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Abstract
Purpose of Review In this review, we will integrate recent
knowledge on endoplasmic reticulum (ER) stress and allergy,
thereby highlighting the therapeutic potential of ER stress in
the context of precision medicine for allergic diseases.
Recent Findings Emerging evidence suggests that allergic
diseases are very heterogeneous having numerous endotypes.
This leads to the new era of modern medicine, which assumes
that a particular endotype-driven therapy, called precision
medicine, would be more efficacious in a specific group of
patients rather than in all patients. Currently, a dichotomy
involving type 2/non-type 2 immune response underlies most
of the studies on inflammatory and immunologic mechanisms
of allergic disorders. Whereas there are several approved or
investigational endotype-driven therapeutic agents targeting
type 2 immune responses, investigation of mechanisms and
endotype-driven interventions regarding non-type 2 immune
response lags far behind.
Summary Considering that non-type 2 immune response may
represent a significant proportion of allergic disease,

particularly corticosteroid-resistant severe disease, defining a
novel concept of endotype-driven approach may be essential.
Recently, stress responses originate from the endoplasmic re-
ticulum (ER) and the associated inflammatory molecular plat-
form has been suggested as a crucial player of immune and
inflammatory responses. This implies that ER stress-related
pathways may represent a new endotype-driven therapeutic
strategy in the treatment of allergic diseases.

Keywords Precisionmedicine . Biomarker . Allergic
diseases . Endoplasmic reticulum stress . ER stress .

Inflammation

Introduction

It is now believed that allergic diseases including bronchial
asthma are very heterogeneous having numerous endotypes
according to unique genetic, pharmacologic, physiologic, bi-
ologic, and immunologic mechanisms. In this context, optimal
symptom control and successful treatment of allergic diseases
may necessitate tailored approaches based on distinct patho-
physiology in selected patients [1, 2•]. Thus, increasing
awareness of heterogeneity in allergic diseases has coincided
with the emergence of endotype-driven approaches, called
precision medicine [3, 4•]. This new era of medical treatment
highlights that specific group of patients may have a better
response to some drugs, whereas no single drug would be
efficacious for all patients. In addition, validated and qualified
biomarkers are essential to identify a certain endotype better,
so that researchers can define populations that will derive the
most benefit from a drug [5]. For instance, early belief that
bronchial asthma is the hallmark of type 2 helper T (TH2) cell-
mediated process led to clinical trials on evaluating therapeu-
tic effects of anti-interleukin (IL)-5 on broad spectrum of

Jae Seok Jeong and So Ri Kim contributed equally to this work.

This article is part of the Topical Collection on Basic and Applied Science

* Yong Chul Lee
leeyc@jbnu.ac.kr

1 Department of Internal Medicine, Research Center for Pulmonary
Disorders, Chonbuk National University Medical School, san 2-20,
Geumam-dong, Deokjin-gu, Jeonju 561-180, South Korea

2 Research Institute of Clinical Medicine of Chonbuk National
University-Biomedical Research Institute of Chonbuk National
University Hospital, San 2-20 Geumam-dong, Deokjin-gu,
Jeonju 561-180, South Korea

3 Division of Allergy and Immunology, Internal Medicine, Morsani
College of Medicine, University of South Florida, Tampa, USA

Curr Allergy Asthma Rep (2017) 17: 82
https://doi.org/10.1007/s11882-017-0751-9

mailto:leeyc@jbnu.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1007/s11882-017-0751-9&domain=pdf


severe asthmatics [6, 7]. Initially, it failed to show significant
benefits on the clinical course of the disease because inclusion
of study participants was carried out in an unselected manner
involving all types of asthmatics. However, later analysis re-
vealed that anti-IL-5 can offer substantial clinical benefits in a
subset of severe asthma patients with significant blood eosin-
ophilia [8, 9]. Therefore, to define the endotype with a stable
pattern of biologic mechanism in allergic disorders will be
critical for selecting any therapeutic modality more efficiently.

The endoplasmic reticulum (ER) is the largest intracellular
organelle and is crucial for cellular Ca2+ storage/homeostasis
and the assembly, folding, and transport of soluble/membrane
proteins. Particularly as a key regulator of protein homeostasis
essential for cell survival and function, ER is abundantly
equipped with chaperones and enzymes that facilitate proper
folding of the client proteins. Meanwhile, maintaining optimal
internal conditions of ER is essential for proper folding of
proteins, because ER chaperones and enzymes are highly sen-
sitive to various stresses such as perturbations in redox state,
Ca2+ concentration, and cellular energy levels [10]. Thus, al-
tered ER homeostasis may lead to imbalance between the ER
protein folding capacity and the folding load of nascent pro-
teins, and the accumulation of misfolded/unfolded proteins in
the ER lumen occurs, which is referred as ER stress.
Misfolded/unfolded proteins are toxic to cells and can cause
cellular stress and cell death. To maintain cellular homeostasis
against this crisis, cells have evolved to efficiently detect ER
stress through ER transmembrane sensors, all of which even-
tually trigger adaptive unfolded protein response (UPR) to
restore ER functionality. Notably, a vast amount of recent
study has also revealed that ER stress and UPR intersect with
immunity and inflammation [11, 12], thereby making them as
valuable therapeutic targets for treatingmany human disorders
[13]. Particularly, emerging evidence also suggests that ER
stress and UPR is closely associated with allergic inflamma-
tion through engaging with many cellular inflammatory plat-
forms [14••].

In this review, we will summarize the current concept of the
pathogenesis of allergic diseases focusing on their heteroge-
neity in underlying immunological basis. Besides, we will
highlight the therapeutic potential of ER stress and UPR in
the context of precision medicine for allergic diseases through
integrating the recent advances in our knowledge on this field
of research.

Heterogeneity in Allergic Diseases (Type 2
and Non-type 2)

Better management of allergic diseases can be achieved
through recognizing the disease heterogeneity, which is com-
posed of diverse pathogenic mechanisms leading to clinically
significant outcomes. A myriad of pathways implicated in

allergic diseases have been reported to date. However, most
of them may fall into type 2 or non-type 2 response based on
underlying inflammatory and immunologic mechanisms.
Further, several sub-endotypes may exist within each of them
according to dominant cell types that orchestrate immune re-
sponses [4•].

Type 2 Immune Response

Type 2 allergic immune responses are typically characterized
by eosinophilic inflammation and associated with increases of
type 2 cytokines including interleukin (IL)-5, IL-13, and IL-4
in blood and affected tissues. Generally, type 2 immune re-
sponses are closely associated with atopy/allergy, in which the
presence of serum antigen-specific immunoglobulin E (IgE)
(mainly driven by IL-4) is the hallmark of adaptive immunity
involving type 2 helper T cells (TH2 cells). This immune path-
way has been reported to be corticosteroid (CS)-sensitive and
essential in many allergic diseases including allergic asthma,
allergic rhinitis, and atopic dermatitis [4•]. However, type 2
responses may also be generated by other mechanisms irre-
spective of IgE reactivity to allergens and TH2 cells, as clearly
demonstrated in recent researches on bronchial asthma and
allergic rhinitis. In the non-allergic mechanism of type 2 cy-
tokine production, particularly in bronchial asthma, chronic
airway epithelial activation in relation to environmental fac-
tors (e.g., pollutants, irritants), viral infections, or fungal ex-
posure induces epithelial production of IL-25, IL-33, and thy-
mic stromal lymphopoietin (TSLP). Innate lymphoid cells
(ILCs) react to these epithelium-derived cytokines, thereby
producing IL-5 and IL-13 associated with airway eosinophilia
and bronchial hyper-responsiveness, respectively. This mech-
anism may represent asthma patients who have non-atopic/
allergic and severe CS-insensitive disease while possessing
eosinophilic type 2 immune responses in tissues [15].
Furthermore, the presence of this sub-endotype of type 2 im-
mune responses partly explains why targeting type 2 cytokine
pathway is effective in a subset of non-atopic asthmatic pa-
tients with high levels of eosinophils in blood and frequent
exacerbation despite maximal current treatments including in-
haled CS and/or systemic CS [16, 17]. Based on these find-
ings, currently, there are several approved or investigational
endotype-driven therapeutic agents targeting type 2 immune
responses in bronchial asthma and other allergic diseases [18,
19]. In addition, diverse innate and adaptive immune path-
ways related to TH1/TH17 cells, environmental exposure
(e.g. smoking, occupational exposure), viruses/bacteria, and
tissue injury may further modulate type 2 immune responses,
particularly in less allergic form, leading to clinically more
severe allergic disease with mixed eosinophilic/neutrophilic
inflammation in some individuals [20, 21•, 22, 23]. These
findings also highlight the complex nature of the CS-
resistant severe allergic inflammatory process.
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Non-type 2 Immune Response

Currently, the overall proportion of asthma associated with
type 2 immune responses is estimated to be approximately
50% of patients [24, 25]. Thus, individuals with non-type 2
immune responses represent a large proportion of asthmatics.
Likewise, results from several previous clinical trials demon-
strating the ineffectiveness of type 2 cytokine-targeted thera-
pies in non-phenotyped, overall groups of asthmatics may
imply the presence of bronchial asthma having non-type 2
immune response [26]. However, little is understood regard-
ing the mechanisms underlying this type of immune response
and most of the knowledge is derived from studies of bron-
chial asthma and rhinitis. Generally, both type 17 (TH17) and
type 1 (TH1) responses are often associated with neutrophilic
inflammation of airways. While lung neutrophilia can be
interpreted as secondary finding of CS use [27], the presence
of neutrophilic inflammation has been associated with more
severe clinical manifestations of bronchial asthma, more CS-
refractory disease, and lower lung function in affected patients
[21•, 28•]. In a preclinical model of asthma, adoptive transfer
of allergen-specific TH17 cells to mice induced a chemokine
(CXCL8, also known as IL-8)-mediated neutrophil influx into
the lung, which was not attenuated by CS [29]. Similarly,
sputum IL17A and IL8 mRNA levels were correlated with
each other and with sputum neutrophil counts in asthmatics
and levels of these transcripts increased with increasing sever-
ity of asthma [30]. However, single targeted therapy blocking
IL-17 receptor signaling has shown a minimal effect in sub-
jects with inadequately controlled moderate to severe asthma
in a clinical trial [31]. These results may be in line with the
hypothesis that CS-insensitive severe asthma possesses mixed
type 17/type 1 immune response in the background of variable
type 2 immunity [21•, 32]. In the same vein, the existence of a
unique molecular phenotype of asthma characterized by si-
multaneous activation of type 17 and type 1 immune response
with airway neutrophilia has been demonstrated in clustering
analysis of sputum cell transcriptomics from moderate to se-
vere asthmatic subjects [33•]. In fact, early reports showed that
interferon (IFN)-γ producing T cells were increased in air-
ways of asthmatics [34] and serum concentration of IFN-γ
was elevated especially in patients with acute severe asthma
[35]. More recently, IFN-γ has been implicated in bronchial
asthma pathogenesis through TH2-independent IFN-γ/mast
cell axis [36] as well as its classical effects on TH2 cells [37,
38]. However, little is known about the therapeutic effect of
IFN-γ blockade in the treatment of bronchial asthma and other
allergic diseases so far. Furthermore, considering the existence
of another largely unknown non-type 2 paucigranulocytic
asthma (the absence of detectable inflammatory process)
[22, 33•], development of effective endotype-driven therapy
may be further hampered by our limited knowledge on the
mechanisms contributing to the non-type 2 immune response

in allergic diseases. Currently, there is no approved endotype-
driven therapeutic agent, targeting non-type 2 allergy [18].

ER Stress and the UPR Pathways

Three ER transmembrane sensors, including inositol-
requiring enzyme 1α (IRE1α), double-stranded RNA-depen-
dent protein kinase (PKR)-like ER kinase (PERK), and acti-
vating transcription factor 6 (ATF6), monitor protein homeo-
stasis of ER lumen and transmit their information to the cyto-
solic compartment of cells through UPR pathways. This pro-
cess can be both normal physiology and pathological phenom-
enon because even in normal physiological processes, such as
increasing demands of protein secretion in secretory cells
(e.g., plasma cells producing a large amount of immunoglob-
ulins), cells can experience ER stress. Therefore, the canonical
understanding is that UPR fine-tunes the secretory pathway of
ER and attempts to reduce ER stress through reducing demand
of protein folding, promoting ER-associated degradation of
proteins by the ubiquitin-proteasome system (namely ER-
associated degradation, ERAD), and increasing ER chaper-
ones and enzymes helping protein folding to defend cells from
ER stress. If cells fail to resolve ER stress, these adaptive
responses will initiate apoptosis. Recently, in addition to these
canonical UPR activities, non-canonical UPR activities are
involved in connecting protein homeostasis-related cellular
apparatus to a wide array of cellular events including immu-
nity and inflammation through various mechanisms, as sub-
stantially reviewed elsewhere [11, 12].

IRE1α is the most evolutionarily conserved sensor path-
way among three UPR pathways and possesses both protein
kinase activity and site-specific endoribonuclease (RNase) ac-
tivity. In the presence of ER stress, IRE1α is activated when
an abundant ER chaperone glucose-regulated protein 78
(GRP78) dissociates from IRE1α. Similar mechanisms (ER
stress-driven dissociation of GRP78) also explain the activa-
tion of PERK and ATF6. Direct activation of IRE1α follow-
ing engagement with misfolded proteins has been also dem-
onstrated. Dissociated GRP78 preferentially binds to
unfolded/misfolded proteins allowing IRE1α to dimerize
and autophosphorylate through its kinase activity. This leads
to the activation of specific RNase activity of IRE1α, leading
to the splicing of mRNA encoding X-box-binding protein 1
(XBP1u) and generating a spliced variant (XBP1s). XBP1s
functions as a transcription factor for genes associated with
lipid metabolism, immune and inflammatory responses, and
cellular differentiation as well as genes traditionally associated
with structural and functional expansion of ER and ERAD
[39] (Fig. 1). Furthermore, through its non-specific RNase
activity, IRE1α has known to degrade ER-membrane-
associated mRNA to reduce protein production, also known
as regulated IRE1α-dependent decay [40].
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Activation of PERK, regulated similarly to IRE1α, leads to
the recruitment and phosphorylation of a translation initiation
factor, eukaryotic translation initiation factor 2α (eIF2α),
through its kinase activity. Phosphorylation of eIF2α inhibits
synthesis of proteins through interfering the assembly of the
ribosome in eukaryotic cells, thereby reducing protein folding
load in ER-stressed cells. In addition, phosphorylated eIF2α

selectively induces translation of ATF4 mRNA that contains
regulatory sequences such as an inhibitory upstream open
reading frame. As a transcription factor, ATF4 controls amino
acid metabolism, anti-oxidant response, and autophagy (an
adaptive self-eating process by which cellular components
are encapsulated in autophagosomes and degraded).
Furthermore, PERK-mediated apoptosis occurs later during

Fig. 1 Interconnection between endoplasmic reticulum (ER) stress/
unfolded protein response (UPR) pathways and mitochondria-NLRP3
inflammasome in allergic diseases. The accumulation of misfolded/
unfolded proteins in the ER lumen activates UPR, which is mediated by
three ER transmembrane stress sensors including inositol-requiring 1α
(IRE1α), double-stranded RNA-dependent protein kinase (PKR)-like ER
kinase (PERK), and activating transcription factor 6 (ATF6). In a
condition of ER stress, an abundant ER chaperone, glucose-regulated
protein 78 (GRP78), preferentially associates with accumulated
misfolded/unfolded proteins. Dissociation of GRP78 from the ER stress
sensors, or direct engagement of misfolded/unfolded protein to IRE1α,
transmits signals about folding status of ER to the cytosol and nucleus.
The canonical aspect of UPR regulates the secretory pathway of ER and

attempts to reduce ER stress through reducing demand of protein folding,
promoting ER-associated degradation (ERAD) and gene expression
involved in cell survival (e.g., autophagy), and increasing ER
chaperones to defend cells from ER stress. If cells fail to resolve ER
stress, these adaptive responses will initiate apoptosis, mainly through
C/EBP homologous protein (CHOP). In addition to this canonical
aspect of UPR pathways, close interrelationship between ER/UPR
pathways and cellular inflammatory platforms including mitochondria
(e.g., oxidative stress from mitochondrial reactive oxygen species
(ROS); mtROS) and NLRP3 inflammasome (an interleukin-1β
producing platform) may be critically implicated in a unique form of
corticosteroid-resistant type 2 allergic immune response
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ER stress when causative stimuli of ER stress is strong and the
other arms of UPR fail to restore protein homeostasis. This
process is known to be mediated by C/EBP homologous pro-
tein (CHOP), which is one of the representative ER stress
markers in addition to GRP78 [41•] (Fig. 1).

Lastly, on release from GRP87, ATF6 moves to the Golgi
apparatus where it is cleaved to produce the functional cyto-
solic fragment of ATF6. Then, fragmented ATF6 is
translocated to the nucleus and activates expression of chap-
erones and ERAD-associated proteins (Fig. 1). Many aspects
of outcomes from ATF6 activation resemble those of IRE1α/
XBP1 pathway on the ER protein quality control system.
Moreover, complete activation of the IRE1α pathway is partly
controlled by ATF6 pathway because further induction of
XBP1 mRNA depends on ATF6 [42]. Thus, the ATF6 path-
way seems to fine-tune UPR along with IRE1α and PERK
pathways.

ER Stress as an Endotype of Severe Allergic
Inflammation

Involvement of ER Stress and UPR in Various Facets
of Allergic Response

The allergic response begins in the interface between external
environment and epithelium and subsequently involves di-
verse cell types at all levels of innate and adaptive immunity.
During these processes, cells produce large amounts of secre-
tory proteins to defend themselves against endogenous and
exogenous threats and/or to efficiently communicate with oth-
er cell types for generating an organized immune response.
Thus, proper functioning of ER and maintenance of protein
homeostasis is critical in these cells. Although the presence of
ER stress is not always interpreted as a pathological phenom-
enon [43], sustained and overwhelming ER stress in various
cells can profoundly impact normal cellular physiology.
Importantly, the influence of ER stress is just restricted to
protein folding, but can intersect at many levels with immu-
nity, thereby leading to complex chronic inflammatory disease
such as allergy.

Epithelial Cell-Dendritic Cell (DC) Interaction

Before activation of various T cells implicated in various
endotypes in allergic diseases, antigen-presenting DCs must
recognize allergen and present it to T cells in draining lymph
nodes. Epithelial cells are known to be a key modulator in
controlling DC activation through releasing epithelial-
derived cytokines (e.g., IL-25, IL-33, TSLP) and
endogenous-associated molecules (e.g., uric acid, ATP,
HMGB1). Given the role of epithelial cells as the first line
of defense, coexistence of diverse environmental insults

(e.g., pollution, smoking, occupational exposure, viruses/bac-
teria, and simultaneous exposure to other allergens) may also
converge on epithelial-DC interaction [15, 44], further shap-
ing and characterizing the underlying endotype of allergic
response. In this regard, the role of protein-secreting apparatus
of epithelium is indispensable. For example, inflamed airway
epithelial cells demonstrate overt signs of ER stress [45] and
bronchial epithelial XBP-1 has been reported to mediate
inflammation-induced ER/Ca2+ store expansion which am-
plifies Ca2+-dependent secretion of cytokines [46].
Moreover, the IRE-1/XBP-1 arm of UPR has been proposed
to be important in maintaining the integrity of airway [47] and
intestinal epithelium [48]. Very recently, airway epithelial
ORM (yeast)-like protein isoform 3 (ORMDL3), an ER trans-
membrane protein associated with ORMLD3 gene locus
(17q21) well-known as a highly significant risk factor for
the development of asthma [49, 50], has been demonstrated
to be critically implicated in fungal allergic airway disease
through ATF6-mediated activation of XBP-1 and ERAD path-
way [51••]. Meanwhile, IRE1α-XBP1 is also a prerequisite
for the proper antigen-presenting function of DC as well as
DC development and survival in physiologic context [11, 52,
53]. Taken together, ER stress and UPR pathway may be a
central player in the regulation of epithelial-DC interaction
that is crucial for the initiation and amplification of allergic
response.

B Cells, Plasma Cells, and T Cells

Activation of adaptive immunity involving various Tcells and
B cells (including secretory plasma cells which secrete high
levels of antibody), which contribute to diverse endotypes of
allergic response, follows the initial recognition and amplifi-
cation phase that involves epithelial-DC interaction. In the
draining lymph nodes, TH2 and TH17 polarization may occur
from naïve T cells with the help of migratory CD11b+ con-
ventional DCs. Subsequently IL-4 production from TH2 cells
induces class switching in B cells, and synthesis of IgE from
plasma cells which contributes to allergen-specific sensitiza-
tion for type 2 immune response. Once sensitized, repeated
exposure to the same offending allergenmay lead to the robust
re-stimulation of these effector cells that is mainly mediated
by poorly migratory CD11chi monocytic DCs [15]. In this
process, XBP1 is known to be pivotal in terminal differentia-
tion of B cells into highly secretory plasma cells through me-
diating expansion of the ER and synthesis of proteins required
for antibody production and secretion [54]. Moreover, the
IRE1α-XBP1 arm of UPR is thought to be important in the
early developmental stage of B cells [55] and terminal differ-
entiation of effector CD8+ T cells [56]. Notably, considering
that XBP-1 mRNA in naïve B cells is uniquely induced by IL-
4 [57], this arm of UPR may be particularly important in type
2 endotype of allergic response.
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Granulocytes and Macrophages

Eosinophils and neutrophils are major effector cells in type 2
or non-type 2 immune response, respectively. However, neu-
trophilic inflammation may coexist with variable degrees of
eosinophilic inflammation, particularly in a more severe form
of the allergic disease with mixed eosinophilic/neutrophilic
inflammation [20]. Alternatively activated macrophages may
further fine-tune these processes through upregulation of
chitinase-like proteins, one of the most abundant proteins un-
der type 2 immune response that are involved in impaired anti-
viral immunity [58] and neutrophil-rich type of allergic in-
flammation under type 2 immunity [59]. Among diverse
granulocytes, differentiation of eosinophils from progenitors
of myeloid cells is known to uniquely rely on the IRE1α-
XBP1 pathway and deletion of XBP1 results in massive de-
fects in eosinophil maturation [60••]. Additionally, macro-
phages are known to associate cell surface innate toll-like
receptor (TLR) signaling with intracellular IRE1α-XBP1
pathway-mediated secretion of pro-inflammatory cytokines
(e.g., IL-6 and tumor necrosis factor) [61], thereby linking
ER and UPR pathway to innate effector function in macro-
phages. Furthermore, at the same time, TLR signaling sup-
presses the ATF4-CHOP-mediated cellular apoptotic pathway
to effectively coordinate innate function of macrophages [62].
These data emphasize the critical involvement of ER stress
and UPR pathway in terminal effector phases of immune re-
sponse as well.

ER Stress and UPR in Type 2 Allergic Response

It has been demonstrated that ER stress and UPR pathways are
critically implicated in human allergic diseases and consider-
able data were derived from studies on allergic inflammation
in the lung. In particular, increased levels of ER stress markers
(e.g., GRP78, CHOP) were observed in peripheral blood
mononuclear cells as well as bronchoalveolar lavage fluids
from patients with bronchial asthma compared to those in
healthy subjects [63••]. Furthermore, airway epithelial activa-
tion of UPR and the related increase of ER-localized chaper-
ones were observed using in vitro HDM-exposed primary
human nasal epithelial cells and bronchial epithelial cells
[64] and human lung biopsy specimens from asthmatic pa-
tients [65]. Interestingly, alleviation of ER stress using chem-
ical chaperones which promote proper folding of client pro-
teins [63, 66] or ablation of UPR and related pathways [64,
65] significantly attenuates allergen-induced typical eosino-
philic type 2 immune responses in animal models, thereby
highlighting the role of ER stress in inducing and maintaining
cardinal features of type 2 immune response.

ER stress and UPR activation can be interconnected with
type 2 immune responses through various mechanisms. In an
immunological context, ER stress and UPR may lead to

transcriptional changes in various cell types essential for the
production of certain cytokines/chemokines, thus modulating
subsequent immune cell behaviors and inflammatory profiles
of tissues [14••]. Moreover, increases of ER-localized chaper-
ones that accompany ER stress is associated with transcrip-
tional activation of UPR that may further potentiate the action
of pro-inflammatory, apoptotic, and fibrotic mediators apart
from immunologic mechanisms [65]. Importantly, in addition
to these classically well-known inflammatory mechanisms as-
sociated with ER stress and UPR as substantially reviewed
elsewhere [67], a recent study from our group highlights the
connection between ER and cellular inflammatory platforms
including mitochondria and NLRP3 inflammasome in a
unique form of CS-resistant type 2 immune response associ-
ated with fungal sensitization [68••].

Respiratory fungal exposure has been regarded as a precip-
itating factor for severe asthma. A number of epidemiologic
studies have shown that fungal sensitization is found more
frequently in asthmatics severe asthma [69•, 70, 71]. In one
study, over 50% of patients with severe asthma were sensi-
tized to one or more fungi [72]. Fungal sensitization in asthma
is often characterized by marked type 2 immune response
associated with blood and tissue eosinophilia [2•] and may
be associated with airway destruction in the later course of
the disease as seen in allergic bronchopulmonary aspergillosis
(ABPA) [71]. Based on this knowledge, many researchers
have focused on identifying mechanisms whereby fungi can
be associated with severe asthma. In our study, GRP78 is
remarkably increased in lung tissues from ABPA patients
compared to that in healthy subjects. In line with this result,
respiratory exposure of mice to fungal allergens from
Aspergillus fumigatus leads to significant increases in ER
stress markers (GRP78 and CHOP) and UPR pathway pro-
teins (phosphorylated (p) IRE1α-XBP1 and p-eIF2α-ATF4).
These observations were further verified by in vitro experi-
ments using A. fumigatus-exposed primary cultured murine
tracheal epithelial cells. Notably, A. fumigatus-induced pul-
monary type 2 immune responses, including eosinophilic air-
way inflammation and increases in the levels of serum total/A.
fumigatus-specific IgE and pulmonary type 2 cytokines (e.g.,
IL-4, IL-5, and IL-13), are remarkably improved by treatment
with a potent ER stress inhibitor. In contrast, dexamethasone
fails to improve A. fumigatus-induced pulmonary type 2 im-
mune responses, implying that ER stress and UPR activation
may be implicated in fungus-induced CS-resistant allergic in-
flammation. Furthermore, our results also demonstrate that
oxidative stress, particularly frommitochondria (mitochondri-
al reactive oxygen species; mtROS) plays a key role in fungal
type 2 immune response, and that a potent mtROS scavenger
dramatically ameliorates A. fumigatus-induced CS-resistant
type 2 response as well as ER stress [68]. In our unpublished
data, respiratory exposure to A. fumigatus allergens also re-
sults in the activation of a cytoplasmic pattern recognition

82 Page 6 of 11 Curr Allergy Asthma Rep (2017) 17: 82



receptor, NLPR3, and subsequent formation of proteolytic
multiprotein complex termed inflammasome, an IL-1β pro-
ducing platform, especially in airway epithelium. Importantly,
treatment with anti-IL-1β antibody and/or blockade of
activation/assembly of NLRP3 inflammasome using
NLRP3-specific inhibitor remarkably ameliorates fungi-
induced CS-resistant type 2 immune responses. Considering
that ER stress can cause the release of various damage-
associated molecular patterns from mitochondria (e.g.,
mtROS, mitochondrial DNA, ATP, and calcium), which are
also potent activators of cytosolic NLRP3 inflammasome
[73], interconnection between ER stress, mitochondria, and
the NLRP3 inflammasomemay play a pivotal role in the path-
ogenesis of CS-resistant severe type 2 immune response (Fig.
1). In addition, nuclear translocation of NF-κB p65 is remark-
ably increased in lung tissues from the murine model of A.
fumigatus-induced fungal allergic lung inflammation and an
ER stress regulator reduces the A. fumigatus-induced increase
of NF-κB p65 nuclear translocation [68••]. Moreover, treat-
ment of mice with an NF-κB inhibitor reduces the A.
fumigatus-induced type 2 cytokine production and eosinophil-
ic allergic inflammation [68••]. These findings suggest the
crucial implication of ER stress-associated NF-κB signaling
in fungi-induced CS-resistant type 2 inflammation.

ER Stress and UPR in Non-type 2 Allergic Response

In lipopolysaccharide (LPS)-induced acute lung inflammatory
animal model, ER stress has been reported to be linked to
several transcriptional factors including NF-κB and hypoxia-
inducible factor 1α, all of which play a central role in acute
neutrophil-dominant inflammation and plasma exudation in
the lung [41•]. In addition, LPS-induced ER stress leads to
the increased expression of IL-17 in airway epithelium, there-
by further potentiating ER stress and NF-κB activation via
forming a positive feedback loop in airway epithelial cells
[74•]. These data suggest that ER stress and UPR pathways
may play a role in non-type 2 neutrophilic allergic response.
However, the contribution of ER stress and UPR in non-type 2
immune response has been less defined compared to that in
type 2 response. Notably, we previously showed that ER stress
is critically implicated in the pathogenesis of bronchial asth-
ma, particularly non-type 2 form of the disease, by using ov-
albumin (OVA)/LPS-sensitized and OVA/LPS-challenged
(OVALPS-OVA) mice [63••]. The classical OVA-sensitized/
challenged (OVA-OVA) mice show CS-responsive pulmo-
nary eosinophilic type 2 inflammation. In contrast, the
OVALPS-OVAmice display neutrophilic airway inflammation
with mixed type 17/type 1/type 2 profiles (i.e., concurrent
increases of IL-17/IFN-γ and type 2 cytokines such as IL-4,
IL-5, and IL-13 in the lung), all of which are not improved by
systemic CS. Interestingly, a potent ER stress regulator signif-
icantly reduces the OVA/LPS-induced CS-resistant

neutrophilic inflammation as well as ER stress. Meanwhile,
increased levels of ER stress and UPR protein are observed in
lung tissues of OVA-OVAmice and administration of system-
ic CS markedly reduces the OVA-induced elevations of these
proteins. These data imply the crucial involvement of ER
stress and UPR in non-type 2 CS-resistant allergic immune
responses. Further studies are needed to delineate their roles
in non-type 2 immune responses.

Conclusions and Perspectives

As the beginning of a new era, precision medicine will
offer a chance to effectively control and even cure allergic
disease for a specific group of patients. Particularly for
allergic diseases, current clinical/experimental approaches
are largely based on the classification as type 2 and non-
type 2 immune responses, and this seems to be quite use-
ful, at least for type 2 response. However, investigation of

Fig. 2 A proposed endotype-driven approach based on endoplasmic
reticulum (ER) stress in allergic diseases. ER stress and unfolded
protein response (UPR) pathways are closely associated with allergic
immune responses involving various important cell types (e.g.,
epithelial cells, dendritic cells, T and B cells, granulocytes, and
macrophages) and inflammatory pathways (e.g., ER stress-associated
nuclear factor (NF)-κB signaling, UPR-dependent secretion of
interleukin (IL)-6 and tumor necrosis factor (TNF), and NLRP3
inflammasome-mediated IL-1β production). Through analyzing ER
stress-associated molecular profiles including ER stress markers (e.g.,
GRP78 and CHOP), UPR pathway components, and related
inflammatory platforms (e.g., mitochondrial reactive oxygen species
(ROS) and NLRP3 inflammasome) in blood, sputum, or tissue biopsy
specimen from allergic patients, we may design a novel endotype-based
approach in association with ER stress
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mechanisms and endotype-driven interventions regarding
non-type 2 immune response lags much behind those of
type 2 responses. As described earlier, studies have shown
that ER stress and UPR pathways may be involved in
both types of immune responses via engagement with
various important cell types and inflammatory pathways.
By analyzing ER stress-associated molecular profiles in-
cluding ER stress markers (e.g., GRP78 and CHOP), UPR
components, and inflammatory platforms (e.g., mitochon-
drial ROS and NLRP3 inflammasome) in blood, sputum,
or tissue biopsy specimen from allergic patients, we may
verify the presence and intensity of ER stress and design a
novel therapeutic strategy targeting ER stress and specific
UPR pathways. We can also monitor the treatment re-
sponse in these patients through selected biomarkers from
ER stress-related pathways. This concept parallels a novel
endotype-based approach in allergic disease in association
with ER stress (Fig. 2). As CS-resistant allergic inflam-
mation accounts for a significant proportion of the
healthcare expenditure for allergic disease, understanding
mechanisms behind the close involvement of ER stress in
improved knowledge on this issue will permit a great
chance to cure intractable allergic disease. Large-scale
clinical trials and large cohort studies may be warranted
to further delineate the role of ER stress in many human
allergic diseases in the future.
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