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Abstract

Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-connected. While AKI-to-

CKD transition has been intensively studied, the information of AKI on CKD is very limited. 

Nonetheless, AKI, when occurring in CKD patients, is known to be more severe and difficult to 

recover. CKD is associated with significant changes in cell signaling in kidney tissues, including 

the activation of TGF-β, p53, HIF, and major developmental pathways. At the cellular level, CKD 

is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the 

tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These 

pathological changes may contribute to the heightened sensitivity of, and non-recovery from, AKI 

in CKD patients.
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I. Introduction

Chronic kidney disease (CKD) is characterized by the gradual loss of renal function over a 

period of months to years. In addition to renal deficiency, CKD is a major risk multiplier in 

patients with diabetes, hypertension, heart diseases, and stroke1. The prevalence of CKD has 
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reached a staggering high level around the world. In the United Sates, across-sectional 

analysis of the National Health and Nutrition Examination Surveys shows that the 

prevalence of CKD stages 1 to 4 increased to 13.1% in 1999–20042. In China, over 10% 

adults suffer from CKD according to the analysis of a nationwide representative sample of 

47,024 adults3. Acute kidney injury (AKI), in contrast, is defined as a kidney disease with 

rapid loss of renal function. While previously thought to be two separate syndromes, AKI 

and CKD have been recognized to be closely associated or inter-connected by both clinical 

and experimental studies in the last decade4–6. On one hand, AKI may contribute to the 

development and progression of CKD. On the other hand, CKD is known to predispose or 

sensitize patients to AKI. While AKI-to-CKD transition has been intensively studied in 

recent years, very limited work has been directed to investigate how CKD affects AKI. In 

this review, we aim to briefly summarize the inter-relationship between AKI and CKD, and 

then focus on the potential mechanisms that underlie the poor prognosis of AKI in CKD 

patients.

II. The AKI-CKD connection

Despite some disputes, recent epidemiology and experimental studies have demonstrated 

that AKI contributes to the development and progression of CKD. AKI in both adults and 

children is closely associated with the increased risk of developing CKD and the risk of 

CKD incidence shows a dependence on the severity of AKI7–10. In a meta-analysis of 13 

cohort studies, Cocaet al. showed that AKI patients had significantly higher risks of 

developing CKD and end stage renal disease (ESRD) and higher mortality as compared to 

the patients without AKI11. More recently, Kim et al. reported that persistent AKI (defined 

as incomplete reduction of serum creatinine at 7 days) after gastric surgery was associated 

with CKD progression 1 year later12. Similarly, the duration of AKI after cardiac surgery 

was also regarded as a strong independent risk factor for CKD development13. In addition, a 

recent retrospective study indicated that 29% of patients with elective cardiac surgery and 

cardiopulmonary bypass experienced AKI and notably, half of these AKI patient developed 

CKD14. In diabetic patients, Thakar et al. reported that AKI was a factor that doubled the 

risk of reaching stage 4 CKD and significantly reduced the survival of patients15. Comparing 

to the CKD patients who did not experience superimposed AKI, those who did also had 30% 

higher long-term risk of death or ESRD. Moreover, based on a large community-based 

cohort of patients with CKD, Hsu et al. showed that 49% of CKD patients who sustained 

severe AKI reached ESRD status within 30 days after discharge, while the percentage for 

CKD patients without severe AKI was only 1.5%16. Experimentally, severe and repeated 

episodes of AKI led to renal interstitial fibrosis that was associated with gradual loss of renal 

function over time, a characteristic of CKD17–19. These studies have provided compelling 

evidence for a role of AKI in the development and progression of CKD11. Mechanistically, 

AKI-CKD transition is related to a complex interplay between injured or stressed renal 

tubular cells with vasculature, immune system, and interstitial fibroblasts4–6, 20, 21.

Conversely, CKD is also an important risk factor for the development of AKI. James et al. 

conducted a meta-analysis in 2015 showing that CKD was a risk factor of developing AKI in 

patients with diabetes or hypertension22. Consistently, CKD was shown to be an independent 

risk factor of AKI in patients of major cardiac surgery23. Similar results were shown in a 
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multicenter study of a large cohort of postoperative patients by The National Taiwan 

University Surgical ICU Associated Renal Failure group24. In this study, among the patients 

who survived to hospital discharge after major surgery, 46.8% patients without prior CKD 

experienced AKI, whereas significantly higher percentage (67.0%) of patients with prior 

CKD did. In addition, Wilson et al. conducted a systematic review of risk prediction models 

for AKI following major non-cardiac surgery and found that renal insufficiency was an 

important risk factor of AKI occurrence25. In animal models, there is evidence that ischemic 

AKI is significantly more severe in diabetic mice than in non-diabetic mice26, 27. Together, 

these studies indicate that CKD predisposes and sensitizes patients to AKI.

Furthermore, CKD may adversely affect kidney repair in, and the recovery from, AKI. In 

2004, Go et al. showed that reduced baseline kidney function due to proteinuria, diabetes, 

hypertension or other diseases was a strong and independent risk factor for hospitalization, 

cardiovascular events, and death28. More recently, Zhou et al. showed that the pre-existence 

of CKD worsened renal function in AKI patients and delayed the renal function recovery 

after AKI; in fact, acute on chronic kidney injury (ACKI) was frequently associated with 

higher risk of mortality29. Findlayet al. further examined the information of patient with 

renal replacement therapy requiring AKI in Southwest Scotland between 1994 and 2005. 

The data from this study indicate that the underlying CKD rather than illness severity can 

predict the medium- to long-term mortality30. Macedoet al. followed 84 adult survivors of 

AKI for a median time of 4.1 years and showed that age and serum creatinine levels at 

hospital discharge were independent factors associated with non-recovery of renal 

function31. Consistently, a large cohort study of 43,008 hospitalized patients by Pannu et al. 

revealed that a lower baseline estimated glomerular filtration rate (eGFR) pre-AKI was 

associated with higher risk of ESRD and death32. These studies are consistent with the 

general observation in clinical practice that in young and otherwise healthy patients, AKI is 

mostly reversible or recoverable, whereas AKI in patients with CKD and related comorbid 

conditions (eg. diabetes, hypertension, aging) is severe and hard to recover (Figure 1). 

Experimentally, Polichnowski et al. demonstrated that kidney repair following ischemic AKI 

was impaired and renal fibrosis increased in rats with severe renal mass reduction or 

nephrectomy, a model of CKD33. Despite these clinical and experimental studies, the 

mechanism of non-recovery from AKI in CKD patients remains largely elusive.

III. Potential mechanisms underlying the susceptibility and non-recovery of 

AKI in CKD patients

a. CKD-associated changes in signaling pathways

Pathologically, AKI is characterized by cell injury and death in renal tubules34. Interestingly, 

CKD is also associated with tubular damage and dysfunction. It has been known for years 

that tubulointerstitial pathology is a defining feature of virtually all types of CKD35. 

Although abnormal glomerular filtration may impact on CKD progression, the 

tubulointerstitial pathology involving mainly tubular epithelial cells and interstitial 

fibroblasts, plays a major role in the initiation of CKD36. Drastic alterations of cell signaling 

in renal tubular cells during the initiation and progression of CKD may contribute to the 

susceptibility of CKD kidneys to AKI.
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TGF-β—In CKD, TGF-β signaling pathway is activated and consequently induces renal 

cells to produce fibrotic extracellular matrix proteins, leading to glomerulosclerosis as well 

as tubulointerstitial fibrosis37, 38. However, the role of TGF-β signaling in AKI is 

paradoxical probably due to its multiple patho-physiological functions in different cells and 

at different stages of AKI. Some early studies reported the transient activation of TGF-β 
signaling in AKI that may promote kidney tubular cell proliferation and apoptosis39, 40. In 

sharp contrast, most recent studies suggested that TGF-β is an injurious factor and inhibition 

of TGF-β pathway may reduce renal tubular injury41–44. Using a mouse model of inducible 

TGF-β expression in kidney tubular cells, Koesters R et al demonstrated that tubular TGF-β 
activation may initially stimulate interstitial cell proliferation, but sustained TGF-β induction 

leads to tubular degeneration through autophagy-mediated tubular decomposition45. 

Therefore, the persistently elevated TGF-β signaling in CKD may have synergistic or 

additive injury effect at the acute phase of AKI. Furthermore, activated TGF-β signaling in 

CKD may prevent the recovery of AKI. In this regard, TGF-β is known to trigger fibrogenic 

foci and initiate progressive fibrogenesis in kidney injury46. In addition, the activation of 

TGF-β signaling in renal tubular cells may prevent their re-differentiation and ensuing 

regeneration of functional renal tubules after AKI47.

P53—P53 is a major mediator of tubular cell injury and death in AKI48–50. More recent 

studies have further verified the role of p53 in AKI by testing renal tubule-specific p53 

ablation mouse models51, 52. Interestingly, CKD may also be associated with the increase or 

activation of p53 as a consequence of TGF-β up-regulation or PTEN down-regulation53, 54. 

Such “pre-activation” of p53, though at low to moderate levels, may greatly enhance tubular 

damage upon AKI. In support, Peng et al. detected marginal p53 activation in hyperglycemic 

renal tubular cells and in diabetic kidneys, which was dramatically increased upon ischemic 

AKI; importantly, these cells and tissues showed significantly more injury that could be 

ameliorated by p53 inhibitors and genetic knockout26. However, p53 may also play a dual 

role in AKI as it may suppress renal inflammation and related inflammatory injury by 

increasing the infiltration of anti-inflammatory M2 macrophages55. Recent studies have 

further indicated the involvement of p53 in renal fibrosis. Pifithrin-α, a pharmacological 

inhibitor of p53, was shown to stimulate post-ischemia renal fibrosis56, whereas targeted 

ablation of p53 from renal proximal tubules led to the suppression of renal fibrosis52, 

suggesting that p53 in different renal cell types may contribute differently to kidney repair.

Developmental signaling pathways—Multiple signaling pathways in kidney 

development are activated in both CKD and AKI, and contribute to their pathogeneses. 

Especially, these pathways play an important role in kidney repair following injury, 

including fibrogenesis, as reviewed recently57–59. Briefly, Notch signaling pathway is known 

for its indispensable role in kidney development for long time60. Recently, Notch activation 

was detected in ischemic AKI and was shown to prevent renal tubular epithelial cells from 

proliferation and regeneration, resulting in a delay of the recovery from AKI61, 62. In 

addition, Notch activation was also reported to increase inflammation and apoptosis in 

ischemic AKI63. In CKD, Notch is also activated in renal tubular cells where it may promote 

renal fibrosis and inflammation64–66. The elevated Notch signaling in CKD may therefore 
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exaggerate tubular damage upon AKI and delay kidney repair or recovery, contributing to 

the susceptibility of, and non-recovery from, AKI in CKD patients.

The Hedgehog signaling is also a critical pathway in kidney development that promotes 

renal fibrosis in AKI and CKD-related conditions. Specifically, Liu and colleagues 

demonstrated that Sonic Hedgehog from injured renal tubular cells may activate fibroblasts 

for proliferation, suggesting a model of epithelial-mesenchymal communication67, 68. The 

recent studies by Kramann, Humphreys and colleagues have further pinpointed the critical 

role of the Hedgehog transcriptional activator Gli1 in specifying perivascular mesenchymal 

stem cells in kidneys as the main origin of myofibroblasts in renal fibrosis69. Moreover, Gli2 

is a key to myofibroblast proliferation by driving cell cycle progression, further supporting a 

pivotal role of Hedgehog signaling in renal fibrosis70. In contrast, less is known about 

Hedgehog signaling in the acute phase of AKI. Nonetheless, inhibition of Hedgehog 

signaling in obstructively injured kidneys promoted renal tubular cell apoptosis and inhibited 

tubular cell proliferation71, suggesting a cytoprotective function of this pathway. Thus, 

Hedgehog signaling in CKD and associated fibrosis may antagonize AKI acutely, but it may 

prevent kidney repair and enhance fibrosis in the long term.

Other kidney developmental signaling pathways that are activated in various CKD 

conditions include the canonical WNT/β-catenin pathway, which also promotes renal 

fibrosis72–77. Interestingly, this pathway is also activated during and following AKI. While 

WNT/β-catenin signaling protects renal tubular cells and promotes their proliferation78, 79, 

sustained WNT/β-catenin activation contributes to renal fibrosis during the recovery or 

repair phase of AKI80, 81. Thus, CKD-associated WNT/β-catenin signaling may have 

paradoxical effects on AKI: protecting against acute injury initially but enhancing renal 

fibrosis thereafter.

HIF—Kidney tissues, especially renal tubules, are highly oxygen demanding and susceptible 

to hypoxic injury. In both AKI and CKD conditions, hypoxia is an important pathogenic 

factor that is accompanied with the activation of HIF (including HIF-1, -2, -3) to modulate 

gene expression82. In AKI, HIF activation in renal proximal tubules does not have a major 

protective role83, 84; however, global stabilization of HIF or selective regulation of HIF in 

other kidney cell types may reduce AKI85–87, suggesting that HIF activation in other cells 

may have renoprotective effects. In the repair phase of AKI, HIF may also play a perplexing 

role, likely depending on the expressing cell types. While HIF-1 activation did not 

significantly improve wound healing in renal tubular cells in some studies81, 88, there is 

evidence that HIF-1 may enhance renal tubular cell migration after wounding89, 90. HIF 

signaling was also shown to promote renal fibrosis by trans-activating genes for ECM 

turnover, co-operating with TGF-β1, and by promoting the change of tubular cells to a pro-

fibrotic phenotype91. As HIF is activated in CKD, it is important to understand whether HIF 

protects CKD patients from AKI and/or further promotes fibrosis following AKI for 

accelerated progression of CKD.

He et al. Page 5

Kidney Int. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b. Mitochondrial dysfunction and oxidative stress

Mitochondria are the main energy source in kidney cells, especially renal tubule cells. 

However, after damage, mitochondria may turn into active “killer” of these cells. In this 

regard, permeabilization of mitochondrial outer membrane by pro-apoptotic Bcl-2 family 

proteins can directly activate the intrinsic pathway of apoptosis. Ablation of these pro-

apoptotic genes, such as Bax and Bak, results in the amelioration of ischemic as well as 

cisplatin nephrotoxic AKI50, 92, 93. Interestingly, prior to membrane permeabilization, 

mitochondria experience a dramatic change in morphology and become fragmented. Now it 

is clear that mitochondria are dynamic organelles that constantly undergo fission and fusion, 

and during cell stress mitochondrial fusion is arrested while fission activated, culminating in 

mitochondrial fragmentation94. Fragmented mitochondria are highly susceptible to Bax 

insertion and consequent outer membrane permeabilization95. Thus, mitochondrial 

fragmentation and outer membrane permeabilization are considered to be two critical events 

in triggering the intrinsic pathway of apoptosis96. In ischemic and nephrotoxic models of 

AKI, inhibition of mitochondrial fragmentation pharmacologically or genetically has 

significant renoprotective effects93, 97, 98, further verifying the pathogenic role of 

mitochondrial fragmentation. Cell death can also be triggered by damages at the 

mitochondrial inner membrane. In this case, a well-documented phenomenon is 

mitochondrial permeability transition (MPT) that leads to necrosis in a variety of cell types. 

MPT has been implicated in tubular necrosis in AKI for a long time, which has been verified 

recently by using gene knockout mouse models99–101. Mitochondrial dysfunction occurs in 

kidney tissues and cells during the development and progression of CKD102, 103. Both high 

glucose and albumin overload can stimulate mitochondria-mediated intrinsic pathway of 

apoptosis, which may result from the activation of p53, PKC-δ, and oxidative stress under 

CKD condition104. Mitochondrial fragmentation, as a result of pathological alterations in 

mitochondrial dynamics, has also been detected in experimental models of diabetic kidney 

disease105, 106. Fragmented mitochondria are more vulnerable to damage, including Bax 

attack95. Indeed, the severity of ischemic AKI in diabetic mice is associated with heightened 

activation of the mitochondrial pathway of apoptosis. Thus, the loss of mitochondrial 

dynamics in diabetic kidneys and other CKD conditions is expected to contribute to the AKI 

sensitivity in CKD.

Mitochondria in CKD kidneys are also low in function. For example, Sharma and 

colleagues107 analyzed the metabolites in urine from diabetic patients with or without CKD. 

Interestingly, the diabetic patients with CKD had less water-soluble organic anions in urine 

that are related to kidney mitochondrial function. Moreover, these patients had less 

mitochondrial protein and DNA, and lower levels of PGC1α (key transcription factor for 

mitochondrial biogenesis) in kidneys. Together, these data indicate an overall down-

regulation of mitochondrial function and biogenesis in kidneys during diabetic nephropathy. 

Interestingly, kidney repair or recovery from AKI is associated with and may depend on 

mitochondrial biogenesis. In this regard, Schnellmann and colleagues demonstrated that 

pharmacological stimulation of mitochondrial biogenesis may promote kidney recovery 

from AKI108–111. In addition, Parikh and colleagues demonstrated worsened septic AKI in 

PGC1α-knockout mice112, providing further support for the beneficial effect of PGC1α and 

associated mitochondrial biogenesis in AKI and its recovery. In view of these studies, it is 
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concluded that CKD-associated suppression of mitochondrial function and biogenesis would 

sensitize kidney cells and tissues to AKI and prevent kidney repair or recovery from AKI.

Oxidative stress is a common feature of CKD. By comparing CKD patients with healthy 

people, Oberg et al. revealed significantly elevated oxidative stress in stage 3–5 CKD patient 

blood samples by measuring oxidative stress biomarkers, including increases in plasma 

levels of protein-associated carbonyl content and decreases in plasma protein–reduced thiol 

content113. Similar increases of oxidative stress were shown in CKD patient blood samples 

by Ramos et al, who further reported an interesting correlation of oxidative stress with body 

fat deposition114. The oxidative stress in CKD may have multiple origins including, but not 

limited to, dysfunctional mitochondria102, 103, 115. For example, it may also involve the 

down-regulation of Nrf2 in CKD, a key transcriptional factor of anti-oxidant genes116.

The oxidative status in CKD may adversely affect AKI because oxidative stress is a well-

known pathogenic factor in AKI. In critically ill patients with AKI, Himmelfarb J et al. 

showed that plasma protein oxidation is significantly increased and it cannot be substantially 

improved by hemodialysis117. In an orthopedic trauma-induced model, obese rats with 

higher oxidative stress developed more severe AKI118. In addition, the pre-existing CKD, 

such as diabetic nephropathy, is the most prominent risk factor of contrast medium-induced 

AKI119, 120. A major factor in the susceptibility of the CKD patients to contrast medium-

induced AKI is considered to be oxidative stress in kidney tissues, which may result in 

enzymatic and vascular/endothelial dysfunction to markedly increase the incidence of 

AKI121. Altogether, these studies implicate that existing oxidative stress, such as that in 

obesity and CKD, may exacerbate AKI.

c. Changes of autophagy

Autophagy is a cellular process of degradation of cytoplasmic contents, including protein 

aggregates and dysfunctional organelles. Functionally, autophagy is an important mechanism 

for the maintenance of cellular homeostasis by removing potentially toxic components and 

recycling degraded substances. In AKI, autophagy is rapidly activated in renal tubular cells. 

Blockade of autophagy pharmacologically or genetically results in more severe AKI while 

induction of autophagy protects kidneys, supporting a protective role of autophagy in 

AKI122–127. After AKI, autophagy decreases in some renal tubular cells but it is still 

maintained at high levels in other cells128; however, the role of autophagy in kidney repair 

following AKI remains unclear. Baisantryet al. reported that specific ablation of Atg5 from 

renal proximal tubules increased ischemic AKI at earlier time-points, but suppressed renal 

fibrosis during kidney recovery or repair129. Consistently, Livingston et al. showed that renal 

fibrosis in obstructed kidneys was ameliorated in renal proximal tubule Atg7-knockout mice 

and interesting, this was associated with decreased production of specific pro-fibrotic 

factors130. However, Li et al. reported higher levels of renal fibrosis in obstructed kidneys of 

proximal tubule Atg5-knockout mice131. Thus, while the protective role of autophagy in 

AKI is well-established, it is inconclusive whether autophagy is beneficial or detrimental to 

kidney repair.

Currently, the information of autophagy regulation in CKD is limited and sometimes 

controversial, likely due to the complexity of the etiologies of CKD. In this regard, 
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autophagy in diabetic nephropathy has received much attention as it is considered a 

metabolic disorder. The accumulating evidence indicates that the nutrient-sensing pathways 

in kidneys are altered under diabetic conditions, including particularly the activation of 

mTOR and the inhibition of SIRT1 and AMPK132–134. Changes of these nutrient-sensing 

pathways may further impair the autophagic response in kidneys135. For example, 

accumulation of the autophagy substrate p62 in kidneys has been shown in both STZ-

induced type 1 diabetic mice136 and Wistar fatty type 2 diabetic rats137. Moreover,p62 

accumulation has also been observed in renal tubules of kidney biopsy samples from patients 

with type 2 diabetes, suggesting the inhibition of autophagy138. In addition, autophagy 

reduction occurs in the kidney biopsies from patients with focal segmental 

glomerulosclerosis (FSGS), although the main affected cells are glomerular podocytes139. 

Autophagy regulation in other CKD models or conditions is less clear. In the 5/6th 

nephrectomy model of CKD, Li H et al. showed evidence of autophagy suppression in 

kidneys, including decreases in LC3II and accumulation of P62140. However, in the same 

model Fedorova et al. detected the up-regulation of autophagy genes (eg. beclin 1 and 

BNIP3)115. In Leishmania infantum-associated glomerulonephritis, Eschet al. showed 

autophagy induction in both glomeruli and renal tubules with induction141.

Would the autophagy changes in CKD affect AKI and kidney repair? In other words, does 

autophagy contribute to the AKI sensitivity and non-recovery in CKD? Based on the 

protective role of autophagy in AKI, it is predicted that autophagy inhibition in some CKD 

conditions, such as diabetic nephropathy and FSGS, would sensitize kidney cells and tissues 

to AKI. However, in other CKD conditions where autophagy is induced, autophagy may 

have an opposite role. It is more difficult to predict the effect on kidney repair, because, as 

presented above, the role of autophagy in kidney repair and fibrosis remains elusive. Again, 

it is important to emphasize that this depends on the etiology of CKD, which not only 

determines if autophagy is up- or down-regulated but also the repair response after AKI: 

normal vs. maladaptive repair. Normal repair fully restores tubular structure and function, 

whereas maladaptive repair includes a series of pathological changes including tubular 

atrophy, persistent inflammation, capillary rarefaction, expansion of myofibroblasts, and 

development of fibrosis that prevent the recovery of AKI142–144. Thus, the changes of 

autophagy in CKD likely contribute to the AKI sensitivity and non-recovery/repair in CKD 

patients. However, the effects may largely depend on the etiology or types of CKD.

d. Chronic inflammation

Chronic inflammation is a common feature in CKD patients due to multiple factors such as 

the induction of pro-inflammatory cytokines, oxidative stress, uremia, and high chances of 

infection. In a study of 687 patients with myocardial infarction-induced CKD, Tonelli M et 

al. showed the significant induction of two inflammatory biomarkers (C-reactive protein and 

soluble tumor necrosis factor receptor II) and its association with the progression of 

CKD145. More recently, AmdurRL et al. examined the association of inflammatory 

biomarkers and the progression of CKD in the Chronic Renal Insufficiency Cohort (CRIC) 

Study, which enrolled 3430 adults with a wide range of kidney function, and found that 

elevated plasma levels of TNF-α was closely related to the rapid loss of kidney function in 

patients with CKD146. CKD patients are also more susceptible to infection and related 
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inflammation. In fact, pre-operative CKD was shown to a strong predictor of post-operative 

infection, AKI, and in-hospital death147.

Importantly, the pro-inflammatory cytokines that are up-regulated in CKD also play critical 

roles in the induction and progression of AKI. Firstly, the cardiovascular events in CKD 

patients are closely related to proinflammatory cytokine induction148–151. As such, the CKD 

patients with chronic inflammation have high rates of cardiovascular problems, which lead 

to decreased blood supply to kidneys resulting in ischemic AKI. Among the various 

cytokines up-regulated in CKD, IL-10 is closely associated with and has been suggested to 

be responsible for the risk of cardiovascular events in CKD151. CKD is also accompanied 

with the induction of other major cytokines, such as TNF-α, TNF-like weak inducer of 

apoptosis (TWEAK) and IL-6152–156. TNF-α and TWEAK can reduce Kotho expression 

through the activation of NF-kB pathway, which may contribute to kidney functional loss in 

folic acid-induced AKI157. TNF-α is also important to the increased severity of ischemic 

AKI in diabetic mice158. In addition, the activation of fibroblast growth factor-inducible 14 

(Fn14) by TWEAK in pericytes may further promote the release of inflammatory cytokines 

and capillary vasoconstriction, contributing to AKI159. In AKI, IL-6 can activate STAT3 

pathway, which not only induces more tubular cell death but also increases renal fibrosis and 

glomerulosclerosis in post-AKI kidneys160, 161. Notably, CKD is associated with high levels 

of IL-6, which is a critical risk factor of AKI in sepsis patients154, 162.

There is also an increase of High-mobility group box1 (HMGB1) in CKD. For example, in a 

cross-sectional study Bruchfeld et al. analyzed 177 CKD patients to reveal the significant 

increase of serum HMGB1. In this study, HMGB1 showed a correlation with the decline of 

renal function or glomerular filtration rate and increases in markers of inflammation and 

malnutrition163. Interestingly, HMGB1 may also be a major player in the inflammatory 

response and associated tissue damage in AKI164. In AKI patients, there is a marked 

increase in HMGB1 that correlates with inflammation165. In animal models, neutralizing 

antibodies of HMGB1 protect against ischemic AKI and reduced renal inflammation, 

whereas recombinant HMGB1 have opposite effects166, 167. Quite relevant to the focus of 

our discussion, Star and colleagues demonstrated the release of HMGB1 from apoptotic 

cells in spleen in the 5/6th nephrectomy mouse model of progressive CKD, and notably, 

cecal ligation and puncture-induced AKI in this model was attenuated by anti-HMGB1 

antibodies, suggesting a critical role of HMGB1 in septic AKI under CKD conditions168.

Of note, increases of other inflammatory cytokines (eg. IL-8) and interferons have also been 

reported in CKD patients, although less is clear about their involvement in AKI169–171. Also, 

in addition to induced expression, renal clearance of cytokines is decreased in CKD, which 

may contributes to the accumulation of pro-inflammatory cytokines in kidney tissues and the 

susceptibility of and non-recovery from AKI168.

The increases of chemokines and cytokines in CKD are often associated with the infiltration 

of inflammatory cells into kidneys. The infiltration of these cells is generally believed to 

predispose the kidneys to AKI. In this regard, macrophages have received much attention. 

Due to the differences in surface antigens and polarization status, macrophages may present 

as M1, M2, and various subtypes inbetween that may react differently to stimuli 172, 173. M1 
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macrophages are pro-inflammatory and mediate kidney damage during the early phase of 

AKI. In contrast, M2 macrophages generally contribute to kidney tissue remodeling 

following AKI by enhancing tubular cell proliferation and repair as well as inducing 

maladaptive repair of fibrosis174. Macrophage infiltration occurs in CKD in both human 

patients and animal models175–177, and notably, the infiltration is followed by M1 

macrophage polarization whereas M2 polarization is impaired177, predisposing the kidneys 

to inflammation and tissue damage in AKI.

e. Vascular dysfunction

Depending on its progression, CKD is associated with various degrees of vascular 

dysfunction that occurs in both renal vasculature and other peripheral vasculature. In 

kidneys, CKD induces alterations in the tissue microenvironment that may directly induce 

vascular pathology. The dysfunction of endothelial cells as well as vascular calcification in 

kidneys during CKD have been noticed for long time178–180. In fact, the extent and 

histoanatomic type of vascular calcification are good predictors of subsequent cardiovascular 

mortality in CKD patients181. The endothelial dysfunction in CKD leads to changes in 

microcirculation, adhesion of inflammatory cells for inflammation, vascular permeability, 

and abnormal glomerular leakage. Especially at late stages of CKD when patients are 

experiencing proteinuria, renal vasculature damage and changes of glomerular architecture 

can adversely affect the blood supply to renal tubular cells and result in further reduction of 

GFR. Such loss of renal function leads to the accumulation of multiple pathogenic factors, 

such as uremic toxins, oxidized proteins, and advanced glycation end products (AGE), to 

name just a few182–186. Those injurious factors are delivered through blood to all over the 

body to cause further peripheral vasculature damage and major cardiovascular defects, 

which may directly decrease blood support to kidneys to induce ischemic AKI28, 187, 188.

In addition, vasculature damage may significantly enhance the risk of AKI. A good example 

in this aspect is contrast medium-induced AKI189. Pre-existence of CKD is known to 

significantly increase the incidence of AKI following the administration of contrast medium 

in patients190. Though the detailed mechanism of contrast medium-induced AKI is not fully 

understood, it is closely related to the vascular dysfunction in addition to the direct toxic 

effect in renal tubular cells. Contrast medium has been reported to have vasoconstriction 

effect, resulting in the reduction of vasa recta blood supply and decreases in the blood flow 

rate in afferent arteriole, which further lead to renal tubular damage and decline of 

glomerular filtration191–193. The pre-existence of vascular dysfunction in CKD can certainly 

augment these pathological changes, inducing more severe AKI.

In 2001, Basile and colleagues demonstrated the loss of peritubular capillary or vascular 

rarefaction within weeks after ischemic AKI in rats194. Subsequent studies further 

established a role of vascular rarefaction in the development of renal fibrosis and chronic 

kidney problems after AKI18. Remarkably, Polichnowski et al. recently demonstrated that 

kidney repair and recovery after ischemic AKI was disproportionately impaired in rats with 

severe (75%) renal mass reduction (RMR) compared to rats without RMR33. In these 

animals, renal function remained lower and greater numbers of renal tubules failed to 

differentiate after 4 weeks of recovery, which was associated with more severe 
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tubulointerstitial fibrosis and capillary rarefaction, with development of hypertension and 

proteinuria. The most hypertensive rats showed the most proteinuria and in addition, had 

glomerulosclerosis. The findings indicate that pre-existing CKD may compromise tubule 

repair, induce greater capillary dropout, and promote fibrosis with hypertension development 

after superimposed AKI. In a later study195, Polichnowski and coworkers quantified 

tubulointerstitial fibrosis and glomerulosclerosis at 4 weeks and at a later time-point of 16 

weeks after IRI in rats with 50% RMR. Whereas averaged tubulointerstitial fibrosis early 

after AKI at 4 weeks decreased with time, averaged glomerulosclerosis scores were 

increased. Plotted as a function of systolic blood pressure measured by radio telemetry in 

conscious rats, severe tubulointerstitial fibrosis was observed only in animals exhibiting 

marked glomerulosclerosis, proteinuria and kidney hypertrophy as well as systolic blood 

pressures in excess of 127 mm3Hg. The strong association of tubulointerstitial fibrosis and 

glomerulosclerosis with modest blood pressure increase over time when AKI is 

superimposed upon CKD (in the RMR model), together with impaired autoregulation of pre-

glomerular arterioles known to occur after RMR suggests that increased transmission of 

even small increases of arterial pressure through less responsive pre-glomerular arterioles is 

sufficient to cause progression of renal disease after AKI in settings of preexisting 

CKD6,195. Therefore, fibrosis associated with tubule atrophy may actually decrease at the 

late phase of AKI recovery unless vascular pathologies and associated tubule dysfunction 

cause sufficient increase of arterial pressure that is transmitted directly to glomeruli because 

of impaired glomerular arteriolar autoregulation. Of note, and relevant to human disease, in 

a large retrospective cohort study, elevated blood pressure was observed in patients with 

preexisting CKD recovering from AKI and even after AKI alone196.

Mechanistically, post-AKI vascular defects may involve the impairment of proliferation and 

phenotypic change in endothelial cells18. As discussed above, CKD is associated with 

vascular dysfunction, which may further prevent vascular repair and regeneration in post-

AKI kidneys, resulting in worsened vascular defects, the suppression of normal kidney 

repair, and the induction of maladaptive repair or renal fibrosis.

f. Epigenetic regulation

CKD is frequently associated with significant changes in epigenetics in kidneys, such as 

DNA methylation, histone acetylation, and expression of non-coding RNAs197, 198. DNA 

methylation changes in CKD are characterized by hypermethylation and hypomethylation of 

different genes. Smyth LJ et al identified different loci of genes either hypermethylated or 

hypomethylated in CKD by genome-wide profiling199. The development of diabetic 

nephropathy is also associated with DNA methylation changes in specific genes200. 

Interestingly, significant changes in DNA methylation occurs cisplatin-induced AKI and 

blockade of DNA methylation sensitizes kidney injury, suggesting a protective role of DNA 

methylation in AKI201. In terms of specific genes, the hypermethylation of klotho gene 

promoter in CKD conditions has been reported by several laboratories202–207. The 

suppression of klotho by hypermethylation is a potential risk factor for AKI development 

since klotho plays a protective role in AKI208–210. Chromatin modifications, especially 

histone acetylation, may also contribute to AKI sensitivity of CKD patients because 

inhibition of histone deacetylases showed beneficial effects in both CKD and AKI 
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conditions211–214. As to the regulation of non-coding RNAs, genomic wide profiling has 

identified the dysregulation of multiple microRNAs in CKD, although the information about 

long non-coding RNAs is still limited215–217. The roles of specific microRNAs, such as 

mir-21, −192, and −29, have been delineated in CKD218–223, providing a foundation for 

further investigation of their involvement in AKI susceptibility of CKD patients.

IV. Conclusions and Perspectives

AKI and CKD are interconnected syndromes. On one hand, AKI contributes to the initiation 

and progression of CKD; on the other hand, CKD predisposes patients to AKI, and AKI on 

CKD has a poor prognosis. While much has learned about AKI-CKD transition, the 

underlying mechanism of AKI on CKD remains largely elusive. In this review, we have 

analyzed the major changes in CKD that may increase the sensitivity or susceptibility of 

AKI and suppress kidney repair or recovery from AKI in CKD patients (Figure 2). Although 

the molecular, cellular and tissue alterations in CKD are discussed separately, they are 

related and most likely cooperate to result in a pro-AKI condition. In addition, other 

pathological changes in CKD may be involved as well. For example, the kidney is a 

production site of several growth factors, such as epidermal growth factor, hepatocyte 

growth factor, and insulin-like growth factor I224. These growth factors not only affect the 

severity of AKI but also play important roles in the regulation of kidney repair and 

fibrosis225. In CKD, the production and function of these growth factors may be altered. 

Thus, AKI sensitivity, severity and non-recovery in CKD may involve multiple mechanisms 

at epigenetic, gene expression, signaling, organellar, cellular and tissue levels. Elucidation of 

these mechanisms may identify effective therapeutic targets to reduce AKI and promote 

kidney repair and recovery in CKD patients.
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Figure 1. 
Poor prognosis of AKI in patients with CKD and related co-morbidities.

He et al. Page 24

Kidney Int. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Potential mechanisms underlying AKI sensitivity and non-recovery in CKD patients.

He et al. Page 25

Kidney Int. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. The AKI-CKD connection
	III. Potential mechanisms underlying the susceptibility and non-recovery of AKI in CKD patients
	a. CKD-associated changes in signaling pathways
	TGF-β
	P53
	Developmental signaling pathways
	HIF

	b. Mitochondrial dysfunction and oxidative stress
	c. Changes of autophagy
	d. Chronic inflammation
	e. Vascular dysfunction
	f. Epigenetic regulation

	IV. Conclusions and Perspectives
	References
	Figure 1
	Figure 2

