesting to note that another important role of
reduced folates is to metabolize formaldehyde and its oxidized
form formate, which has been shown to be elevated in MCI
and AD and to inhibit spatial learning and spatial memory, re-
sulting in topographic amnesia, which is commonly observed
in AD (77–79). Formate is incorporated into 1-carbonmetab-
olism via the activity of 10-formyltetrahydrofolate synthetase,
which catalyses the reaction of formate with tetrahydrofolate

to form 10-formyltetrahydrofolate, which is a precursor of
the methyl donors 5,10-methylenetetrahydrofolate and 5-
methyltetrahydrofolate required for nucleotide and methione
synthesis, respectively (80). When folate and vitamin B-12 are
deficient, the concentration of tetrahydrofolate is diminished;
as a consequence, formate increases, as do the pathological
consequences of its excess (80, 81).

Another approach that could inform which nutriome
provides the best metabolic tune-up to prevent brain aging
and the early stages of AD is to integrate transcriptomic
data from patients with AD through a genome-wide compu-
tational human metabolic model in order to characterize the
altered metabolism in AD, then deduce with metabolic
modeling methods which nutrients can help to overcome
bottlenecks. Research using this approach showed that the
AD brain exhibits highly significant decreases in 1) mito-
chondrial nutrient transport (P = 4.83 10211), 2) the activity
of the carnitine shuttle (P = 3.53 10218), and 3) folate me-
tabolism (P = 3.8 3 10213), indicating the possibility that
specific micronutrients relevant to mitochondrial and 1-carbon
metabolism might provide some metabolic stress relief and
possibly delay the onset of the later stages of AD (82).

The plausibility of mitochondrial and 1-carbon metabo-
lism involvement is supported by evidence that folate deficiency
increases the frequency of large deletions in mitochondrial
DNA in rodent models (83, 84) and that mitochondrial
DNA deletions increase with age in the temporal and frontal
cortices and the putamen of human brain (85). An initial
pilot study showed that mitochondrial DNA deletions were
increased 15-fold in the frontal cortex of younger patients
with AD (<75 y old) relative to age-matched healthy controls,
but this trend was not evident in older cases and controls (86).
A recent review of all studies published in the past 2 decades
was inconclusive regarding the role of mitochondrial DNA
deletions in the brain as a cause of AD because of inconsis-
tencies between studies (87).

Decreases in mitochondrial transport may be partly ex-
plained by mutations in translocase of the mitochondrial
outer membrane (TOM) 40 or blockage of translocase of
the TOM by Ab1–42; TOM40 is the channel-forming subunit
of the TOM complex that is essential for importing of protein
precursors into mitochondria (88, 89). There is a lack of
knowledge regarding the direct and indirect effects of vitamin
deficiencies on the transport of proteins into mitochondria.

As is evident from basic biochemistry, several vitamins are
required as cofactors for the biochemical reactions within the
mitochondria—which include the citric acid cycle (thiamine, ri-
boflavin, niacin, pantothenic acid, and biotin), the electron
transport chain (riboflavin, niacin, and pantothenic acid), 1-
carbon metabolism (riboflavin and vitamin B-6)—and for
methylmalonyl-CoA mutase (vitamin B-12) (90). The latter
is required to obtain energy in the form of succinyl-CoA from
methylmalonyl-CoA, which is primarily derived from propionyl-
CoA, a substance formed from the catabolism and digestion of
isoleucine, valine, threonine, methionine, thymine, cholesterol,
or odd-chain FAs. This suggests that correcting thiamine, ri-
boflavin, niacin, pantothenic acid, vitamin B-6, biotin, vitamin
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B-12, and folate deficiencies has the potential to boost mito-
chondrial metabolism in the aging brain, potentially optimiz-
ing ATP production efficiency.

Associations of vitamins with MCI and AD deduced from
epidemiological studies, interventions, and brain imaging
A more direct approach to investigate the association between
micronutrients and MCI and AD is to study the correlation
with brain atrophy, metabolic function (e.g., glucose metabo-
lism), and accumulation of amyloid, which can be measured
with brain MRI, fluorodeoxyglucose standardized uptake value
ratio, and PIB-PET, respectively (1, 37).

Using MRI, Vogiatzoglou et al. (91) and Smith et al. (92)
reported that the rate of brain atrophy in patients with MCI
was significantly positively correlated with homocysteine
concentration; homocysteine is a biomarker of either folate
deficiency or vitamin B-12 deficiency, or both. In addition,
brain atrophy in amnestic or nonamnestic patients with MCI
was prevented by supplementation with folic acid (0.8 mg/d),
vitamin B-12 (0.5 mg/d), and vitamin B-6 (20 mg/d) for 2 y
(92). These beneficial effects were attributable to improved
vitamin B-12 status and mainly found in those with homo-
cysteine >11 mmol/L or plasma v-3 FAs >390 mmol/L, and
were reflected in improved cognition scores (93–95). The
same investigators also observed a significant interactive effect
of vitamin B-12 status with APOE genotype, such that those
carrying the 34 allele benefitted most from cognitive improve-
ments associated with higher plasma concentrations of vitamin
B-12 and lower concentrations of methylmalonic acid, the
metabolic biomarker of vitamin B-12 deficiency (51). Fur-
thermore, they observed that v-3 FA status has to be optimal
to achieve the full benefit of vitamin B supplementation. A
clinical trial of B vitamins combined with v-3 FAs is needed
to determine whether it is possible to further improve the
prevention of conversion fromMCI to AD (36, 95). It is evident
from these observations that interventions with B vitamins
are unlikely to be successful in preventing cognitive decline
and brain atrophy unless they are tailored to meet the specific
needs of subgroups and individuals according to their vitamin
B and v-3 FA status, their metabolic profile, and their genetic
susceptibility. This could explain the apparent lack of substan-
tive evidence from meta-analyses of vitamin B homocysteine-
lowering trials designed to prevent cognitive decline with
aging or in MCI and AD (96–98). This conundrum needs
to be resolved with better-designed controlled interventions
performed in communities with cohorts showing the strongest
associations between combined high homocysteine and low
vitamin B-12 with AD risk, such as that recently reported in
China [adjusted OR: 30.5 (95%CI: 9.7, 95.9); P < 0.0001] (99).

Another reason for past failures with vitamin interventions
could be unexpected or previously unknown nutrient-nutrient
and nutrient-gene interactions. The fact that nutrient intake
combinations may have specific effects on health outcomes is
not surprising given the evidence that nutrient-nutrient inter-
actions affect fundamental pathologies such as DNA damage—
sometimes in unexpected ways. For example, our studies of

dietary nutrient intake and DNAdamage in healthy Australians
showed that micronucleus frequency in lymphocytes (a bio-
marker of chromosome breakage or loss), associated with
increased risk for cancer, cardiovascular disease, diabetes,
dementia, cognitive dysfunction, and microcephaly (100–
104), is significantly affected by 1) interactions of folate
with riboflavin and calcium, such that micronuclei are in-
creased when riboflavin is increased in a low folate background
and when both folate and calcium intakes are low (105, 106),
and 2) interactions between polymorphisms in folate metab-
olism genes such as methionine synthase (MTR; A2756G),
methylene tetrahydrofolate reductase (MTHFR; C677T),
and reduced folate carrier (A80G) (107, 108). It was evident
from genotype combination analyses that the frequency of
micronuclei in lymphocytes was highest in those with the
combined MTR (2756) AA and reduced folate carrier (79) GA
or AA genotype and in those with the TT genotype for the
C677T MTHFR polymorphism (107, 108).

In this regard there is an increasing concern about the
cognitive effects of mandatory folic acid fortification in a
low vitamin B-12 background, because of the observation
in the United States and Australia that older people with
low plasma concentrations of vitamin B-12 and high con-
centrations of folate in the blood have a substantially higher
risk of cognitive impairment compared to those with low
blood folate and low plasma vitamin B-12 (36, 109–111)
(Figure 1). This also raises concerns as to whether the shift
to plant-based diets may be jeopardized by folic acid fortifi-
cation, because vitamin B-12 status in those choosing to
shift to vegetarianism may decline substantially unless staple
foods are more prevalently supplemented with vitamin
B-12. These concerns also raise the urgent need to consider
inclusion of vitamin B-12 together with folic acid in fortifi-
cation programs to minimize risk of vitamin B-12 deficiency
and mitigate cognitive deficits induced by high folic acid in-
take in the elderly (112). The plausibility that excessive intake
of folic acid may contribute to cognitive decline is supported
by 2 other observations: 1) cognitive decline in the presence
of a high plasma folate concentration is observed mainly in
those homozygous for the 19-bp deletion in the dihydrofolate
reductase gene, which codes for the enzyme that reduces folic
acid to the active THF form required for participation in 1-
carbon metabolism (113) and 2) excess folic acid in animal
models inhibits Mthfr and Mtr expression and promotes
thymidylate synthase expression, favoring DNA nucleotide
synthesis over homocysteine methylation and the generation
of methionine and the methyl donor s-adenosyl methionine
required for neurotransmitter synthesis (114, 115). Whether
this observation in animal models applies to humans remains
undetermined. Nevertheless, these observations indicate the
risks inherent in the use of single-vitamin supplementation
without considering interactions with other vitamins and
genotype that affect the same metabolic pathways. The much
higher complexity of nutrient-nutrient interactions and nutrient-
genotype interactions across multiple interconnected pathways
may vary greatly between individuals when using multinutrient
supplementation. This could partly explain the relative
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inefficacy of Souvenaid [a complex of v-3 FAs, the nucleo-
tide uridine monophosphate, phospholipids, B complex vita-
mins (pyridoxine, cyanocobalamin, and folate), choline,
vitamin E, and the micronutrient selenium] in preventing
cognitive decline in the early stages of AD (116).

The homocysteine and B vitamins in cognitive impair-
ment intervention (92) illustrated the importance of combin-
ing brain neuroimaging with nutritional studies, an approach
that is also yielding valuable insights on the impact of a wider
spectrum of vitamins and other nutrients in cross-sectional
studies. For example, a cross-sectional neuroimaging pilot
study investigated dietary nutrient intake and brain bio-
markers of AD in at-risk but otherwise cognitively normal
individuals (117). In that investigation, fluorodeoxyglucose
positron emission tomography and PIB-PET were used to
measure glucose uptake and metabolism, and amyloid deposi-
tion in the brain, respectively. Glucose uptake and metabolism
in the brain were correlated positively with higher intake of fo-
late and b-carotene and were reduced with more saturated fat;

on the other hand, amyloid deposition in the brain seemed to
be substantially reduced in those with higher intake of vitamin
D, vitamin B-12, and the v-3 PUFA EPA. Using a similar ap-
proach, but also including gray matter volume measurements
and focusing on nutrient intake patterns, the same group of
researchers showed that intake of a nutrient combination
that was protective against AD was associated with higher con-
sumption of fresh fruit and vegetables, whole grains, fish, and
low-fat dairy products, and lower intake of sweets, fried po-
tatoes, high-fat dairy products, processed meat, and butter
in cognitively normal individuals (118).

The above associations of folate, b-carotene, vitamin D,
vitamin B-12, andv-3 FAwith a healthier brain imaging profile
are supported by 1) results from a meta-analysis of 43 prospec-
tive cohort studies, showing that the relative risk for dementia
was decreased with dietary patterns that reflected a Mediter-
ranean diet [RR: 0.69 (95% CI: 0.57, 0.84); P < 0.0001],
higher intake of vitamin B-6, folate, and vitamin B-12
[RR: 0.72 (95% CI: 0.54, 0.96); P = 0.026], vitamin E [RR:
0.80 (95% CI: 0.65, 0.98); P = 0.034], unsaturated FAs
[RR: 0.84 (95% CI: 0.74, 0.95); P = 0.006], vitamin C
[RR: 0.89 (95% CI: 0.74, 1.06); P = 0.192], and flavonoids
[RR: 0.97 (95% CI: 0.65, 1.46); P = 0.896] (119) (Figure 2)
and 2) the outcome from a meta-analysis of 106 investigations
of plasma vitamin concentration in patients with AD, showing
significantly lower values of vitamin B-12 (212%), vitamin
A (214%), vitamin E (218%), folate (221%), vitamin D
(227%), and vitamin C (233%) than those in healthy con-
trols (120) (Figure 3). However, it is important to note that
studies may not always be consistent across populations and
cohorts, because dementia may still emerge in cohorts that
are not deficient in the above-mentioned vitamins or do not
have additional risk factors such as obesity, hyperhomocystei-
nemia, or inflammation, as was, for example, reported in a recent
small cross-sectional study in Norway (121).

The effects of less investigated vitamins and “quasi-
vitamins”
Less is known about the effects of other vitamins onMCI and
AD risk, but results from initial studies suggest the possibility
that vitamin B-1 (thiamin), vitamin B-3 (niacin), vitamin K,
and other essential nutrients such as inositol, choline, and
carnitine may also contribute to the prevention of dementia.

Thiamine-dependent enzymes (transketolase, pyruvate
dehydrogenase, a-ketoglutarate dehydrogenase, and branched-
chain a-ketoacid dehydrogenase) play a critical role in glycol-
ysis and the Krebs cycle, and deficiencies in the activity of these
enzymes may contribute to reduced glucose metabolism, as
evident in the brain of patients with dementia (122, 123). Pre-
clinical models of thiamine deficiency and human thiamine
deficiency (Korsakoff syndrome) exhibit memory deficits, neu-
ritic plaques, and hyperphosphorylation of tau (123). In ad-
dition, dietary supplementation with benfotiamine, a more
bioavailable analog of thiamine, enhanced the spatial memory
of APP/PSEN1mutant mice and reduced amyloid plaque and
phosphorylated tau in their brains (124). Furthermore, a recent

FIGURE 1 High blood folate concentration in combination
with low serum vitamin B-12 concentration is associated with a
higher risk for cognitive impairment. The graphs show results
from a study performed in Australia (109) (A) and a study
performed in the United States (110) (B). Data were adapted
from references 109 and 110 with permission.
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case-control study of humans showed that blood thiamine di-
phosphate concentration was significantly reduced in patients
with AD relative to controls and had an AUROC of 77.4%,
sensitivity of 78.1%, and specificity of 77.2% (125). A subse-
quent study reported that thiamine phophatases are increased
in the blood of patients with AD, which may explain the low
thiamine diphosphate concentration in AD (126).

Niacin plays an important role in carbohydrate and en-
ergy metabolism through its critical involvement as a cofac-
tor in the Krebs cycle for conversion of acetyl-CoA generated
from proteins, fats, and carbohydrates to ATP. Furthermore,
niacin is important as a cofactor in myelination and DNA
repair (68, 127, 128). Niaspan (a prolonged-release formula-
tion of niacin) promoted synaptic plasticity and axon growth
in a rodent model of stroke (129). These potential neuropro-
tective effects of niacin are also supported by a prospective
cohort study in 3718 elderly aged $65 y which showed that
the RR (95% CI) of AD in those in the second, third, fourth,
and fifth quintiles of niacin intake was 0.3 (0.1–0.6), 0.3 (0.1–
0.7), 0.6 (0.3–1.3), and 0.3 (0.1–0.7), respectively, when com-
pared with those in the first quintile of intake during a 6-y
follow-up, and that cognitive decline was diminished with
higher niacin intake (130).

An increasing body of evidence suggests a role for vita-
min K in brain physiology via its participation in sphingo-
lipid metabolism and biological activation of the vitamin
K–dependent growth arrest-specific 6 protein (Gas6), which
may protect against neuronal apoptosis induced by amyloid
b or oxidative stress (131–133). Four human studies re-
ported an association of low vitamin K intake or low blood
concentrations of vitamin K with cognitive impairment or
AD (134–137). Studies of dietary intake among older adults
indicated that 1) those with serious subjective memory com-
plaints had a lower mean dietary vitamin K intake than those
with normal memory (298.0 compared with 393.8 mg/d;
P = 0.005) (134), 2) mean vitamin K intake in patients at an
early stage of AD, on a person-day basis, was 63 mg/d, com-
pared with 139 mg/d in control subjects (135), and 3) dietary
phylloquinone intake was positively associated with better
cognitive function (136). A single study of measurements
of vitamin K-1 (phylloquinone) and vitamin K-2 (menaqui-
none) in plasma showed significantly reduced plasma

vitamin K-1 concentrations in patients with mild and severe
AD compared with healthy controls, but no difference in
plasma vitamin K-2 between cases and controls (137). So far,
to my knowledge, no intervention studies have been reported
to determine whether depletion or supplementation with vita-
min K affected cognitive function or prevented brain atrophy.

Evidence of a role for “quasi-vitamins” in providing pro-
tection against dementia is available: 1) myo-inositol and
scyllo-inositol were observed to have a capacity to inhibit
b-secretase-1, which is required to convert APP to amyloid-b
or amyloid-b oligomerization (138, 139), 2) choline has a
role as precursor of the neurotransmitter acetylcholine, as a
methyl donor in 1-carbon metabolism, and as a critical com-
ponent of membrane phospholipids, and evidence shows that
specific choline-containing phospholipids such as CDP-
choline and choline alphoscerate improve the cognitive
abilities of patients affected by neurodegenerative diseases
(140, 141), and 3) carnitine functions to transport acetyl

FIGURE 2 Results of a meta-analysis of
43 prospective cohort studies showing
dietary factors associated with a reduced
RR for dementia (119). The numbers in
brackets in the figure are the 95% CIs.
Data were adapted from reference 119
with permission.

FIGURE 3 Results of a meta-analysis of 106 investigations
showing statistically significant reductions in the concentration
of 6 key vitamins in plasma of patients with AD relative to
healthy controls (120). The meta-analysis only included studies
that used established criteria for identifying AD cases and
cognitively intact controls. Data were adapted from reference
120 with permission. AD, Alzheimer disease.
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groups from FAs into mitochondria for ATP generation,
has a role in acetylcholine synthesis, and has reported re-
storative effects on mitochondrial function, physical activ-
ity, and memory in older rats (142, 143). Furthermore, a
double-blind placebo-controlled trial showed that 1-y supple-
mentationwith acetyl-carnitine protected against decline in 13
of 14 measures of cognitive and functional performance in
MCI and AD (144)

Summary and Conclusions
Thirteen vitamins and 3 quasi-vitamins play a substantial role
in $1 of 6 relevant core pathways or pathologies associated
with AD (Figure 4). The level of evidence for each of these vi-
tamins varies considerably (Figure 5), and in most cases it may
be insufficient to make specific recommendations. Although
it is notable that some vitamins, such as folate and vitamin
B-12, are involved as cofactors in$5 core pathways or pathol-
ogies, it remains challenging to identify and test a combination

of vitamins that would best contribute to the prevention of
dementia in a precise and predictable manner at the indi-
vidual level. Furthermore, several outstanding questions
remain:

· Which vitamins and which pathways should be prioritized for
further research?

· Should more effort be invested in replication studies, especially
for some of the vitamins for which mechanistic plausibility ex-
ists but only minimal preliminary data are available from
humans?

· The homocysteine and B vitamins in cognitive impairment in-
tervention suggest that supplementation with just 3 B vitamins
targeted to a relevant pathway (i.e., 1-carbon metabolism) may
contribute to slowing cognitive decline in the early stages of
dementia. Could effects be improved further by including
other vitamins targeting other pathways, or would this be
counterproductive?

· Efficacy is likely to be modest unless dosages are adequate
and combinations are personalized based on need, metabolic

FIGURE 4 The 6 metabolic pathways or
pathologies associated with Alzheimer
disease risk and the various vitamins that
are required as cofactors in these
pathways or that influence the severity of
brain pathology (black cells). HCY,
homocysteine; MMA, methylmalonic
acid.
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phenotype, and genotype. Which combinations and doses
should be used and for which subgroups?

· When and for how long should we intervene? The timing of
intervention should be as early as possible before symptoms
of MCI become evident, but how soon before remains unclear.
Is 2 y the minimum intervention period to see a reliable effect
on reversal of brain pathology and cognitive decline? Will it be
enough to predict that if a benefit occurs in an individual or
subgroup it will be reliably sustained in the long-term?

· Detrimental interaction effects are also possible, suggesting the
importance of including biomarkers of safety in intervention
trials. Which biomarkers should be used to ensure that no
harm is done? Would biomarkers of DNA damage be sufficient
for this purpose, or would a more comprehensive pathology
assessment be required?

In conclusion, future research should focus much more
on a precision nutrition approach. Multiple omics technol-
ogies and bioinformatics, in combination with brain imag-
ing and cognitive function tests, will be required to both
design and test multivitamin combinations (nutriomes) that

are tailored appropriately to match the metabolic phenotype
and genotype of individuals and subgroups.
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