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Abstract

A highly efficient, Z-selective ring-closing metathesis system for the formation of macrocycles 

using a stereoretentive, ruthenium-based catalyst supported by a dithiolate ligand is reported. This 

catalyst is demonstrated to be remarkably active as observed in initiation experiments showing 

complete catalyst initiation at –20 °C within 10 min. Macrocyclization reactions generated Z-

products from easily accessible diene starting materials bearing a Z-olefin moiety. This 

stereoretentive approach provides a more efficient and selective route to Z-macrocyles than in 

previously reported systems. Reactions were completed in appreciably shorter reaction times, and 

turnover numbers of up to 100 could be achieved. Macrocyclic lactones ranging in size from 

twelve-membered to seventeen-membered rings are synthesized in moderate to high yields (68 – 

79% yield) with excellent Z-selectivity (95% – 99% Z).
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Transition-metal catalyzed ring-closing metathesis (RCM) has become a powerful method 

for generating cyclic molecules.1 It is widely used in the synthesis of pharmaceuticals as 

well as in the production of pheromones and musks as replacements for toxic, synthetic 

polycyclic and nitroarene musks.2 The stereochemistry of the alkene, E or Z, in these cyclic 

structures is often crucial to the biological activity of a molecule or its olfactory 

characteristics, and small amounts of impurity of the other stereoisomer in chemical 
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mixtures can drastically decrease their potency. It is often particularly difficult to separate E- 

and Z-isomers as techniques for their separation are not general. As such, methods for 

producing stereochemically pure cyclic compounds are of paramount importance.

Controlling olefin stereochemistry in RCM reactions can be difficult. When using common 

non-selective metathesis catalysts, selectivity is controlled by the thermodynamic stability of 

the olefin products and can vary depending on ring size and double bond position.3 Because 

of the dilute conditions required to prevent oligomerization, high catalyst loadings are often 

needed for macrocyclization reactions using RCM, but removing residual metals can be 

challenging. For some applications, this requires further purification with lead or phosphine 

additives or with multiple chromatographic columns followed by treatment with charcoal.4 

Reducing catalyst loadings required for these reactions is thus an important goal.

One established method for stereoselectively generating Z-macrocycles is ring-closing 

alkyne metathesis followed by Lindlar hydrogenation.5 Z-macrocycles have also been 

synthesized by reaction of terminal olefins with internal vinyl silanes followed by 

protodesilylation.6 However, these approaches require multiple steps to synthesize the 

desired product, and thus more direct methods using olefin metathesis are desirable. In 2011, 

the first report of Z-selective RCM was disclosed. Mo- and W-based catalysts 1–3 were used 

to synthesize a 16-membered macrocyclic lactone (91 – 95% Z), nakadomarin A (90 – 97% 

Z), and epothilone C (69 – 97% Z).3e While these catalysts afforded exceptional selectivity, 

they required catalyst loadings of 5 to 6 mol %. One year later, Z-selective cyclometallated 

ruthenium-based catalyst 4 (7.5 mol %) was reported to generate macrocyclic lactones, 

lactams, and ketones (75 – 94% Z) with the purpose of synthesizing pheromones and 

fragrances.2f This method was limited by long reaction times, required the use of high 

boiling solvents and elevated temperatures, and delivered most products with ca. 85% Z-

selectivity.

In 2015, Hoveyda reported cross metathesis of Z-olefins and terminal olefins to generate 

highly Z-products (>96% Z) using Ru-based complexes supported by dithiolate ligands.7 

Additional studies of these catalysts in 2016 demonstrated that they were highly 

stereoretentive, also capable of cross metathesis between two E-olefins or between an E-

olefin and a terminal olefin to deliver products with kinetic E-selectivity (>98% E).8 The 

proposed model for Z-selectivity using these catalysts is based on a proposed side-bound 

metallacyclobutane intermediate in which stereoselectivity arises from the α-substituents of 

the metallacyclobutane favorably positioned away from the large N-aryl groups of the N-

heterocyclic carbene (NHC) ligand (Figure 2). Given that the reacting olefin has Z-

stereochemistry, the β-substituent points down in the favored proposed intermediate. 

Subsequent cycloreversion of this metallocyclobutane intermediate leads to the formation of 

the Z-product.

Based on this model for selectivity, it was expected that highly Z-selective RCM to generate 

Z-macrocycles could be possible from diene substrates containing a Z-olefin and a terminal 

olefin using these catalysts (Figure 3a). These substrates are easily synthesized in high yield 

by reaction of commercially available Z-hydroxy olefins with alkenoyl chlorides (Figure 

3b). Substrates were designed such that RCM of these substrates would give the desired 

Ahmed and Grubbs Page 2

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2018 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



product as well as a gaseous byproduct, propylene or 1-butene, which could be readily 

removed from the reaction mixture under static vacuum.

For these reactions, catalyst 5, bearing an NHC with N-2,6-diisopropylphenyl groups, was 

chosen due to its remarkable activity in cross metathesis reactions of Z-olefins.7 To compare 

the initiation rates of 4 and 5, the reactions of butyl vinyl ether with each catalyst were 

monitored by 1H NMR (Figure 4). Under standard conditions at 30 °C,9 catalyst 5 had 

already fully initiated within the 15 s required to acquire the first spectrum, and thus a rate 

constant could not be determined. The reaction was then monitored at 0 °C and was 

completed within 2 min with 5 while 4 required 1.5 h. Values of kinit for 4 and 5 at this 

temperature were determined to be 1.00 × 10−3 s−1 and 2.42 × 10−2 s−1, respectively. Thus, 

there is an order of magnitude of difference in the initiation rates of these catalysts, krel = 

kinit5/kinit4 = 24.2. Furthermore, full initiation of 5 was remarkably complete at −20 °C 

within 10 min with kinit = 6.14 × 10−3 s−1.10 Negligible Fischer carbene formation could be 

observed using 4 at −20 °C. This stark difference in initiation rate is a direct reflection of the 

significantly greater activity of 5 compared to 4.

RCM was then attempted using 5 and was shown to be possible using a variety of substrates, 

6 – 12 (Table 1). Using a standard catalyst loading of 6 mol % often used in macrocylization 

reactions, reactions were completed within 1 h in dichloromethane under static vacuum at 

40 °C. Twelve- to seventeen-membered rings were all synthesized with high Z-selectivity 

(95 – 99% Z) in moderate to high yields (68 – 79% isolated yield). Yuzu lactone, Z-7, is in 

high demand by the perfume industry and can be synthesized more rapidly and selectively 

using 5 than in previous reports.2f,11 Larger macrocyclic lactones, fifteen-membered to 

seventeen-membered rings, were synthesized in slightly higher yields than with smaller 

twelve- to fourteen-membered rings.

Given the exceptional activity exhibited by 5 in initiation experiments and its high activity in 

macrocyclic RCM (turnover numbers, TON, of 11–13 were achieved using 6 mol % catalyst 

loading), the limit for the catalyst loading required for reaction was examined. Using 0.5 

mol % 5, 50% conversion (TON of 100) was attained in the macrocyclization of 8 within 1 h 

as determined by observation of aliquots of the reaction by 1H NMR. With 1 mol % 5, 

complete conversion of the starting material to the macrocyclic product and a small amount 

of unidentified byproduct, possibly an oligomer of the starting material, was observed. This 

is significantly lower than reported catalyst loadings used for achieving high conversion in 

previously reported Z-selective macrocyclizations.

In summary, highly active, stereoretentive Ru-based catalyst 5 was used for generating 

highly Z-macrocycles (95 – 99% Z) from easily available diene substrates with a Z-olefin 

moiety. The exceptional activity exhibited by this catalyst was determined through initiation 

studies and showed that full catalyst initiation could be achieved at −20 °C within minutes. 

Twelve- to seventeen-membered macrocycles, including yuzu lactone, were synthesized 

using this method in moderate to high yields (67 – 79% yield). These reactions were 

completed in significantly shorter times, and the use of lower catalyst loadings than in 

previously reported Z-selective systems was shown to be possible with TON of up to 100. 

Further studies using stereoretention for E-selective macrocyclization are underway.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Catalysts used previously to selectively generate highly Z-macrocycles.
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Figure 2. 
Model for Z-selectivity using stereoretentive metathesis catalysts in cross metathesis.
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Figure 3. 
(a) Proposed disfavored and favored metallacyclobutane intermediates in macrocylization 

reactions implementing stereoretentive catalyst 5 (b) Synthesis of diene substrates from acyl 

chlorides and Z-hydroxy olefins.
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Figure 4. 
Plot of ln([Ru]/[Ru]0) versus time for initiation experiments conducted with catalysts 4 and 

5 at 0 °C and −20 °C monitored by disappearance of the benzylidene signal by 1H NMR. 

Plots remain approximately linear for three half-lives of the reaction.
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Table 1

Synthesis of macrocyles using 5.

a
Yields shown are isolated yields.

b
Selectivity determined by gas chromatography. Selectivity of Z-7 and Z-8 can be determined by 1H NMR.

c
Reaction was run on a preparative scale.
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