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SUMMARY

Common fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative 

stress. Although the characteristics of CFSs that render them vulnerable to stress are mainly 

associated with replication, the cellular pathways that protect CFSs during replication remain 

unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS 

replication, in the absence of exogenous replicative stress. In the absence of FANCD2, replication 

forks stall within the AT-rich fragility core of CFS leading to dormant origin activation. 

Furthermore, FANCD2 deficiency is associated with DNA:RNA hybrid formation at CFS-

FRA16D and inhibition of DNA:RNA hybrid formation suppresses replication perturbation. In 

addition, we also found that FANCD2 reduces the number of potential sites of replication 
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initiation. Our data demonstrate that FANCD2 protein is required to ensure efficient CFS 

replication and provide mechanistic insight into how FANCD2 regulates CFS stability.

Graphical Abstract

INTRODUCTION

Nearly two-thirds of the human genome is comprised of repetitive sequences that often 

challenge DNA replication, which can lead to genomic instability. CFSs are chromosomal 

regions that are most prone to genomic instability and are implicated in the development and 

progression of cancer (Arlt et al., 2003; Glover, 2006). Furthermore, CFSs are hotspots for 

chromosomal structural aberrations such as deletions, duplications, and translocations (Chesi 

et al., 1998; Finnis et al., 2005; O'Keefe and Richards, 2006). Maintenance of CFS integrity 

is critical because most of the commonly expressed CFSs contain tumor suppressor genes 

and proto-oncogenes which when altered are associated with a large spectrum of cancers 

(Ciullo et al., 2002; Hellman et al., 2002; Siprashvili et al., 1997). The three most prevalent 

models of CFS instability involve the presence of structure-prone repetitive DNA sequences, 

the possibility of transcription-associated obstacles and the scarcity of replication initiation 

events (Le Beau et al., 1998; Lucas et al., 2007). Currently, it is believed that perturbed 

replication of these regions is at the heart of their fragility. Identifying the factors that 

alleviate replication perturbation at CFSs is vital to understanding the mechanism(s) leading 

to CFS instability.

Among the various proteins that have been implicated in CFS breakage are the Fanconi 

anemia (FA) proteins. FA is a genetic disorder characterized by developmental 

abnormalities, bone marrow failure, and a high incidence of malignancies. While the repair 

mediated functions of the FA pathway provide some mechanistic insight, the severe 

phenotypes observed in some FA patients (Hirsch et al., 2004; Howlett et al., 2002), and FA 

mouse models (Houghtaling et al., 2003) suggest additional roles for these proteins. Recent 

reports suggest a role for the FA pathway in DNA replication. The FA pathway is strongly 

activated in response to replisome stalling that occurs in response to agents that induce 
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replicative stress, such as hydroxyurea (HU) (Petermann et al., 2010; Taniguchi et al., 2002). 

Furthermore, FANCD2 transiently interacts with the MCM proteins (Lossaint et al., 2013) 

and stabilizes stalled replication forks (Karanja et al., 2014; Schlacher et al., 2012).

In addition to increased risk of cancer (Kutler et al., 2003; Rosenberg et al., 2003) the 

absence of FA proteins is associated with elevated chromosomal breaks at CFSs (Howlett et 

al., 2005), suggesting a link between cancer predisposition and CFS instability in FA 

patients. The observed but unexplained exacerbation of CFS instability in the absence of FA 

proteins combined with the inherent replication defects found at CFSs prompted us to 

determine whether replication associated functions of FA proteins also facilitate CFS 

replication. If the FA proteins are indeed mediating timely replication of CFSs, then their 

absence should challenge replication and result in the alteration of the replication program at 

CFS loci.

Here, we show that the FANCD2 protein is an important trans-acting mediator of CFS 

replication. By visualizing the in vivo replication dynamics of individual DNA fibers, we 

found a striking change in the replication program at the CFS loci in FANCD2−/ − patient-

derived lymphoblasts. We propose that FANCD2 has a multifaceted role in facilitating 

replication at difficult to replicate genomic regions such as CFS. It helps the replication 

machinery navigate past the fragility core of CFS-FRA16D, likely by resolving impediments 

to replication machinery such as DNA:RNA hydrids. In this manner, FANCD2 appears to 

maintain CFS stability in the absence of exogenous stress and seems to do so separate from 

rest of FA core complex proteins and FANCD2 monoubiquitination. Additionally, FANCD2 

also ensures optimal firing of dormant rescue origins to facilitate replication completion at 

CFSs to avoid mitotic instability. These studies provide key mechanistic insight into the role 

of FANCD2 in maintaining CFS stability and preserving genome integrity.

RESULTS

CFS-FRA16D replication program is altered in the absence of FANCD2

We started our analysis with FANCD2-deficient cell lines since FANCD2 can facilitate DNA 

replication under conditions of replicative stress (Lossaint et al., 2013). Using single 

molecule analysis of replicated DNA (SMARD) (Fig. S1a), we examined the endogenous 

replication program of two CFS loci, FRA16D and FRA6E. Lymphocytes were used 

because CFSs are usually mapped in lymphocytes (Sutherland and Richards, 1995), and 

FRA16D and FRA6E are highly expressed in this cell type (Helmrich et al., 2011). To 

analyze the movement of replication forks through the AT-rich fragility core of CFS-

FRA16D, we analyzed a 280 kb PmeI segment of FRA16D that contained a portion of the 

AT-rich fragility core on the left and flanking DNA sequences on the right; this region will 

henceforth be referred to as repeat region 1 (RR1) (Fig. 1A–B, Table S1).

In non-affected lymphoblasts, GM02184 (non-affected 1) and GM03798 (non-affected 2), 

replication proceeds unperturbed, bidirectionally across the repeats, with equal numbers of 

3’ to 5’ and 5’ to 3’ progressing forks replicating the locus (Fig. 1C; Fig. S2B). In contrast, 

in the FANCD2−/−lymphoblasts (FANCD2−/−-L-1 [PD20], FANCD2−/−-L-2 [2742], and 

FANCD2−/−-L-3 [2717]), the direction of replication was altered and replication forks 
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progressed predominantly in the 3’ to 5’ direction, into the fragility core, in ~70% of the 

cells. Very few 5’ to 3’ progressing replication forks managed to reach RR1 at the same time 

as the 3’ to 5’ progressing forks (Fig. 1D–E; Fig. S2C). Complementation of the 

FANCD2−/−-L-1 lymphoblasts with wild-type FANCD2 protein (Fig. S3B) restores 

bidirectional replication program at RR1 (Fig. 1F), similar to the non-affected cells.

One possible explanation for the inability of the forks progressing in the 5’ to 3’ direction to 

reach RR1 could be that the forks were stalled at the fragility core (Fig.1A – pink line) of 

CFS-FRA16D, not included in RR1. To study the progression of the replication forks 

progressing 5’ to 3’ into RR1, we studied an adjacent segment, to the left of RR1, called the 

repeat region 2 (RR2) (Fig. 1A; Fig. 2A). Analysis of the replication program of RR2 in 

non-affected cells revealed that replication proceeds bidirectionally across the repeats in 

RR2 (Fig. 2B). The FANCD2−/− lymphoblasts also had a bidirectional replication program; 

however, there appeared to be an accumulation of replication forks at different regions along 

the 120 kb segment (Fig. 2C–D). Analysis of regions RR1+RR2 collectively revealed that 

the replication program at the AT-rich fragility core of CFS-FRA16D is altered in the 

absence of the FANCD2 protein.

In the absence of FANCD2, replication forks stall at the fragility core of CFSs

Replication fork pausing can occur at regions of the genome that act as natural impediments 

to the DNA replication machinery (Mirkin and Mirkin, 2007). To determine whether the 

altered replication program, at RR1, observed in the absence of FANCD2 is a result of 

replication pausing, we decided to quantify the replication pause sites at the endogenous 

fragility core of CFS-FRA16D. To do this, we divided the AT-rich fragility core of CFS-

FRA16D (RR1+RR2), collectively spanning a 400 kb region, into 10 kb intervals. We then 

counted the number of 3’ to 5’ or 5’ to 3’ progressing replication forks that were present at 

each 10 kb interval at the time of replication. Figure S1B is a schematic representation of 

how replication pausing is quantified.

In the FANCD2−/− lymphoblasts, the replication forks moving into RR1 (3’ to 5’; purple 

bars) (Fig. 2E: FANCD2−/−-L-1 and FANCD2−/−-L-2; Fig. S3A: FANCD2−/−-L-3) show 

increased pausing at the fragility core. In addition, replication forks moving in the 5’ to 3’ 

direction appear to pause significantly upon entering the AT-rich core, in RR2 (Fig. 2E: 

FANCD2−/−-L-1 and FANCD2−/−-L-2; orange bars), indicating that FANCD2 is important 

for replisome movement across the AT-rich regions of CFS-FRA16D.

To further validate the hypothesis that the absence of FANCD2 results in replication fork 

pausing at CFSs, we quantified replication pausing at the fragility core of a second CFS, 

FRA6E. We analyzed a 375 kb region that includes the early/late replication transition zone, 

that corresponds to the fragility core of FRA6E (Palumbo et al., 2010) (Fig. S4A). The 

SMARD results show increased replication fork pausing, preferentially within the FRA6E 

fragility core, in FANCD2−/−-L-1 cells (Fig. S4D), indicating FANCD2 is needed for proper 

replication at CFSs. Together, these results demonstrate that in the absence of FANCD2, the 

replication machinery finds it difficult to navigate the structure-prone fragility core of CFSs, 

even in the absence of exogenous replicative stress.
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In the absence of FANCD2 dormant replication origins are activated at CFSs

Replication fork stalling or slowing can be accompanied by the activation of dormant origins 

(Alver et al., 2014; Blow and Ge, 2009). In the absence of FANCD2, increased replication 

pausing was seen for the forks progressing in the 5’ to 3’ direction into the fragility core of 

both CFS-FRA16D and CFS-FRA6E (Fig 2E; Fig. S4D). This raises the possibility of 

identifying dormant initiation events downstream of the pause site, which might have fired 

to compensate for the replication stalling. Therefore, we examined the replication program 

of a segment flanking RR1 of FRA16D, to the right, region 3 (R3) (Fig. 1A; Fig. 3A).

Analysis of the non-affected cells revealed that only 2 of the 73 molecules displayed 

initiation events in the 305 kb R3 segment (Fig. 3B, Fig. S2D). In comparison, all three 

FANCD2−/− lymphoblasts activated a prominent dormant origin in more than a third of the 

R3 molecules (Fig. 3C–D; Fig. S2E). Moreover, when FANCD2 protein expression was 

restored in the FANCD2−/−-1 patient cells (Fig. S3B), the dormant origin activation response 

was suppressed in the R3 segment (Fig. 3E). Importantly, the appearance of this origin in the 

FANCD2-deficient cells supports the idea that pausing of forks progressing 5’ to 3’ through 

RR1 is accompanied by the activation of dormant origins downstream of the pause site (Fig. 

3F). To further test this prediction, we analyzed the replication program of CFS-FRA6E for 

dormant origin activity. In non-affected lymphoblasts, we found very few initiation events 

occurring along the 375 kb region of CFS-FRA6E (1 out of 40 molecules in Fig. S4B, S4E; 

grey bar). In contrast, the FANCD2−/−-1 lymphoblasts had a prominent dormant origin 

activated in ~12% of the molecules (Fig. S4C, S4E; red bar), downstream of the replication 

pause site. The results were similar to those obtained for FRA16D, which strengthens the 

mechanism we propose.

Next, we wanted to determine whether the pausing observed in the 3’ to 5’ progressing forks 

in FRA16D resulted in the activation of dormant origins upstream of the fragility core. Thus, 

we analyzed region 4, adjacent to RR2 (left of RR2 in Fig. 1A), in FANCD2−/− 

lymphoblasts. However, we did not find any detectable dormant origin activation upstream 

of the repeats. Interestingly, we found some distinct replication pausing in the 5’ to 3’ 

direction, within 20–40 kb of the repeats (Fig. S3C–D). These results collectively indicate 

that in the absence of FANCD2, the activation of the origins in region 3 appears to generate 

the replication forks (3’ to 5’) required to complete replication of RR1 in order to 

compensate for the 5’ to 3’ replication stalling observed in the fragility core of CFS-

FRA16D.

Replication perturbation at CFS-FRA16D is specific to FANCD2-deficient lymphoblasts, not 
fibroblasts

CFS instability arises as a consequence of incomplete replication that could result from the 

lack of replication initiation events at the locus (Letessier et al., 2011). Accordingly, CFSs 

are known to be less fragile/unstable in fibroblasts that have an abundance of initiation 

events (Durkin and Glover, 2007; Le Tallec et al., 2011). So we next asked whether the 

absence of FANCD2 perturbs replication at FRA16D in fibroblasts. Non-affected fibroblasts 

had an abundance of replication origins in both RR1 and R3 regions of FRA16D (Fig. 4A–

B, 4D), in contrast to the paucity of initiation events observed in the non-affected 
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lymphoblasts. This delineates the inherent differences in CFS-FRA16D replication between 

lymphocytes and fibroblasts, under unperturbed conditions. Similarly, the replication of 

FRA16D in FANCD2-deficient fibroblasts (FANCD2−/−-F-1) was distinctly different from 

that of FANCD2-deficient lymphoblasts (Fig. 4C). Despite having a bidirectional replication 

program, similar to non-affected fibroblasts (Fig. 4B), the FANCD2-deficient fibroblasts had 

some replication pausing, likely due to the repetitive DNA sequences at FRA16D (Fig. 4G).

In R3 of FANCD2-deficient fibroblasts, there was a decrease in replication origins (Fig. 4E) 

as compared to non-affected fibroblasts (Fig. 4D). Importantly, FANCD2−/− fibroblasts did 

not activate the strong dormant origin observed in FANCD2−/− lymphoblasts (Fig. 3C). 

Complementation of FANCD2−/− fibroblasts with wild-type protein (Fig. S6B) led to an 

increase in replication initiation events (9 in 40 examined) at CFS-FRA16D (Fig. S6A), 

indicating that the ectopic expression of FANCD2 rescues the FANCD2-associated initiation 

defect. These results clearly demonstrate that FANCD2 deficiency prominently alters CFS 

replication only in cell types that express CFS (lymphoblasts) and have a paucity of 

replication initiation events at CFS.

Replication pausing at CFS-FRA16D, in the absence of FANCD2 is attributed to DNA:RNA 
hybrids

Fragility of CFS (and the cell type specific nature of these breaks) has also been attributed to 

differential expression of genes underlying CFS loci (Helmrich et al., 2011). In agreement 

with this hypothesis, we observed higher WWOX expression in lymphoblasts compared to 

fibroblasts (Figure S6C–D). Collision of transcription and replication machinery and 

DNA:RNA hybrid formation have been implicated in instability at common fragile site loci, 

which harbor long transcribed genes (Garcia-Muse and Aguilera, 2016; Helmrich et al., 

2013). Recent reports suggest that the FA pathway plays a role in protecting cells from the 

deleterious effects of DNA:RNA hybrids (Garcia-Rubio et al., 2015; Schwab et al., 2015).

In order to determine whether the replication pausing observed in the absence of FANCD2 is 

due to DNA:RNA hybrid formation, we performed a DNA:RNA hybrid 

immunoprecipitation (DRIP) analysis at three sites (chosen based on RDIP-seq databases 

from (Nadel et al., 2015)) of CFS-FRA16D (Table S3). At all three sites analyzed, there was 

an accumulation of DNA:RNA hybrids, preferentially in the absence of FANCD2 (Fig. 5A; 

red bars) Treatment with RNaseH1, which cleave the RNA component of DNA:RNA 

hybrids, resulted in a marked reduction in the DNA:RNA hybrid signal obtained in 

FANCD2-deficient cells (Fig. 5A). These results demonstrate that DNA:RNA hybrids do 

indeed accumulate at CFS loci, in the absence of FANCD2.

If DNA:RNA hybrids are indeed responsible for replication perturbation at CFS-FRA16D, 

then overexpressing RNaseH1 should eliminate the source of stalling. To test this, we 

generated non-affected/control and FANCD2−/−-L-1 lymphoblasts expressing either the 

control eGFP vector (Fig. 5B; Lanes 1,3), or the eGFP-tagged RNaseH1 vector (Lanes 2,4). 

The RR1 segment, in the presence of RNaseH1 over expression, was replicated by equal 

numbers of 5’ to 3’ and 3’ to 5’ progressing replication forks, in FANCD2−/− lymphoblasts, 

with no significant replication pausing (Fig. 5D). Importantly, the replication program of the 

RNaseH1 overexpressing FANCD2−/− lymphoblasts closely resembled the replication 
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program of both non-affected lymphoblasts (Fig. 1C; S2B) and also the non-affected 

lymphoblasts overexpressing RNaseH1 (Fig. 5C). This clearly shows that eliminating 

DNA:RNA hybrids alleviates pausing and restores bidirectional replication fork movement 

across the fragility core of FRA16D.

If the overexpression of RNaseH1 truly alleviates replication pausing, it should suppress 

dormant origins that fire to rescue replication. Accordingly, FANCD2−/− lymphoblasts 

overexpressing RNaseH1 do not activate the strong dormant origin that was observed in 

region 3 of FRA16D in FANCD2-deficient cells and very closely resembled the replication 

program of non-affected cells (Fig. 5F). The few initiation events observed in both the non-

affected and FANCD2-deficient lymphoblasts (Fig. 5E–F) over expressing RNaseH1 could 

be attributed to the presence of increased amounts of RNaseH1 protein. Furthermore, no 

change in the replication program was observed at the R3 region in non-affected and 

FANCD2−/− lymphoblasts expressing GFP control (Fig. S7A–B). Elimination of the source 

of replication perturbation (DNA:RNA hybrids), appears to have suppressed the need for 

rescue (dormant origins). These results clearly demonstrate that replication pausing at CFS-

FRA16D in the absence of FANCD2 is associated with DNA:RNA hybrids.

Disruption of the FA pathway results in replication pausing at CFS-FRA16D

FANCD2's role in CFS-FRA16D replication could stem from its involvement in the FA/

BRCA pathway. If this were the case, deficiency in other FA proteins would be predicted to 

have a similar effect on CFS-FRA16D replication as seen in the absence of FANCD2. 

Alternately, FANCD2 could be functioning independently of the FA/BRCA pathway to 

facilitate CFS-FRA16D replication. To discriminate between these possibilities, we wanted 

to analyze the replication program of CFS-FRA16D in other FA patient-derived 

lymphoblastoid lines and in the absence of FANCD2/FANCI monoubiquitination. First, we 

measured the relative levels of FANCD2 protein expression and found that FANCD2 protein 

was not expressed in all three FANCD2−/− cell lines (Fig. S5A). FANCD2 

monoubiquitination was absent in cells expressing FANCI-K523R (FANCImonoub−/−) and 

FANCD2-K561R (FANCD2monoub−/−) (Fig. S3B; S5A).

In the absence of the FA core complex protein FANCA, equal numbers of 5’ to 3’ and 3’ to 

5’ progressing replication forks replicated the RR1 region of CFS-FRA16D (Fig. S5C). This 

was associated with a ~10% decrease in dormant initiation events (Fig. 6F, green bar), as 

compared to FANCD2-deficient lymphoblasts (red bars). However, in the absence of the 

downstream FA protein BRCA2/FANCD1, forks progressing predominantly in the 3’ to 5’ 

direction replicated RR1 (Fig. S5E), similar to FANCD2-deficient cells. However, both 

FANCA−/− and FANCD1−/− lymphoblasts had some replication fork pausing at RR1 (Fig. 

S5F, S5G).

Analysis of the FANCImonoub−/− and FANCD2monoub−/− cells revealed that the RR1 region 

was replicated by forks progressing in both 3’ to 5’ and the 5’ to 3’ directions, in 

FANCImonoub−/− lymphoblasts (Fig. S5D), in contrast to FANCD2-deficient cells. 

Furthermore, both FANCImonoub−/− and FANCD2monoub−/− cell lines activated fewer 

numbers of dormant origins at R3 of CFS-FRA16D (Fig. 6C–D, 6F). In contrast to 

FANCD2-deficient cells, only 10% of the FANCD2monoub−/− cells activated origins in R3 of 
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FRA16D (Fig. 6F – purple bar). Furthermore, the replication program of the 

FANCD2monoub−/− lymphoblasts at R3 (Fig. 6D) is similar to non-affected lymphoblasts. 

This indicates that the monoubiquitination of FANCD2 is not essential to facilitate CFS 

replication under unperturbed conditions.

Despite the replication pausing observed, the bidirectional replication fork movement at 

RR1 in FANCA−/− and FANCImonoub−/− lymphoblasts indicates that replication fork 

movement is only partly hindered in the absence of the FA core complex proteins and 

perhaps FANCI/FANCD2 monoubiquitination, under unperturbed conditions. The 

replication program in R3 further supports this idea. Interestingly, the severity of the absence 

of downstream FA proteins (BRCA2/FANCD1) closely resembles FANCD2 deficiency. This 

indeed fits nicely with the observation that FANCD2 and the downstream FA protein 

BRCA2/FANCD1 are involved in replication fork restart independent of the FA pathway 

(Raghunandan et al., 2015). In summary, these results show that while other FA proteins 

play a role in replication at the FRA16D locus, this role is not exactly the same as FANCD2.

Replication initiation events are strongly associated with CFS fragility

To understand the implications of FANCD2-associated CFS replication perturbation on CFS 

fragility, we compared CFS-FRA16D fragility in FANCD2-deficient lymphoblasts and 

fibroblasts. Results indicated that spontaneous FRA16D breaks accumulate in FANCD2−/− 

cells, even in the absence of exogenous replicative stress. Treatment with mild doses (0.2 

µM) of the replication inhibitor aphidicolin (APH) resulted in a ~five-fold increase in 

FRA16D breaks in FANCD2-deficient lymphoblasts (Fig. 7A). In comparison, FANCD2-

deficient fibroblasts (FANCD2−/−-F-1) did not display spontaneous breaks at FRA16D (Fig. 

7A). However, treatment with APH resulted in a significant increase (20%) in FRA16D 

breaks in FANCD2−/−-F-1 cells (Fig. 7A). This is possibly due to the initiation defect 

observed in the R3 segment of the FANCD2−/−-F-1 cells since there is a strong correlation 

between the abundance of initiation events at CFS loci and fragility (Letessier et al., 2011). 

Furthermore, the secondary structure prone sequences at FRA16D still obstruct replication 

forks and lead to pausing (Fig. 4G), likely contributing to the fragility still observed in 

FANCD2-deficient fibroblasts (Fig. 7A). Complementation of FANCD2-deficient fibroblasts 

with wild-type FANCD2 suppressed FRA16D breaks.

In summary, perturbed replication at CFS in the absence of FANCD2 is associated with 

increased CFS fragility. The relative abundance of origins in fibroblasts (Fig. 4) is 

potentially one of the reasons why CFS-FRA16D is less fragile in fibroblasts, as compared 

to lymphoblasts. These results highlight the importance of FANCD2 to CFS-FRA16D 

replication, specifically in lymphoblasts, where these sites are fragile even in the absence of 

exogenous stress.

FANCD2 deficiency is associated with a decrease in replication initiation sites

Replication initiation events are strongly associated with CFS fragility. Despite the strong 

dormant origin activated to rescue replication, the FRA16D locus persistently breaks in 

lymphoblasts deficient for FANCD2. Furthermore, although FANCD2-deficient fibroblasts 

display a relatively unperturbed replication program at FRA16D, they too are fragile under 
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stress. To understand this better, we studied the effect of FANCD2 deficiency on replication 

initiation by enumerating the number of sites at which initiation events occur at FRA16D. 

Figures 7B and S6E illustrate the locus map of the RR1+R3 segments of CFS-FRA16D and 

summarize the observed locations of initiation events in all eight lymphoblastoid cell lines 

(Fig. 7B) and fibroblast lines (Fig. S6E).

FANCD2deficiency is associated with initiation events at fewer sites of FRA16D (red 

arrows-Figure 7B, S6E). This alteration in replication initiation sites is consistent between 

lymphoblasts and fibroblasts, indicating that this FANCD2-associated replication defect 

likely occurs genomic wide. These results suggest that while the FA pathway proteins share 

some common functions in alleviating replication pausing at CFS-FRA16D, FANCD2 

appears to have an additional role in replication initiation, leading to the pronounced 

alterations in replication program at CFSs, in FANCD2-deficient lymphoblasts.

DISCUSSION

While it has been clearly established that stress-induced replication intermediates occur at 

CFS (Chan et al., 2009), the replicative difficulties that lead to incomplete replication and 

the mechanisms that promote replication completion have been elusive. The present study 

provides mechanistic insight into the multifaceted role of FANCD2 in enabling efficient 

replication of structure-prone CFS loci, by alleviating transcription:replication-associated 

conflicts and by possibly ensuring efficient replication initiation.

Our results suggest a model in which FANCD2 and the other FA proteins act as facilitators 

of CFS replication, even under unperturbed conditions (Fig 7C). In the presence of a 

functional FA/BRCA pathway, forks that appear to have originated from initiation events 

outside the CFS loci mediate replication. Upon reaching the AT-rich fragility core, 

replication forks manage to efficiently replicate the region and ensure replication 

completion. In the absence of FANCD2, replication is perturbed at CFS even in the absence 

of exogenous replicative stress. This manifests as replication fork pausing at the fragility 

core of FRA16D, preferentially at sites of DNA:RNA hybrid accumulation, accompanied by 

dormant origin activation. This defect is further exacerbated by the observed reduction in the 

potential sites of replication initiation in the FANCD2-deficient lymphoblasts. Based on 

these observations we propose that FANCD2 has two unique roles in facilitating CFS 

replication to prevent genomic instability: (i) facilitating the movement of replication forks 

across secondary structures such as DNA:RNA hybrids and (ii) efficient replication 

initiation.

In this study, we provide in vivo evidence of replication pausing at endogenous CFS loci, in 

human FA patient lymphoblasts. In vitro studies suggest that [AT]n or [AT/TA]nflexible 

sequences found at CFSs (Glover, 2006; Zhang and Freudenreich, 2007), pose a challenge to 

the replicative DNA polymerase δ (Shah et al., 2010) and leads to polymerase pausing at 

CFS repeat sequences (Walsh et al., 2013). This implies that additional polymerases and/or 

accessory proteins are required for proper replication of CFS sequences. Strong candidates 

for this role are the FA/BRCA proteins (Howlett et al., 2005), helicases (Chaudhury et al., 

2013; Kamath-Loeb et al., 2000; Pellicioli and Muzi-Falconi, 2013), translesion 
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polymerases (Bergoglio et al., 2013; Rey et al., 2009) and nucleases (Ying et al., 2013). It 

has been shown that FANCD2, in association with endonucleases and Bloom syndrome 

helicase, resolves intermediates resulting from incomplete CFS replication in G2/M (Naim 

et al., 2013). However, it is possible that FANCD2’s role in preserving CFS stability begins 

earlier in the cell cycle, during CFS replication.

During repair, FANCD2 can recruit additional polymerases to sites of damage (Fu et al., 

2013). The numerous replication pause sites observed in the absence of FANCD2 implies 

that it may be involved in recruiting proteins that assist in replicating CFS regions by a 

similar mechanism. Bidirectional replication fork movement observed in FANCD2monoub−/− 

and FANCImonoub−/− lymphoblasts indicates that the monoubiquitination of FANCD2 is 

perhaps not essential for its role in facilitating CFS replication under unperturbed conditions. 

However, under conditions of severe replication stress, monoubiquitination of FANCD2 may 

be necessary to recruit endonucleases, e.g. FAN1 (Lachaud et al., 2016), to CFS loci since 

the monoubiquitination of FANCD2 is critical for FA/BRCA pathway activation (Garcia-

Higuera et al., 2001; Rajendra et al., 2014).

In addition to AT-associated secondary structures, transcription-associated obstacles at CFSs 

are a major cause of instability. DNA:RNA hybrids can lead to genomic instability by 

obstructing the progression of replication machinery or by making the cell more susceptible 

to genotoxic stress (Aguilera and Garcia-Muse, 2012). Our results not only demonstrate that 

DNA:RNA hybrids form at CFSs, but also show that replication forks tend to stall due to 

DNA:RNA hybrid accumulation. Collectively, our data suggest that transcription-associated 

conflicts are a major source of replication perturbation at CFSs and suggest that FANCD2 is 

key to alleviating these conflicts at CFSs. Interestingly, BRCA2, also prevents DNA:RNA 

induced genetic instability (Bhatia et al., 2014).

FANCD2 influences the efficiency of replication initiation

Under conditions of replicative stress, FANCD2 plays an important role in suppressing 

dormant origin firing and this function is independent of the monoubiquitination of 

FANCD2 (Chen et al., 2015). It is possible that this role of FANCD2 is contributing to the 

increased dormant origin activation (Fig. 6F - ~40%) observed in the absence of FANCD2. 

However, FANCD2-deficient fibroblasts from the same patient show decreased origin firing 

at the same genomic locus (Fig. 4E). Furthermore, similar to recent reports, the most 

prominent effect of an inability to monoubiquitinate FANCD2 was a decrease in dormant 

origin firing (Fig. 6D, (Panneerselvam et al., 2014). These results imply that in the absence 

of FANCD2 monoubiquitination, the activation of the dormant origin in R3 is perhaps not 

required to rescue replication, under unperturbed conditions.

Irrespective of cell type, all FANCD2-deficient cell lines appeared to activate origins at 

fewer regions at the CFS-FRA16D locus (Fig. 7B; S6E). These results delineate a role for 

FANCD2 in efficient replication origin firing. Since changes in origin usage can be 

attributed to changes in chromatin looping (Buongiorno-Nardelli et al., 1982; Courbet et al., 

2008), this role of FANCD2 is possibly associated with changes to chromatin looping and/or 

with the histone chaperone activity of FANCD2 (Sato et al., 2012).
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Fanconi anemia, CFS instability and cancer

The results from this study demonstrate that replication perturbation due to DNA:RNA 

hybrids and defective replication initiation, collectively contribute to CFS instability. 

Importantly, we propose that FANCD2 is a central regulator that overcomes these threats to 

CFS replication. The replication-associated functions of FANCD2 are particularly important 

at CFS loci, which are hypersensitive to replicative stress (Yunis et al., 1987). Through our 

results we propose that FANCD2 and other FA proteins protect CFS from endogenous 

sources of replicative stress and ensure efficient replication completion at CFS, to preserve 

genome integrity. However, FANCD2 and the downstream FA proteins have a more 

prominent role in replication at CFSs as compared to the FA core complex proteins. Given 

the implicated role of CFS instability in oncogenesis, our results provide vital mechanistic 

insights into the increased cancer risk of FA patients.

EXPERIMENTAL PROCEDURE

Cell Culture

GM02184 (non-affected 1), GM03798 (non-affected 2), GM16756 (PD20-FANCD2−/−-

L-1), GM13022 (FANCA−/−-L), and GM13023 (FANCD1−/−-L) Epstein–Barr virus-

transformed lymphoblasts were obtained from Coriell Cell Repositories and were grown in 

RPMI 1640 medium supplemented with 15% FBS. The FANCA−/−-L, FANCImonoub−/−-L, 

FANCD1−/−-L, 2741-FANCD2−/−-L-2, 2717-FANCD2−/−-L-3, FANCD2−/−-L-1 

lymphoblasts and the complemented cell line, FANCD2−/−+FANCD2-L-2 lymphoblasts were 

grown in RPMI 1640 medium supplemented with 15% FBS v/v and 1 µg/ml puromycin. 

AG03204 (IMR90) SV40-transformed fibroblasts (Coriell Cell Repositories), PD20-F 

(FANCD2−/− fibroblasts) and the completed cell line, FANCD2−/−+FANCD2 fibroblasts were 

maintained in DMEM supplemented with 15% FBS.

Single molecule analysis of replicated DNA (SMARD)

SMARD analysis was carried our using a procedure described previously (Madireddy et al., 

2016; Norio and Schildkraut, 2001)(Gerhardt et al., 2014). Briefly, exponentially growing 

cells were cultured in media containing 30 µM 5-iodo-2′-deoxyuridine (IdU) at 37°C for 4 h 

(Sigma-Aldrich, St. Louis, MO). After 4 h, the cells were centrifuged at 800 rpm for 5 min 

and the media containing IdU was removed. The cells were then cultured in fresh RPMI 

medium containing 30 µM 5-chloro-2′-deoxyuridine (CIdU) (Sigma-Aldrich, St. Louis, 

MO) and the cells were incubated for an additional 4 h. After 4 h, the cells were then 

collected by centrifugation, and they were resuspended at 3 × 107 cells per ml in PBS. The 

cells were then resuspended in an equal volume of molten 1% InCert agarose (Lonza 

Rockland, Inc., Rockland, ME) in PBS. DNA gel plugs were made by pipetting the cell-

agarose mixture into a chilled plastic mold with 0.5- by 0.2-cm wells with a depth of 0.9 cm. 

The gel plugs were allowed to solidify on ice for 30 min. The cells in the plugs were lysed in 

buffer containing 1% n-lauroylsarcosine (Sigma-Aldrich), 0.5 M EDTA, and 20 mg/ml 

proteinase K. The gel plugs were incubated at 50°C for 3 days and were treated with fresh 

proteinase K at 20 mg/ml concentration (Roche Diagnostics), every 24 h. The plugs were 

then rinsed in Tris-EDTA (TE) and subjected to phenylmethanesulfonyl fluoride (PMSF) 

(Sigma-Aldrich) treatment. To prepare the cells for restriction enzyme digestion, the plugs 
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were washed with 10 mM MgCl2 and 10 mM Tris-HCl (pH 8.0) and the genomic DNA in 

the gel plugs was digested with 80 units of PmeI (New England BioLabs Inc.) at 37°C 

overnight. The d igested gel plugs were rinsed with TE and cast into a 0.7% SeaPlaque GTG 

agarose gel (Lonza Rockland, Inc.) for size separation of DNA by pulse field gel 

electrophoresis. Gel slices from the appropriate positions in the pulsed-field electrophoresis 

gel were melted at 72°C for 20 min. The melted agarose was digested with GELase enzyme 

(Epicentre Biotechnologies 1 unit per 50 µl of agarose suspension) by incubating the 

GELase-DNA-agarose mixture at 45°C for 4 h. The resulting DNA was pipetted along one 

side of a coverslip that had been placed on top of a 3-aminopropyltriethoxysilane (Sigma-

Aldrich)-coated glass slide and allowed to enter by capillary action. The DNA was denatured 

with sodium hydroxide in ethanol and then fixed with glutaraldehyde.

The slides containing the DNA were hybridized overnight with biotinylated probes 

(represented as blue bars on the CFS-FRA16D locus map). The next day, the slides were 

rinsed in 2 × SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) 1% SDS and 

washed in 40% formamide solution containing 2 × SSC at 45°C for 5 min and rinsed in 2 × 

SSC-0.1% IGEPAL CA-630. Following several detergent rinses (4 times in 4× SSC-0.1% 

IGEPAL CA-630), the slides were blocked with 1% BSA for at least 20 min and treated with 

Avidin Alexa Fluor 350 (Invitrogen Molecular Probes) for 20 min.

The slides were rinsed with PBS containing 0.03% IGEPAL CA-630, treated with 

biotinylated anti-avidin D (Vector Laboratories) for 20 min, and rinsed again. The slides 

were then treated with Avidin Alexa Fluor 350 for 20 min and rinsed again, as in the 

previous step. The slides were incubated with the IdU antibody, a mouse anti-

bromodeoxyuridine (Becton Dickinson Immunocytometry Systems), the antibody specific 

for CldU, a monoclonal rat anti-bromodeoxyuridine (anti-BrdU) (Accurate Chemical and 

Scientific Corporation) and biotinylated anti-avidin D for 1 h. This was followed by 

incubation with Avidin Alexa Fluor 350 and secondary antibodies, Alexa Fluor 568 goat 

anti-mouse IgG (H+L) (Invitrogen Molecular Probes), and Alexa Fluor 488 goat anti-rat IgG 

(H+L) (Invitrogen Molecular Probes) for 1 h. The coverslips were mounted with ProLong 

gold antifade reagent (Invitrogen) after a final PBS/CA630 rinse. Fluorescence microscopy 

was carried out using a Zeiss fluorescence microscope to monitor the IdU/CIdU nucleoside 

incorporation.

DNA-RNA immunoprecipitation (DRIP)

DRIP was perfomed mainly as described (Herrera-Moyano et al., 2014) with few 

differences. 5×106 cells were collected, washed with PBS, resuspended in 1.6 ml of TE and 

treated overnight with 41.5 ml of 20 %SDS and 5 ml of proteinase K (Roche). DNA was 

extracted with phenol-chloroform. Precipitated DNA was spooled, washed with 70% EtOH, 

resuspended gently in TE and digested overnight with 50 U of HindIII, EcoRI, BsrGI, XbaI 

and SspI, and bovine serum albumin (BSA). For the negative control, half of the DNA was 

treated with 4 µl RNAse H1 (Ginno et al., 2012) (New England BioLabs) overnight. 5mg of 

the digested DNA was bound to 10 µl of S9.6 antibody (1mg/ml) in 500 µl binding buffer 

(10mM NaPO4, 140 mM NaCl, 0.05% triton X-100) overnight at 4°C. DNA-antibody 

complexes were immunoprecipitated using Dynabeads Protein A (invitrogen) for 2 h at 4°C 
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and washed 3 times with binding buffer. DNA was eluted with 50mM Tris pH 8.0, 10mM 

EDTA, 0.5% SDS, treated for 45 min with 7 µl proteinase K at 55°C and cleaned with 

NucleoSpin Gel and PCR Clean-up (Macherey-Nagel). The enrichment for each qPCR of 

interest was normalized with respect to the corresponding ratios of the input.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• FANCD2 regulates CFS replication even in the absence of replicative stress

• Replication forks stall at endogenous CFS loci in FANCD2 patient-derived 

cells

• DNA:RNA hybrid removal restores normal replication at CFS-FRA16D

• FANCD2-deficiency is associated with altered replication initiation
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Figure 1. The replication profile is altered at the endogenous CFS-FRA16D locus in the absence 
of FANCD2
(A) Common fragile site FRA16D locus map Locus map of the CFS-FRA16D (brown 

line-1.5 Mb) that contains the AT-rich fragility core (pink line–280 kb) and overlaps the 

WWOX tumor suppressor gene (dark blue line–1.1 Mb). The locus was divided into 4 

segments based on restriction enzyme availability. The coordinates of the different regions 

are summarized in Table S1, providing additional information about fosmids and primers 

used to identify the regions.

Madireddy et al. Page 18

Mol Cell. Author manuscript; available in PMC 2017 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) Locus map of RR1-PmeI segment containing a portion of the AT-rich fragility core. The 

segments are aligned according to the positions of the FISH probes (blue) on the map.

(C–F) Top; Locus map of PmeI digested RR1 segment. Middle; Aligned photomicrograph 

images of labeled DNA molecules from (C) Non-affected 1 (GM02184), (D) FANCD2−/−-

L-1 (PD20), (E) FANCD2−/−-L-2 (2742) and (F) FANCD2−/−-L-1 + FANCD2 (corrected) 

lymphoblast. The yellow arrows indicate the sites along the molecules where the IdU 

transitioned to CldU. The molecules are arranged in the following order: molecules with 

initiation events, molecules with 3’ to 5’ progressing forks, molecules with 5’ to 3’ 

progressing forks and molecules with termination events. White ovals indicate regions of 

replication fork pausing and correspond to the pausing peaks listed in Table S2. Bottom; The 

percentage of molecules incorporating IdU (red) is calculated from the replication program 

(middle) and is represented as a histogram.
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Figure 2. DNA replication forks stall within the fragility core of CFS-FRA16D in FANCD2−/− 

lymphoblasts
(A) Locus map of RR2-SbfI segment containing a portion of the AT-rich fragility core. The 

FISH probes that identify the segment are labeled in blue. (See also Figure S2)

(B–D) Top; Locus map of the SbfI digested RR2 segment. Middle; Aligned 

photomicrograph images of labeled DNA molecules from (B) Non-affected I (GM02184), 

(C) FANCD2−/−-L-1 (PD20) patient derived lymphoblast, and (D) FANCD2−/−-L-2 (2742) 

lymphoblasts. White ovals indicate regions of replication fork (yellow arrow) pausing and 

correspond to the pause peaks listed in Table S2.
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(E) Top; Locus map of the RR1 + RR2 regions. The RR1 quantification was included here to 

enable the visualization of replication pausing along the complete length of the fragility 

core. Bottom; The percentage of molecules with replication forks at each 10 kb interval of 

RR2 (left, quantification of molecules shown in Fig. 3B–D) and RR1 (right, quantification 

of molecules shown in Fig. 2B–D) in the non-affected I (GM02184) line, FANCD2−/−-L-1 

(PD20) and the FANCD2−/−-L-2 (2742) lymphoblasts. The replication forks moving in the 

3’ to 5’ direction and the forks moving in the 5’ to 3’ direction are denoted by purple < and 

orange > colors respectively. A high percentage of molecules with replication forks in a 

particular 10 kb interval is indicative of fork pausing in that interval. Black arrows denote 

the most prominent pause peaks and correspond to the white ovals in the SMARD profile. 

Refer Table S2 for the coordinates of the 10 kb region corresponding to the pause peaks.
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Figure 3. In the absence of FANCD2, cells activate dormant origins associated with replication 
stalling at the AT-rich fragility core of CFS. (See also Figure S2, S4)
(A) Locus map of R3-SbfI segment that lies outside the AT-rich fragility core to the right. 

The FISH probes that identify the segment are labeled in blue. Combinations of two-three 

probes were used to identify the R3 segment.

(B–E) Top; Locus map of the SbfI digested Region 3 (R3) segment. Middle; Aligned 

photomicrograph images of labeled DNA molecules from (B) non-affected I (GM02184), 

(C) FANCD2−/−-L-1 (PD20), (D) FANCD2−/−-L-2 (2742), (E) FANCD2−/−-L-1 + FANCD2 

(corrected) patient derived lymphoblast. The molecules are arranged as in Fig. 2. Bottom; 
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The percentage of molecules incorporating IdU (red) is calculated from the replication 

program (middle) and is represented as a histogram.

(F) Schematic representation of dormant origin activation when replication forks pause in 

the 5’ to 3’ direction
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Figure 4. The absence of FANCD2 protein affects the replication program of CFS-FRA16D in 
lymphoblasts but not in fibroblasts
(A) Locus map of the RR1-PmeI and R3-SbfI segments. The FISH probes that identify the 

segment are labeled in blue.

(B–C) Top; Locus map of PmeI digested RR1 segment. Middle; Aligned photomicrograph 

images of labeled DNA molecules from (B) Non-affected-F (IMR90 fibroblast), (C) 

FANCD2−/−-F-1 (PD20) patient fibroblasts. The yellow arrows indicate the sites along the 

molecules where the IdU transitioned to CldU. The molecules are arranged as in Fig. 2. 

Bottom; The percentage of molecules incorporating IdU (red) is represented as a histogram.
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(D–E) Top; Locus map of SbfI digested R3 segment. Middle; Aligned photomicrograph 

images of labeled DNA molecules from (D) Non-affected-F (IMR90 fibroblast), (E) 

FANCD2−/−-F-1 (PD20) patient fibroblasts.

(F–G) Top; Locus map of the RR1 region. Bottom; The percentage of molecules with 

replication forks at each 10 kb interval of RR1 (quantification of molecules shown in Fig. 

4B–C) in (F) Non-affected-F (IMR90 fibroblast), (G) FANCD2−/−-F-1 (PD20) patient 

fibroblasts. Black arrows denote the most prominent pause peaks and correspond to the 

white ovals in the SMARD profile.
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Figure 5. Replication pausing at CFS-FRA16D, observed in the absence of FANCD2 is associated 
with the accumulation of DNA:RNA hydrids
(A) DNA:RNA hybrid accumulation in FANCD2-deficient lymphoblasts. DRIP-qPCR using 

the anti-DNA:RNA hybrid S9.6 monoclonal antibody, in non-affected I (GM02184-grey 

bar), FANCD2−/−-L (red bars) lymphoblasts. The samples obtained by immunoprecipitation 

with either treated (+) or not treated (−), with RNase H1, as indicated. Signal values of 

DNA:DNA hybrids, immunoprecipitated in each region are normalized to input values. Data 

represent mean ± SEM from three independent experiments.
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(B) Immunoblot analysis to detect the relative levels of the RNaseH1 protein expression in 

the non-affected 1 (GM02184) cells transfected with the control GFP vector (Lane 1-

CONTROL + GFP), non-affected 1 (GM02184) cells transfected with the RNaseH1 

overexpression vector (Lane 2-CONTROL+RNH1), FANCD2−/−-L lymphoblast cells 

transfected with the control GFP vector (Lane 3-FANCD2−/−-L-1+GFP) and FANCD2−/−-L 

lymphoblast cells transfected with the RNaseH1 overexpression vector (Lane 4-

FANCD2−/−-L-1+RNH1). Proteins from whole cell extracts were separated, immunoblotted 

and detected with RNaseH1 antibody.

(C–D) Top; Locus map of PmeI digested RR1 segment. Middle; Aligned photomicrograph 

images of labeled DNA molecules from (C) non-affected I or control + RNH1, (D) 

FANCD2−/−-L-1+RNH1 lymphoblast. The molecules are arranged as in Fig. 2. Bottom; The 

percentage of molecules incorporating IdU (red) is represented as a histogram.

(E–F) Top; Locus map of the SbfI digested Region 3 (R3) segment. Middle; Aligned 

photomicrograph images of labeled DNA molecules from (E) Non-affected I or Control + 

RNH1, (F) FANCD2−/−-L-1+RNH1 lymphoblast. (See also Figure S7)
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Figure 6. The absence of other key FA proteins or the monoubiquitination of FANCI or FANCD2 
only moderately alters CFS-FRA16D replication. (See also Figure S5)
(A) Schematic representation of results from Fig. 4 (SbfI segment), for comparison of 

replication program at the R3 segment of CFS-FRA16D, Top; the locus map, Bottom Left; 

replication profile of the non-affected-L cell line Bottom Right; replication profile of the 

FANCD2−/−-L lymphoblast.

(B–E) Top; Locus maps of SbfI digested R3 segment. Middle; Aligned photomicrograph 

images of labeled DNA molecules from (B) FANCA−/−-L, (C) FANCImonoub−/−-L, (D) 

FANCD2monoub−/−-L and (E) FANCD1−/−-L patient derived lymphoblast. The molecules are 
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arranged as in Fig. 2. Bottom; The percentage of molecules incorporating IdU (red) is 

represented as a histogram.

(F) Percentage of molecules with initiation sites in Region 3 of non-affected I (GM02184 - 

grey bar), FANCD2−/−-L (red bars), FANCA−/−-L (green bar), FANCImonoub−/−-L (blue bar), 

FANCD2monoub−/−-L (purple bar) and FANCD1−/−-L (orange bar) patient derived 

lymphoblast. Error bars represent mean ± s.d. from two independent experiments (*P<0.05).
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Figure 7. FANCD2 deficiency is associated with altered replication initiation and instability at 
CFS loci
(A) Cytogenetic FISH analysis using the IGH/MAF probe set, to detect and compare breaks 

at CFS-FRA16D in lymphoblasts and fibroblasts, in the presence and absence of 

Aphidicolin. The MAF probe set consist of two probes that flank the FRA16D locus such 

that a split signal (two red dots within a chromatid) represents a FRA16D break (modified 

from (Bergsagel and Kuehl, 2001)). Top; Table representing the percentage of FRA16D 

breaks in the presence and absence of 0.2 µM aphidicolin in Non-affected-L, FANCD2−/−-L 

(PD20), FANCD2−/−+FANCD2-L-1, FANCD2monoub−/−-L-1, FANCD2−/−-F-1 (PD20), 
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FANCD2−/−+FANCD2-F-1. Bottom; Representative images of FRA16D breaks. White arrows 

indicate FRA16D breaks.

(B) Top; Locus map of CFS-FRA16D spanning the ~600 kb, RR1+R3 segments. Bottom; 

Observed sites of initiation in non-affected 1 (GM02184 – grey arrow), non-affected 2 

(GM03798 - grey arrow), FANCD2−/−-L-1 (PD20) (red arrow), FANCD2−/−-L-2 (2742) 

lymphoblasts (red arrows), FANCD2−/−-L-3 (2717) (red arrow), FANCA−/−-L (green 

arrows), FANCImonoub−/−-L (blue arrows), FANCD2monoub−/−-L (purple arrows) and 

FANCD1−/−-L (orange arrows). (See also Figure S6)

(C) Model depicting the consequence of FANCD2 deficiency on CFS replication. Under 

unperturbed replicative conditions (+FA/BRCA), replication forks progressing from 

distantly fired origins replicate the CFS locus (black line). Upon reaching the AT-rich 

fragility core (pink line), replication forks efficiently replicate through WWOX transcription 

associated DNA:RNA hybrids (green) and AT associated secondary structures (black 

hairpins) likely aided by the FANCD2 protein, in association with the FA/BRCA pathway. 

This ensures CFS replication completion genomic stability.

In the absence of FANCD2, replication forks pause (overlapping yellow arrows) within the 

fragility core and this is accompanied by the activation of a dormant origin (red circle). 

Replication pausing likely persists due to the absence of a functional FA/BRCA pathway to 

resolve DNA:RNA hybrids (green arrow) and other AT associated secondary structures 

(black hairpins). Furthermore, the absence of FANCD2 further affects CFS replication by 

restraining the number of sites at which dormant origins fire, collectively leading to genomic 

instability.
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