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Abstract

Inflammasomes are multiprotein complexes that form in the cytoplasm in response to cellular 

damage and cytosolic pathogen-associated molecules during infection. These complexes play 

important roles in initiating innate and adaptive immune responses to infectious disease. In 

addition, inflammasomes are now recognized as important mediators of sterile inflammation in 

various autoimmune and autoinflammatory diseases. Interestingly, microbiota and infection play 

critical roles in the development of “sterile inflammation”. Herein, we highlight recent advances in 

our understanding of the role for inflammasomes in nucleic acid-, nucleosome-, and histone-driven 

sterile inflammation and discuss knowledge gaps and areas of potential future research.

Graphical Abstract

Sterile inflammation associated with self-DNA/nucleosome antigens is initiated by type-I 

interferon responses and results in autoantibodies against these antigens. The second stage is the 

development of inflammation leading to tissue damage, which is dependent on autoantibodies and 

immune priming by both self-antigens and the microbiome. Thus, “sterile inflammation” in this 

situation is inaccurate, as clinical disease requires the microbiome.
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Introduction

Inflammation and immunity are essential to fight infectious diseases, and sensing pathogen-

derived nucleic acids is a major mechanism of innate immune cell activation. Pathogens can 

be detected due to differences in location and structure of host and pathogen nucleic acids. 

Members of the Toll-like receptor (TLR) family, including TLR-3, TLR-7, TLR-8 and 

TLR-9, detect nucleic acids in the endosomal compartment, where they survey the contents 

of vesicles entering the cell. TLRs activate signaling pathways that mediate cytokine 

secretion, type I interferon responses, and immune cell activation [1]. In the cytoplasm, the 

Retinoic acid Inducible Gene-I (RIG-I)–like receptor family detects uncapped RNA or long, 

double-stranded RNA molecules subsequently activating immune cells and triggering an 

antiviral state [2]. The interferon pathway is similarly activated by a host of DNA or 

dinucleotide sensors in the cytoplasm that detect infectious agents [3].

The inflammasome is a macromolecular protein complex formed in the cytoplasm in 

response to pathogen-associated molecular patterns (PAMPs) or cellular damage. Absent in 

Melanoma 2 (AIM2) oligomerizes in response to cytosolic DNA and binds with the adaptor 

molecule ASC (Apoptosis-associated Speck-like Protein containing a CARD), which further 

recruits caspase-1 to form a functional inflammasome [4-7]. Inflammasome activation 

allows caspase-1 to proteolytically cleave the inactive forms of the cytokines interleukin 

(IL)-1β and IL-18, resulting in their mature bioactive forms (Figure 1). Inflammasome 

activation also results in an inflammatory cell death known as pyroptosis via the caspase-1- 

or caspase-11-mediated proteolytic activation of gasdermin D, where activated gasdermin D 

forms pores in the cell membrane [8-12].
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Although nucleic acids of pathogens are frequently exposed to endosomal or cytoplasmic 

sensors, host cell nucleic acids are generally contained in the nucleus or modified (5′ 7-

methylguanosine cap of mRNA, 5′ monophosphate of tRNA) to differentiate them from 

pathogen-associated nucleic acids, thus preventing unwanted inflammation [13, 14]. Under 

homeostatic conditions, localization and processing of nucleic acids are regulated. Even 

during cell death by apoptosis, dying cells' DNA is degraded intracellularly. Cellular debris 

from apoptotic cells are further degraded in phagocytic cells, where DNase II finishes the 

process of DNA hydrolysis [15]. However, defects in apoptosis or in the removal and 

degradation of extracellular DNA or apoptotic bodies (as observed in serum amyloid P, 

noncanonical autophagy, DNase I, or DNase II deficiency) can lead to the persistence of free 

nucleosomes, histones, or DNA molecules, resulting in inflammation [16-19]. Other forms 

of cell death, including necrosis, necroptosis, NETosis, and pyroptosis can result in release 

of self-DNA into the extracellular space, where it can be engulfed and sensed by endosomal 

or cytoplasmic nucleic acid sensors [20].

Outside the cell, nuclear contents serve as inflammatory stimuli by directly causing damage 

to the cell membranes of neighbouring cells. Direct membrane damage results from the 

highly positive charge of histones, which interacts with the phosphate group of 

phospholipids [21-23]. Thus, instead of activating AIM2, histones activate the NLRP3 

inflammasome [24-26]. One could hypothesize that chromatin-mediated inflammation is 

necessary to initiate proper healing processes during immune responses because self-

associated nucleic acids and histones in an extracellular space are indicative of self-damage. 

However, unrestrained inflammation directed to self-nuclear contents can result in 

immunopathology and subsequent sequelae associated with autoimmune and 

autoinflammatory diseases.

In addition to the ability of self-DNA or histones to induce inflammation, the microbiota 

also play an important role in the development of so-called “sterile inflammation”. For 

example, depletion or elimination of the microbiota or changes in diet with accompanying 

changes in microbiota are associated with improved disease outcomes with inflammasome 

mediated osteomyelitis and gouty arthritis [27, 28]. However, in a mouse model of 

atherosclerosis, the elimination of microbiota had no effect on disease development [29]. 

Thus, how microbes interact with the immune system in the development or progression of 

“sterile inflammation” is an area of current interest.

Herein, we focus our discussion on the known roles that inflammasomes play in the 

detection of nucleic acids, histones, or nucleosomes during sterile inflammation and on the 

gaps in our current knowledge. We also highlight recent research demonstrating the 

importance of pathogen infection or commensal microbiota in the development of diseases 

associated with sterile inflammation, suggesting a need for change in the current paradigm 

of sterile inflammation.

Self-DNA–mediated inflammasome activation

Self-tolerance is an essential component of an effective immune response so that pathogens 

are eliminated but minimal damage is caused to self-tissues. The random nature of 
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immunoglobulin and T-cell receptor recombination that gives rise to the diversity of 

antibodies and T-cell receptors means that some of these effectors will inevitably react with 

self-antigens. However, multiple checkpoints have arisen to kill autoreactive T and B cells 

(negative selection) or prevent their activation (peripheral tolerance, T-regulatory cells). 

However, persistent immune stimulation coupled with defects in tolerance can lead to 

autoimmune diseases.

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by severe 

systemic inflammation, skin rashes (dermatitis), hair loss, cognitive decline, and multi-organ 

failure [20]. The underlying causes of SLE are not well understood despite decades of 

research; but the generation of autoantibodies directed at self-DNA and -histones 

(nucleosomes) is a hallmark of SLE, and these nucleosome-immune complexes induce 

inflammation through TLR and inflammasome signaling. As discussed above, AIM2 forms 

an inflammasome in response to cytoplasmic DNA (Figure 1), and polymorphisms or 

changes in expression of AIM2 are associated with SLE in humans [30, 31]. In SLE-prone 

mice, impaired degradation of self-DNA immune complexes in the lysosome allows DNA to 

enter the cytoplasm, where it activates the AIM2 inflammasome in macrophages [32] 

(Figure 1). Vascular damage is one manifestation of SLE, and expression of AIM2 and IL-18 

is elevated in endothelial cells from patients with SLE and in a mouse model of SLE [32, 

33]. Inhibition or deletion of caspase-1 increases endothelial cell differentiation in vitro and 

in mice and reduces the number of autoantibodies to self-DNA, which subsequently protects 

against vascular damage and glomerulonephritis [33, 34]. AIM2 expression is also positively 

correlated with autoantibodies in a mouse model of apoptotic DNA–induced SLE 

(apopDNA mice). Moreover, knocking down AIM2 in apopDNA mice reduces autoantibody 

levels, immune cell infiltration, and cytokine levels of IL-1β, TNF-α, MCP-1, and IL-6 in 

the kidney and serum [35]. Similarly, inflammasome activation is important in psoriasis, an 

autoimmune skin disease caused by extracellular self-DNA [36, 37]. Importantly, 

keratinocytes can respond to cytosolic DNA, including genomic DNA, in an AIM2-

dependent manner [38, 39], and psoriatic lesions contain cytoplasmic DNA, enhanced AIM2 

expression and inflammasome activation [38-41].

In SLE, the accumulation of self-DNA due to defects in apoptosis or failure to degrade self-

DNA can ultimately lead to AIM2 inflammasome activation. However, some reports 

demonstrate that autoantibodies to histones or extracellular DNA can exist without clinical 

signs of autoimmunity [42]. These findings suggest that nucleosome-immune complexes 

alone are not sufficient for the development of prolonged sterile inflammation and that 

inflammasome activation alone facilitates disease progression but cannot cause it. In 

agreement with this postulation, DNaseIIflox/− × Mx1-CreT mice and DNaseII−/− × Ifnar−/− 

mice accumulate self-DNA in macrophages after phagocytosis of apoptotic cells or 

erythrocyte precursor nuclei [43]. The authors of this study reported an increase in IL-1β in 

the joints and IL-18 in the serum of mice lacking DNase II, which suggests involvement of 

the inflammasome. However, increased IL-1β levels did not precede the onset of clinical 

disease, demonstrating that inflammasome activation likely enhances disease progression but 

may not initiate the disease [43]. Subsequently, two groups reported that deletion of AIM2 in 

DNaseII−/− × Ifnar−/− mice (DNaseII−/− × Ifnar−/− × Aim2−/− mice) results in impaired 

inflammasome activation and reduced joint inflammation, demonstrating a role for the 
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AIM2 inflammasome in polyarthritis. However, DNaseII−/− × Ifnar−/− × Aim2−/− mice still 

developed autoantibodies in the absence of clinical disease [44, 45]. Furthermore, deletion 

of the DNaseII gene alone in mice is embryonically lethal. This lethality can be rescued by 

deleting genes important in type I interferon signaling (DNaseII−/− × Ifnar−/− or DNaseII−/− 

× Sting−/− double mutants). However, DNaseII−/− × Aim2−/− mice are not rescued from 

embryonic lethality [44, 46]. In all, these data support the idea that the AIM2 inflammasome 

facilitates autoimmune disease progression in response to self-DNA, but interferon signaling 

is required for the initial inflammatory response. Similarly, examination of SLE mouse 

models under germ free conditions produces autoantibodies, but germ free conditions reduce 

clinical signs of disease such as nephritis and lymphoproliferation indicating that microbiota 

facilitate SLE disease progression but not its initiation [47, 48]. The similarities between 

germ free mice and Aim2−/− mice with respect to clinical disease may suggest a link 

between the microbiota and AIM2 activation during SLE disease progression. Although not 

confirmed, microbiota may provide a priming signal for AIM2 activation (Figure 1).

In contrast to SLE, AIM2 inflammasome activation in response to self-DNA during acute 

pancreatitis is an essential pathway for disease development [49]. Pancreatitis results from 

the premature activation of digestive enzymes and subsequent pancreatic tissue damage with 

release of nuclear material [50]. Importantly, deletion of AIM2 protected against pancreatic 

cell injury and inflammation [49]. Thus, in autoimmune diseases like SLE, AIM2 plays a 

supporting role for disease progression, but during autoinflammation like pancreatitis, AIM2 

leads the way for disease development.

Although AIM2 inflammasome activation has demonstrated importance in some sterile 

inflammatory diseases, there is little research on the role of AIM2 in other sterile 

inflammatory conditions including atherosclerosis, type-I diabetes, or multiple sclerosis. 

Furthermore, increased AIM2 expression and inflammasome activation have been observed 

in abdominal aortic aneurisms, dermatitis, venous ulcers, and trauma wounds, though the 

functional significance of these observations is unknown [40, 51]. Thus, there is still much 

we do not know about the importance of self-DNA–mediated AIM2 inflammasome 

activation in the pathology of sterile inflammation.

NLRP3: a sensor of damage signals from nucleic acids and histones

Although AIM2 is activated by cytosolic DNA, NLRP3 is activated by a host of stimuli. 

NLRP3 stimuli include cellular damage, reactive oxygen species (ROS), and cellular 

potassium efflux (reviewed in [52]). The NLRP3 inflammasome is also activated in response 

to a variety of cytosolic nucleic acids and by cellular damage caused by extracellular 

histones (Figure 2). Pathogen-derived cytosolic nucleic acids or synthetic nucleic acid 

analogues can activate the NLRP3 inflammasome [53, 54]. Subsequently, it was discovered 

that damage to mitochondria releases mitochondrial DNA (mtDNA) into the cytoplasm, 

resulting in NLRP3 inflammasome activation [55-57].

Mitochondrial damage and release of mtDNA is an essential part of the autoinflammatory 

disease caused by mevalonate kinase deficiency. Mutation of mevalonate kinase blocks 

isoprenoid synthesis and a defect in autophagy arises, resulting in the accumulation of 
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damaged mitochondria. Cytosolic mtDNA subsequently triggers NLRP3 inflammasome 

activation, resulting in exaggerated production of IL-1β that ultimately contributes to disease 

[58]. Likewise, ozone-induced lung damage causes mitochondrial damage through oxidative 

stress. Subsequent release of mtDNA into the cytoplasm triggers NLRP3 inflammasome 

activation, which leads to lung damage. Treating ozone-exposed mice with the caspase-1 

inhibitor YVAD inhibits neutrophil and γδ T-cell infiltration and reduces IL-1β, IL-17, KC, 

G-CSF, and IP-10 levels. These studies demonstrate that inflammasome activation in 

response to mtDNA contributes to sterile lung inflammation [59].

During atherosclerosis development, mitochondrial damage triggers NLRP3 inflammasome 

activation [60]. Cells that are depleted of mtDNA (rho0 cells) have reduced NLRP3 

inflammasome activation despite having similar levels of cholesterol accumulation, 

suggesting that mitochondrial damage is a key trigger of inflammation in atherosclerosis 

[61]. Mitochondrial damage is associated with a host of additional sterile inflammatory 

diseases, including Parkinson's disease and Alzheimer's disease [62, 63]. Intriguingly, 

NLRP3 inflammasome activation is also linked with these diseases [64, 65]. Though likely, a 

role for cytoplasmic mtDNA in mediating NLRP3 inflammasome activation in these 

diseases has not been examined. The examples of mtDNA-mediated NLRP3 inflammasome 

activation show that sensing mtDNA in the incorrect cellular compartment is a common 

mechanism for the initiation of sterile inflammation. Detection of cytoplasmic mtDNA may 

have originally evolved as a defence mechanism to prevent outgrowth when the symbiotic 

relationship between eukaryotic and prokaryotic cells first gave rise to mitochondria. This 

likely continued to be important during infectious disease as a nonspecific marker of cellular 

damage. However, the nonspecific nature of this inflammatory signal leading to NLRP3 

inflammasome activation has the often-undesirable consequence of causing excessive sterile 

inflammation, leading to tissue degeneration and clinical disease.

In addition to the NLRP3 response to cytoplasmic mtDNA, histone-mediated NLRP3 

inflammasome activation is important in a variety of sterile injury models (Figure 2). 

Histones activate NLRP3 by inducing ROS, potassium efflux, and calcium influx, possibly 

resulting from direct damage to the cell membrane caused by interactions of positively 

charged amino acids in the histones with negatively charged phosphates in phospholipids 

[24-26]. Importantly, histone H4 can also activate TLR2 and TLR4, thus providing both 

priming and activation signals necessary for NLRP3 inflammasome formation all in one 

package [24] (Figure 2). Injecting purified H4 or necrotic cellular debris into the peritoneal 

cavity of mice causes NLRP3-dependent sterile inflammation [24]. Likewise, liver damage 

resulting from ischemia/reperfusion is mediated by histones through NLRP3 inflammasome 

activation [25]. In this instance, TLR9 was required for histone-mediated inflammasome 

priming [25]. Intratracheal administration of purified histones alone activates the NLRP3 

inflammasome and leads to acute lung injury (ALI) [26]. During ALI mediated by C5a or 

IgG immune complexes, histones in neutrophil extracellular traps (NETs) help drive 

inflammation in an NLRP3-dependent manner. A positive feedback mechanism of NLRP3 

activation induces further histone release through pyroptosis and/or the recruitment of more 

neutrophils [26]. This report raises the intriguing question of how histone-mediated 

inflammation is turned off. During infection, elimination of the pathogen in combination 

with anti-inflammatory cytokines such as IL-10 and TGF-β eventually terminate 
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inflammation. In fact, recent reports demonstrate that IL-10 can dampen NLRP3 

inflammasome activation [66-68]. However, the release of histones and the positive feedback 

loop that could be generated due to an almost-limitless supply of these molecules raise the 

questions: What mechanisms prevent this from happening, and are these mechanisms 

defective in autoimmune or autoinflammatory diseases?

NLRP3 inflammasome activation and inflammation can be improved in all three models 

discussed above by antibody-mediated histone neutralization [24-26]. Thus, it appears that 

antibodies targeting histones actually help prevent disease. These findings complicate our 

current understanding of immune complexes in the development of sterile inflammation. 

DNA immune complexes clearly facilitate SLE progression, as anti-nucleosome immune 

complexes derived from the serum of patients with lupus can activate the NLRP3 

inflammasome when injected in mice. SLE-derived nucleosome-immune complexes 

facilitate NLRP3 inflammasome activation by upregulating expression of NLRP3 and pro-

IL-1β via the TLR4-NF-κB signaling axis [69]. Production of mitochondrial ROS 

subsequently activates the NLRP3 inflammasome [69]. Also, immune complexes found in 

patients with SLE consisting of IgG and U1-small nuclear ribonucleoprotein can activate 

NLRP3 in CD14+ human monocytes [70]. Why antibodies bound to histones can prevent 

disease but antibodies bound to nucleosomes induce inflammation is unclear. One possibility 

is that antibodies bound to free histones (not bound to DNA) may have a completely 

different effect on immune signaling than do antibodies bound to nucleosomes (histones in 

complex with DNA). Whether the immune complexes formed in each situation are unique 

and, thus, have different inflammatory outcomes is unknown. Therefore, examining the role 

of different antibodies, immune complex structures, and immune signaling capacities of 

these complexes will be essential for understanding sterile inflammation and how to treat it.

Inhibiting inflammasomes as a therapeutic intervention

Based on the important role of DNA-sensing inflammasomes in sterile inflammation, 

numerous reports have examined the therapeutic potential of targeting inflammasomes in 

diseases involving sterile inflammation. Citral and epigallocatechin-3-gallate (EGCG), both 

bioactive compounds derived from traditional Chinese medicine, prevent NLRP3 activation 

in vivo in mouse models of lupus and improve nephritis by protecting cells from oxidative 

damage. Both Citral and EGCG treatment increased expression of Nuclear factor (erythroid-

derived 2)-like 2 (NRF2) and enhancing expression of antioxidant proteins controlled by 

NRF2 [71, 72]. Overexpressing the NF-κB inhibitor A20 protein in vivo by using an 

adenovirus vector (Ad-A20) demonstrates that inhibiting NF-κB signaling impairs NLRP3 

expression and IL-1β and autoantibody production [73]. Bay11-7082, an IκBα 
phosphorylation inhibitor, similarly inhibits the NLRP3 inflammasome and NF-κB activity 

in SLE mice [74]. Anesthetic isoflurane inhibits the NLRP3 inflammasome in the MRL/lpr 

SLE mouse model [75]. However, isoflurane is a teratogen; because females are more 

susceptible to SLE, this treatment is an interesting proof of concept but is not likely to be a 

viable therapeutic option [76].

The inhibitors above suggest that inhibiting ROS as an NLRP3 activator and inhibiting 

NLRP3 priming through the NF-κB pathway may have therapeutic benefit. Direct inhibition 

Lupfer et al. Page 7

FEBS J. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of caspase-1 during ALI using YVAD inhibited immune cell infiltration and cytokine 

production and ameliorated lung damage [59]. The NLRP3 inhibitor glibenclamide was 

examined during SLE and found to partially inhibit inflammasome activation and IL-1β 
levels [77], likely due to the concurrent involvement of AIM2 in this disease. Psoriasis, ALI, 

liver damage, and peritonitis were all responsive to IL-1 receptor antagonist treatment, 

suggesting potential therapeutic interventions here by targeting IL-1β signaling or the 

inflammasome [24-26, 78]. Overall, blocking inflammasome activation or IL-1β holds 

promise as a therapeutic treatment during sterile inflammation, but it will also be of interest 

to know whether inhibition of the interaction of AIM2 with self-DNA is possible as a 

therapeutic intervention.

Is sterile inflammation truly sterile?

Although autoimmune diseases and trauma are often viewed as sterile events, recent studies 

demonstrate that most “sterile inflammation” partially depends on the presence of 

commensal microbes triggering innate immune receptors and “training” the immune system 

to respond in a biased manner during sterile inflammation. In particular, certain microbes 

induce a Th17-biased immune response, which is associated with increased susceptibility to 

autoimmune diseases [79]. Furthermore, in certain instances in which pathogen-associated 

molecules overlap and demonstrate antigenic similarity to host antigens (a process known as 

molecular mimicry), self-tolerance to the host antigen can be breached. Indeed, molecular 

mimicry is associated with rheumatic fever, SLE, type I diabetes, and other autoimmune 

diseases [80].

Autoinfectome is a term recently coined to describe the history of infectious and commensal 

microbial encounters that lead up to and facilitate the development of autoimmunity and 

sterile inflammation [81]. For the diseases discussed in this article, Epstein-Barr virus 

infection/reactivation is associated with SLE [82-84]. The bacterial amyloid curli in complex 

with extracellular bacterial DNA is important for bacterial biofilm formation and can 

accelerate lupus-like disease in mice, perhaps by mimicking nucleosome-immune complexes 

[85]. Furthermore, alterations in gut microbiota are associated with SLE development [86]. 

A relative decrease in Firmicutes and increase in Bacteroidetes composition and segmented 

filamentous bacteria colonization is also associated with SLE [87-90]. These changes in 

microbial composition result in increased levels of Th17-polarized CD4+ T cells, which 

contribute to autoimmune disease progression [89, 90]. Importantly, stool samples from 

patients with SLE induced a higher rate of Th17 polarization than controls when incubated 

with naïve CD4+ T cells in vitro, suggesting a direct role for the microbiota in shaping the 

autoimmune-enhancing Th17 response in SLE [90]. The effects of diet on intestinal 

microbial composition have also been examined in lupus-prone mice and patients with SLE. 

Seemingly simple changes in diet such as slightly acidic drinking water may prolong disease 

development or the presence of polyphenols in apples and oranges may alter gut microbiome 

composition with potential implications on disease development [91, 92]. Staphylococcus 
aureus is a commensal microorganism found on the skin and anterior nares. Colonization by 

S. aureus is also associated with higher SLE autoantibody levels and kidney damage [93]. 

However, some models of SLE performed in germ free mice still develop autoantibodies, 

suggesting that the initiation of the disease is independent of the microbiota. Instead, the 
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microbiota appears to play a role in clinical disease progression [47, 48]. Clearly, before the 

microbiome can be utilized for the diagnosis or treatment of disease, there is much research 

that remains to be done to determine specific bacterial species that can contribute to or 

ameliorate inflammatory disease. Otherwise, we may be comparing apples and oranges.

In all, there is a strong non-sterile component to the development of autoimmune diseases. 

We have recently reviewed the role of DNA-sensing inflammasomes, including AIM2, in 

regulating the gut microbiota, but the effects of microbiota on inflammasome activation in 

sterile inflammation have not been well studied [94]. The inflammasome is reported to play 

a role in the microbiota-mediated development of gouty arthritis [28], but as yet, there has 

been no examination of the role of nucleosome-mediated activation of the inflammasome in 

arthritis. One report on ALI shows that inflammasome activation is diminished in antibiotic-

treated mice [95]. These reports suggest that the microbiota or the autoinfectome are 

involved in the development of sterile inflammation and further investigation of their 

importance in inflammasome activation is warranted. Furthermore, understanding how 

contact with microbes facilitates “sterile inflammation” will help us better understand the 

complex interaction between genotype, environment, and phenotype.

Conclusions

AIM2 is among the most recently discovered inflammasome adaptors, and our 

understanding of this protein's importance in sterile inflammation is still in its infancy. As 

discussed, AIM2 and the mtDNA-sensitive NLRP3 inflammasomes are important drivers of 

sterile inflammation, but our understanding of the mechanisms involved in particular disease 

settings needs further research. Especially in the case of non-autoimmune inflammation 

(wound healing, atherosclerosis, brain trauma), there is a dearth of research on the role of 

AIM2. In the case of NLRP3, it is still not known how mtDNA activates NLRP3. It is 

possible that mtDNA binds specific cytoplasmic adaptors that facilitate NLRP3 activation or 

that cytoplasmic mtDNA merely induces cell damage through currently undefined pathways 

to induce ROS production or potassium efflux, which then activate NLRP3. Finally, 

moulding of the immune system by infection or immune stimulation by microbes— be it 

through shaping the T-helper cell profile and cytokine milieu or through molecular mimicry 

directly inducing autoimmunity— is increasingly recognized as a requirement for breaking 

tolerance and transition to a sterile inflammatory state. Thus, as research in the field of 

sterile inflammation and autoimmunity move forward, we must consider the nonsterile 

nature of the organisms and environment in which they exist and how this affects the 

development and progression of sterile inflammation. The examination of sterile 

inflammation must, therefore, include the study of the infectome and microbiome to present 

a clear picture of the mechanisms involved and how to effectively treat and diagnose sterile 

inflammatory diseases. Finally, several studies discussed herein suggest that the 

inflammasome, IL-1β, and IL-18 are potential therapeutic targets worthy of further 

examination.
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ALI Acute lung injury

apopDNA Apoptotic DNA–induced SLE

ASC Apoptosis-associated Speck-like Protein containing a CARD

CD Cluster of differentiation

DNase Deoxyribonuclease
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G-CSF Granulocyte-colony stimulating factor

IFNAR Interferon-α receptor

IL Interleukin

IP-10 Interferon inducible protein-10

KC Keratinocyte chemoattractant
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MCP-1 Monocyte chemoattractant protein 1

MRL/lpr Fas (TNF receptor superfamily member 6) mutant mice

NETs Neutrophil extracellular traps

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP3 Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and 

Pyrin Domain Containing 3

PAMPs Pathogen-associated molecular patterns

RIG-I Retinoic acid Inducible Gene-I

ROS Reactive oxygen species

SLE Systemic lupus erythematosus

STING Stimulator of interferon genes

TGF-β Transforming growth factor-β

TLR Toll-like receptor

TNF-α Tumor necrosis factor-α

YVAD Ac-Tyr-Val-Ala-Asp-Chloromethylketone
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Figure 1. The AIM2-containing inflammasome recognizes self-DNA
The PYHIN protein AIM2 is activated in response to DNA in the cytoplasm and interacts 

with ASC and caspase-1 to form an inflammasome. Inflammasome activation leads to 

maturation of the proinflammatory cytokines IL-1β and IL-18 and to pyroptotic cell death. 

Overall, AIM2 activation contributes to sterile inflammatory processes when self-DNA 

fragments from damaged host cells escape endosomes due to mutations in DNases or 

endosomal maturation and self-DNA enters the cytoplasm. In order for this inflammatory 

process to progress, a priming signal is generally required for production of pro-IL-1β. In 

“sterile inflammation” mediated by AIM2, this priming signal has not been directly 

determined but may depend on endogenous DNA, other endogenous ligands or on pathogen 

associated molecular patterns derived from the host microbiota.
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Figure 2. NLRP3 activation by mitochondrial DNA and histones
NLRP3 inflammasome activation requires two signals in the form of priming the expression 

of NLRP3 and pro-IL-1β as well as a second damage signal for NLRP3 activation. During 

sterile inflammation, DNA and histones derived from damaged host cells can prime the 

NLRP3 inflammasome through TLR-9 or TLR4-mediated increases in NLRP3 and pro-

IL-1β expression. The NLRP3 inflammasome can be activated by the presence of 

cytoplasmic nucleic acids. During sterile inflammation, mitochondrial damage releases 

mitochondrial DNA (mtDNA) into the cytoplasm where it activates NLRP3. The mechanism 

of mtDNA-mediated NLRP3 activation is not clear but likely hinges on unknown adaptor 

proteins or the common signals of potassium efflux or reactive oxygen species generation. 

NLRP3 activation can also result from histones' ability to damage the cell membrane, but the 

exact mechanisms are unknown.
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