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Electroencephalography (EEG) - the direct recording of the electrical activity of populations of 

neurons - is a tremendously important tool for diagnosing, treating, and researching epilepsy. 

While standard procedures for recording and analyzing human EEG exist and are broadly 

accepted, no such standards exist for research in animal models of seizures and epilepsy – 

recording montages, acquisition systems, and processing algorithms may differ substantially 

among investigators and laboratories. The lack of standard procedures for acquiring and analyzing 

EEG from animal models of epilepsy hinders the interpretation of experimental results and 

reduces the ability of the scientific community to efficiently translate new experimental findings 

into clinical practice. Accordingly, the intention of this report is twofold: 1) to review current 

techniques for the collection and software-based analysis of neural field recordings in animal 

models of epilepsy, and 2) to offer pertinent standards and reporting guidelines for this research. 

Specifically, we review current techniques for signal acquisition, signal conditioning, signal 

processing, data storage, and data sharing, and include applicable recommendations to standardize 

collection and reporting. We close with a discussion of challenges and future opportunities, and 

include a supplemental report of currently available acquisition systems and analysis tools. This 

work represents a collaboration on behalf of the International League Against Epilepsy (ILAE)- 

American Epilepsy Society (AES) Translational Research Task Force (TASK1-Workgroup 5), and 

is part of a larger effort to harmonize video-electroencephalography interpretation and analysis 

methods across studies using in vivo and in vitro seizure and epilepsy models.
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INTRODUCTION

Direct recording of the electrical activity of the brain has been an indispensable tool for the 

diagnosis, treatment, and research of seizures and epilepsy for several decades1; 2. Over 

time, clinicians have developed standard procedures for the recording and analysis of human 

neurological signals, including electrode placement3, signal interpretation4; 5, and device 

design6. By contrast, no such standards exist for research in animal models of epilepsy – 

electrode placement, recording montages, acquisition systems, and processing algorithms 

are independently developed by researchers according to their specific interests and thus 

may differ substantially.

Ongoing advances in experimental techniques and computational power have provided 

increasingly sophisticated analytic tools and algorithms, many of which rely on complex 

mathematical processing of large amounts of data. Software-based analysis is thus both a 

powerful tool for improving the yield of studies leveraging neural data and a dangerous 

weapon that can irreversibly distort the signal if used improperly. Researchers wishing to 

perform software-based analysis of recorded neural data may consult a number of excellent 

resources in the literature and may utilize highly refined software packages available in the 

online community. Here, our goal is to supplement these resources with a general overview 

of modern concepts in the acquisition and software-based analysis of neural data, including 

analog and digital signal acquisition, processing, storage, and analysis techniques used in the 
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study of epilepsy. This should improve the validity of acquired data and enhance effective 

translation of experimental results into clinical practice. A dictionary of the terminologies 

we will use in this manuscript appears in Table 1.

TECHNIQUES

Data acquisition

Grounding and referencing—Meaningful software-based analysis of 

electrophysiological brain data is predicated on the acquisition of high-quality signals. 

Likewise, the acquisition of high-quality electroencephalography (EEG), 

electrocorticography (ECoG), intracranial EEG (iEEG), and stereoEEG (SEEG) data is 

critically dependent on proper recording setup. This section provides a brief overview of 

some of the important considerations for ensuring proper recording setup, including 

grounding, electrical isolation, signal referencing, amplification, and video monitoring in an 

experimental setting.

Proper subject and equipment grounding is the single most important consideration for 

acquiring high-quality neurophysiological recordings7; 8. In electrophysiology, ground is a 

somewhat ambiguous term that is used to generally refer to the reference point for an 

electrical circuit. Since there are two electrical circuits to consider in electrophysiology – the 

animal circuit and the equipment circuit – ground may refer to either animal common (for 

the animal circuit) or earth ground (for the equipment circuit). We define these terms below 

and will be careful to distinguish between the two when relevant.

The reason it is important to distinguish between earth ground and animal common is 

because some recording systems (and most electrical stimulators) are electrically isolated 

(Figure 1A). Electrical isolation is the physical and electrical separation of the animal circuit 

from the mains earth (equipment) circuit – this hinders current flow across the isolation 

barrier and reducing the risk of inadvertent shock hazards and leakage current9; 10. This also 

prevents the possibility that multiple devices connected to the same recording subject might 

have different ground potentials, again preventing a shock hazard but also preventing ground 

loops (see discussion on ground loops, below). Because of the isolation barrier, earth ground 

and animal common are actually distinct reference points. Earth ground is the ground 

reference for the equipment circuit and is the same as the earth ground in the wall outlet. 

Animal common, or animal ground, is actually the “floating” potential of the animal and is 

to be used as the common reference point for all electrophysiological signal acquisition (see 

discussion on referential recording, below).

While all clinical recording systems are required to be electrically isolated for patient 

safety10; 11, some recording systems for use with animals are not isolated because of the 

added design complexity and reduced likelihood of many systems being connected to the 

same recording subject. Therefore, in more complicated experimental setups, it is important 

to consider not only the proper equipment and animal grounding setup, but also the need for 

electrical isolation of various pieces of equipment. If the recording system is not itself 

electrically isolated, ensure that all other connected systems (e.g., stimulators) are 
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electrically isolated. If electrical isolation is not built into a given device, one can use a 

stand-alone isolation transformer to isolate the device.

Proposal -> If using non-isolated equipment, consider the need for a stand-alone isolation 

transformer for the non-isolated piece of equipment – especially if connecting more than one 

piece of equipment to the animal at a time. If using a stand-alone isolation transformer, 

report the manufacturer and model number.

A reliable, low-impedance electrical connection must be established and maintained 

between the animal and the animal common input of the recording system to ensure noise-

free recordings9. This connection establishes the animal common reference for the animal 

circuit (Figure 1A), and is important for ensuring the stability and overall quality of the 

recording9. Vendors will be able to provide guidance on the best method for establishing the 

animal common connection between the animal and a particular recording system.

Ensuring proper recording setup becomes much more complicated when multiple pieces of 

equipment – for example, a stimulator and a recording system – are connected to the animal 

simultaneously. It is imperative to avoid a ground loop7; 12. A ground loop occurs when 

there are two or more ground points on a circuit that are at different voltage potentials 

(Figure 1B), resulting in a current flow between them that will appear on the recorded signal 

as unwanted noise (almost always as 50 or 60 Hz line noise). Ground loops may occur when 

multiple animal common connections are in place, but more often occur when multiple earth 

grounds are in place. To avoid a ground loop, ensure that animal common connections 

converge to a single connection at the equipment animal common input. Likewise, ensure 

that earth ground connections converge to a single earth connection (Figure 1B), for example 

a single power strip or a single wall outlet – this is commonly called a star topology.

Proposal -> Specifically state the placement of the common connection on the animal when 

reporting data, as it is an important consideration in the quality of the data obtained.

Amplification—In order to obtain usable neurophysiological data, the signal must be 

appropriately amplified before digitization. The first stage of signal processing is the 

preamplifier, also called headstage or jackbox (Figure 1A). The headstage is a low-gain 

amplifier that converts the neural signal from high-impedance to low-impedance12. 

Practically speaking, the headstage improves signal transmission and reduces noise pickup 

on the recording. Placing the headstage close to the signal source is recommended in order 

to reduce the length of the high-impedance cable run7. A high-impedance cable run will 

function as an antenna, picking up movement artifacts and line noise artifacts. Most 

commercially available systems are carefully calibrated to limit noise pickup and maintain a 

high signal-to-noise ratio while still providing a flexible interface for connection with the 

recording subject.

Proposal -> To prevent noise pickup, place the headstage as close as possible to the animal 

and utilize sufficient shielding on the cable leads. Perform the recording in a Faraday cage if 

possible, keeping the animal and any unshielded connections and wires inside the cage.
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An important technique for removing noise from electrophysiological recordings is 

common-mode rejection13. This technique relies on the ability of differential amplifiers to 

reject signals common to both inputs – since noise is ambient while the neural signal is 

localized, noise appears on both inputs to the amplifier but the signal appears on just one 

(Figure 2A). Therefore subtracting one input from the other removes noise but spares the 

signal. To do this, electrophysiology systems subtract the signal at the reference electrode 

from the signal at the source electrode. The reference electrode may be another electrode 

located close (several mm) to the source electrode (called differential recording) or it may be 

the animal common connection which is generally located somewhat further away (called 

referential recording). The particular grouping of source and reference electrodes for 

collecting and reviewing data is called a recording montage. While differential recording 

usually provides a better signal-to-noise ratio and generally enhances the ability to quickly 

interpret the EEG, referential recording offers the ability to re-montage signals offline using 

different signal-reference electrode groupings, thus increasing the flexibility of the system14. 

It is important to note, however, that re-montaging is only possible if the desired reference 

signal is free of noise and/or amplifier saturation.

Proposal -> Collect and store data referentially, using the animal common as the reference 

for all recording electrodes. This way, data can be digitally re-montaged after collection, 

permitting more flexible and in-depth offline analysis.

Video monitoring—Video-EEG, or video monitoring in combination with EEG 

acquisition, is highly recommended in order to characterize the epileptic phenotype in 

animal models. Video-EEG enables seizure confirmation in the case of focal seizures 

without an obvious motor pattern, and enables the exclusion of various types of artifact 

associated with a given EEG event15; 16. The extent of video monitoring is dependent on the 

needs of the study and should be reported in the manuscripts17. That said, with modern 

technology it is relatively straightforward and cost-effective to obtain and store continuous, 

long-term EEG and video-data. Therefore we recommend capturing simultaneous EEG and 

video data continuously for the duration of the experiment in almost all circumstances. To 

obtain a useful video-EEG, it is critical to synchronize the video monitoring system with the 

EEG system. This can be accomplished in a variety of ways – the most straightforward 

being to use the same acquisition computer to run both the video and the EEG capture. 

However, even if using the same acquisition computer for video and EEG recording, it is 

advised to test the synchronization routinely by generating a video-EEG artifact (e.g., 

connecting or disconnecting the animal under video-capture).

Proposal -> Video monitoring should be incorporated with simultaneous EEG recording to 

help classify motor seizures and identify non-motor seizures or behavioral artifacts 

appearing on the EEG.

Proposal -> Continuously capture and store video and EEG data for the duration of the 

experiment in almost all circumstances. Report the extent of video-EEG recording in 

manuscripts.
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Proposal -> Ensure that the video monitoring and the EEG acquisition systems are 

synchronized throughout the duration of the experiment.

Signal Conditioning

Signal digitization—Signal conditioning, in this context, refers to the preparation of the 

neural signal for storage in a digital format. After preamplification, the signal will pass 

through an analog-to-digital converter (ADC). The ADC samples the electrode signal at a 

given sampling frequency and bit resolution (Figure 2B–C), converting the continuous 

electrode signal into a discrete digitized signal by taking measurements of the incoming 

signal at evenly spaced time steps18. Digitized signals afford the system several advantages, 

including ease of signal compression, speed of processing and transmission, and immunity 

to several forms of noise19; 20. Following digitization, the signal may be further amplified, 

filtered, and otherwise processed as needed.

The most critical consideration for analog-to-digital conversion is the Nyquist or Nyquist-

Shannon sampling theorem21; 22. This theorem states that a signal at a given frequency must 

be sampled at least twice per period in order to be accurately represented7; 23. By extension, 

the Nyquist rate is the minimum sampling frequency required for a given application and is 

equal to twice the maximum frequency content of the input signal. If the sampling frequency 

is set below the Nyquist rate, high-frequency signals will appear as lower-frequency signals 

that are not actually present in the signal (Figure 2B) – this is called aliasing. One may 

prevent aliasing by using a sufficiently high sampling rate and by using an anti-aliasing low-

pass filter to remove signal content above the Nyquist frequency prior to sampling. The 

Nyquist frequency is equal to one half of the sampling rate, and typically anti-aliasing filters 

are set to have a cutoff frequency well below the Nyquist frequency to account for the rolloff 

of the filters. For most recording systems, the anti-aliasing filters are not user-configurable, 

as they are implemented in hardware – likewise, most recording systems will restrict the 

sampling frequency to an appropriate range based on the anti-aliasing filter settings. 

Importantly, note that optical aliasing may also occur during visual review of the recorded 

EEG as a result of limitations in the resolution of the display.

It is preferable to collect data using a sampling frequency well above the Nyquist rate, not 

only to prevent aliasing but also to collect higher resolution signals. While higher sampling 

frequencies come with the tradeoff of requiring more storage space and more time to 

process, continuing advances in computational power and technology reduce this concern. 

Additionally, data can often be downsampled to a lower sampling frequency to improve the 

speed of processing. Importantly, in order to avoid aliasing, it is imperative to low-pass filter 

the signal prior to downsampling (Figure 2C)7.

Proposal -> Low-pass filter all data prior to digitization to avoid the aliasing of signals above 

the Nyquist frequency. Use a cutoff frequency for the filter of at most one-third of the 

sampling frequency.

Proposal -> Report the sampling frequency of data acquisition. Set the sampling frequency 

at least 2× the maximum frequency of the signal. Higher sampling frequencies (at least 4×; 
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optimally 8–10× maximum frequency of the signal) may improve signal detection. Proposal 

-> Always low-pass filter the signal prior to downsampling to avoid aliasing.

Proposal -> Detail filtering and downsampling steps when reporting the signal processing 

procedure. Include a thorough description of filters used and the sampling frequencies.

Just as the sampling frequency specifies the resolution of the digitization in the time domain, 

the bit resolution specifies the resolution of the digitization in the voltage domain (Figure 

2D) and also determines the dynamic range. Bit resolution refers to the number of steps the 

ADC will use to digitize the incoming signal, calculated as two to the power of the number 

of bits – for example, a 12 bit system will digitize the signal into 212 = 4,096 steps24. 

Dynamic range is defined as the ratio between the largest signal a system can process and 

the noise floor18 – therefore, systems with a larger dynamic range can tolerate a wider 

variation in the amplitude of the input signal. The digitized signal is stored as a series of 

integers with a constant voltage conversion factor and sampling frequency. Almost all A/D 

converters currently on the market offer 16-bit resolution, which is sufficient for most users. 

A/D converters with higher bit resolution are not necessary for most applications.

Proposal -> Use a 16-bit recording system – higher resolutions are unlikely to be necessary. 

Include the bit resolution of all acquired data in published reports.

Filtering—Filtering is the process of attenuating specific frequency content in a recorded 

signal and is a critical component of signal conditioning and signal analysis18; 25; 26. It is 

important to note that filtering by definition distorts the recorded signal (see27, for example) 

and may actually introduce artifacts into the data. Accordingly, it is imperative to filter data 

only as needed, using appropriately designed filters, and to accurately and thoroughly 

describe filters and their application in published reports. Importantly, there is no single filter 

or filter type that may be universally applied – each has its own particular advantages and 

disadvantages and requires a reasonable understanding of the constraints involved.

Filters used for signal conditioning and signal analysis will be digital filters, i.e., filters 

defined in software or firmware and applied to the digitized signal. We will not discuss 

analog filters in detail, as these are defined in the hardware of the system and will be 

appropriately specified by the manufacturer of the recording and digitization equipment.

The most important way to classify filters is based on their response to an impulse, or very 

brief input (Figure 3A). Finite impulse response (FIR) filters will produce an output of 

limited duration, while infinite impulse response (IIR) filters will produce an output of 

unlimited duration, although the response will decay asymptotically towards zero18. Low-
pass (sometimes called high-frequency or high-cut) filters allow frequencies lower than the 

filter cutoff frequency to pass. In contrast, high-pass (also called low-frequency or low-cut) 

filters pass frequencies above the filter cutoff frequency. Band-pass filters allow a specific 

range of frequencies to pass (Figure 3B), while notch filters remove a specific range of 

frequencies, e.g. 50/60 Hz generated by the mains power supply. Note that the impulse 

response describes the filter’s response in the time domain, while the low-pass/high-pass/

band-pass descriptors describe the filter’s response in the frequency domain (Figure 3A–B).
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There are five important design characteristics25 of filters to consider (Figure 3C): the (1) 

cutoff frequency, (2) phase, (3) transition width, and (4) peak passband/stopband ripple of 

the frequency response of the filter (ripple refers to the variation in the filter’s response in 

the pass- and stop-bands). The (5) filter order measures the complexity of the filter and is 

either the number of filter coefficients (IIR) or length of the filter (FIR) minus one. 

Transition width, ripple performance, and filter order are interrelated in that improving 

performance in one of these characteristics decreases the performance in the other two, 

analogous to adjusting the angles in a triangle28. For instance, reducing the transition width 

of a filter requires an increase in the filter order, with the requisite increased complexity and 

(potentially dramatically) increased processing time. Note that the order of FIR and IIR 

filters cannot be directly compared, since they are implemented differently.

In practice, FIR filters are preferable to IIR filters26, as they may be easily designed to 

provide a linear delay (Figure 3D) and are always computationally stable. In comparison, 

IIR filters offer narrower transition bandwidth and improved computational performance18, 

but with a non-linear phase-delay relationship25. Additionally, IIR filters may be unstable – 

that is, they may incur underflow or overflow errors as a result of accumulated rounding 

errors. Correcting for the phase delay introduced by filtering is much simpler and faster with 

a linear-phase filter (Figure 3E): simply left-shift the output signal by the group delay (the 

derivative of the phase-frequency response of the filter). For a non-linear phase filter, the 

most practical approach is to two-pass filter the signal, i.e., filter in both the forward and 

backward directions, using for example the MATLAB command filtfilt. Unfortunately, this 

doubles the amount of computation needed and also changes the functional properties of the 

filter25. Note that all of the FIR design methods described in this report will implement 

linear-phase filters.

Filter design—FIR and IIR filters may be designed using a number of different methods, 

each with specific advantages (Table 2). Two common methods for designing FIR filters are 

the equiripple (also called Parks-McClellan) and least-squares methods28. Equiripple FIR 

filters offer a constant ripple in the pass- and stop-bands and can be designed using the 

smallest filter order of all FIR filters. In comparison, least-squares FIR filters optimize signal 

rejection in the stop-band, but provide a slightly wider transition band compared to the 

equiripple. Another common method for designing FIR filters utilizes the sinc function to 

approximate the frequency response of an ideal filter18. However, the filter must be modified 

using one of various windows to improve passband and stopband performance25, with the 

result called a “windowed-sinc” filter. Common windows are the Hamming (trade-off 

between rolloff, stopband attenuation, passband ripple), the rectangular (sharpest rolloff, 

least stopband attenuation, largest passband ripple), and the Kaiser (shallowest rolloff, 

greatest stopband attenuation, smallest passband ripple).

Common IIR filters28 include the Butterworth filter (wide transition band, smallest 

passband/stopband ripple), Chebyshev (shorter transition band, ripple in either the passband 

(Chebyshev I) or the stopband (Chebyshev II)), and elliptic (narrowest transition band, ripple 

in both passband and stopband).
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Notch filters may be implemented to remove 50- or 60-Hz line noise. Adaptive line noise 

filters are a more powerful, though more complicated, type of notch filter – these types of 

filters create a template of the line noise artifact and remove it from the incoming signal29. 

This has the advantage of being able to adjust to subtle changes in the line noise shape and 

frequency while preserving more of the incoming signal. Proper setup (grounding, 

referencing, and shielding) is always preferred to filtering in order to reduce line noise, since 

filtering distorts the signal and eliminates information from the recording. With proper setup 

and grounding, in fact, a line noise filter may not even be necessary.

We recommend utilizing FIR filters for offline processing, except for large datasets when the 

improved computational performance of IIR filters is required. It is critical to carefully 

compare the filtered signal to the raw signal to confirm that the appropriate frequency bands 

are being removed, and that the signal is not being distorted in unexpected ways. Note that 

the filtering of recorded artifacts (for instance, step discontinuities or general increases in 

activity) may introduce physiological-looking activity patterns or increases in the band of 

interest – therefore, it is imperative to identify and remove artifacts from the analysis prior to 

filtering. It is best to band-pass filter in two stages, i.e. use a low-pass filter and then a high-

pass filter, as utilizing two filters allows one to design more appropriate filters for both 

stages.

Proposal -> Fully report filter characteristics, including: type of filter, filter order, filter 

cutoff frequency (specify -3 dB or -6 dB point), and filter transition width or rolloff.

Proposal -> Report the type of software used to construct and apply filters to the data (e.g., 

MATLAB, Spike2, etc). Specify the commands used to construct and apply the filter, for 

example, butter() and filtfilt() in MATLAB.

Proposal -> FIR filters are preferable to IIR filters, as they are guaranteed to be stable and (if 

linear phase) may be easily corrected to zero-phase delay without additional computation.

Proposal -> Always examine the magnitude and phase response of a filter prior to applying it 

to data, using tools such as fdatool and fvtool in MATLAB.

Proposal -> Always directly compare the filtered signal to the original, unfiltered signal – 

this will confirm that the filter is functioning as expected and not introducing unanticipated 

artifact.

Proposal -> Report use of a line noise filter. Report settings of the line noise filter as 

appropriate.

Proposal -> Minimize the use of line noise filters during acquisition, since data signal 

content removed by a filter cannot be restored.

Signal processing and analysis

Spectral analysis—The determination of the frequency content of the recorded signal, 

more specifically called spectral analysis, is a critical component of software-based analysis 

of EEG. Spectral analysis is accomplished by transforming the signal from the time domain 
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into the frequency domain23; 26. The transformation between these domains may be 

accomplished using Fourier analysis, and most commonly, using the Fast Fourier Transform 
(FFT). The FFT is an efficient algorithm for expressing a signal as a composition of sine 

waves of different frequencies (a Fourier series), making it straightforward to examine the 

relative contribution of each frequency to the overall signal by comparing the amplitude of 

each sine wave. However, it is generally more useful to examine the evolution of a signal’s 

spectral content over time – for this, one of many joint time-frequency analysis (JTFA) 

techniques may be employed30; 31. Probably the most common JTFA algorithm is the short-
term Fourier transform (STFT), in which one repeatedly applies an FFT to short, non-

overlapping clips of the original signal. The result of a JTFA algorithm is usually plotted in a 

two-dimensional heatmap called a spectrogram (if calculated using Fourier analysis) or a 

scalogram (if calculated using wavelets)24.

Wavelet analysis is conceptually similar to Fourier analysis – however, in Fourier analysis 

one transforms the recorded signal into sine waves, while in wavelet analysis one transforms 

the signal into wavelets24; 32. Like sine waves, wavelets are signals of a single specific 

frequency, but wavelets are finite in duration whereas sine waves are infinite in duration. 

Therefore, in comparison to Fourier analysis, wavelets perform better with non-stationary 

signals (i.e., signals that change over time). Accordingly, wavelet analysis is particularly 

useful for signals that are relatively brief in duration or that have a sudden onset/offset – for 

instance, identifying artifacts33 and detecting spikes, sharp waves, and HFOs34; 35.

There are several important tips to bear in mind when performing spectral analysis. First, 

note that electrophysiological spectra will exhibit what is termed 1/f falloff (“one over f”) – 

i.e., the power of the signal will decrease as frequency increases18. Second, while spectral 

analysis decomposes the recorded signal (most often) into sine waves, many rhythmic 

activities in the raw data will not be sinusoidal in nature. Such non-sinusoidal activities will 

be represented in the frequency domain by a sine wave at the fundamental frequency, with 

several additional sine waves at harmonics (integer multiples) of the fundamental frequency. 

Third, note that spectral analysis should only be used to identify line noise or other “human-

made” noise occurring at a particular frequency. Biological noise, such as movement artifact 

or scratching, is comprised of a broad range of frequencies from across the spectrum, 

making it indistinguishable from biological signal in the frequency domain. Fourth, spectral 

analysis is only informative if it is applied to a data epoch of appropriate duration. One 

needs several cycles-worth of data in order to accurately calculate the relative contributions 

of each frequency band – this is especially important to consider when analyzing lower 

frequencies, since lower frequencies have longer periods. Therefore, we recommend the 

application of spectral analysis to data segments of duration of at least five cycles of the 

lowest frequency of interest, preferably more, if possible. That said, spectral analysis relies 

on the assumption of signal stationarity, that is, that a signal does not fundamentally change 

over the duration of the data segment. Therefore, it is also important to limit the duration of 

a data segment to an appropriate amount of time, depending on the signal of interest. In most 

cases, the most effective (and most important) way to determine the appropriate duration of 

a data segment for spectral analysis will be to simply visually inspect the raw recording to 

identify the onset and offset of a particular pattern of interest.
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Proposal -> Perform spectral analysis on data epochs of appropriate duration – at least five 

cycles of the lowest frequency of interest, and limited to the onset and offset of the signal of 

interest (as identified by visual analysis of the raw data.)

Artifact recognition and rejection—Artifact recognition and rejection is a critical 

component of software-based EEG analysis (see also ILAE-AES TASK1-WG1 publication). 

Artifacts pertinent to software-based analysis of EEG can be roughly divided into two 

categories: external electromagnetic interference and biophysical sources. A third category, 

which might be loosely termed internal noise, arises from factors inherent to the design and 

specification of the recording equipment itself and will not be discussed here (though see7 

for an excellent discussion). Because biophysical artifacts can be quite difficult to 

differentiate from epileptiform activity, it is extremely useful to have time-synchronized 

video available during the analysis of the EEG.

Artifacts from external electromagnetic (EM) interference derive from electrical or 

mechanical equipment generating an electromagnetic field in the vicinity of the recording 

equipment. Prevent electromagnetic interference by ensuring proper setup, grounding, and 

shielding on all equipment. By far the most common type of EM interference is line noise 

from the mains power supply.

Biophysical artifacts derive from the animal, rather than the environment. Common 

examples are movement artifact, respiratory artifact, cardiac artifact, scratching artifact, and 

grooming artifact. As with EM artifact, the best way to prevent biophysical artifact is to 

ensure proper setup and grounding – including making sure that all cables are firmly 

connected and the headstage is located as close as possible to the animal. Additionally, in 

order to reduce movement artifact, it may help to allow a 20 minute adaptation period in the 

recording cage for the animal, before initiating the EEG data acquisition36.

Since artifacts cannot be completely prevented during recording, it is also required to detect 

and remove them during analysis. While manual review of the data is probably the most 

widely accepted technique for artifact rejection, it may be infeasible for large data sets (and 

it is certainly tedious for any size data set). Accordingly, researchers have developed a 

number of algorithms to identify and remove artifacts from EEG recordings37–39. Because 

different datasets may be susceptible to different types of artifact, there is probably not a 

single optimal artifact rejection algorithm that may be utilized for all needs. Rather, it is 

likely that each researcher may need to customize an artifact rejection algorithm for his or 

her needs. Many techniques for artifact detection and removal in EEG utilize independent 

component analysis (ICA) at some stage in the analysis40–42. This technique decomposes the 

EEG into multiple independent sources, with the goal being to separate sources of artifact 

from sources of clean neural signal. However, it is very difficult to control or validate how 

the ICA performs, and it is dependent upon the noise and neural signals being separable. 

Another challenge for artifact rejection algorithms in general is that the artifact itself may 

evolve with time, or may take several related forms – for instance, many algorithms rely on 

the characterization of high amplitude signals, but perhaps at the expense of identifying 

lower amplitude artifacts from the same source. Note that regardless of the approach used 

for artifact rejection, it is important to report the success rate for rejection of artifacts 
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(percent false rejections, percent correct rejections), against the “gold standard” of visual 

screening.

It is increasingly common for researchers to utilize various types of machine learning 

algorithms for artifact rejection and/or epileptiform event detection. While there are many 

machine learning algorithms available for use in EEG analysis, all of them leverage a set of 

features to classify segments of data as artifact, epileptiform, or neither. Features are 

measured properties of the signal, and are often analogous to the characteristics that 

neurologists use when interpreting EEG, such as increase in background activity, correlation 

across channels, and change in spectral content43. A machine-learning algorithm can only be 

as effective as the features it utilizes – therefore, proper feature selection is a critical 

consideration for artifact rejection using machine learning techniques. It is also very 

important to prevent overfitting by properly utilizing training and testing data sets, along 

with techniques such as cross-validation.

Proposal -> Report all features used for artifact rejection, explicitly including the equations 

used for each.

Proposal -> Include a detailed description of the data processing algorithm used, including 

steps for preprocessing, artifact rejection, and statistical analysis.

Proposal -> Divide data epochs into training and testing data sets before developing a 

machine learning algorithm for artifact rejection. Utilize techniques such as cross-validation 

to help prevent overfitting and to ensure the algorithm is consistent.

Proposal -> Report the success rate of an artifact rejection artifact (percent false and percent 

correct rejections) against a standard, i.e, visual review of video-EEG file by expert readers.

Proposal -> Acquisition, conversion, and analysis scripts should be made available at the 

time of publication. Include a link to the repository in the publication.

Data storage and data sharing

The choice of data format for storage is a fundamental consideration in neurophysiology. 

Countless options exist, yet no single data format is optimal for all purposes – instead, the 

research team must choose a format that ensures long-term accessibility of the data while 

also meeting data storage and sharing constraints.

The simplest data storage strategy stores recorded values as integers, most commonly using 

ASCII or Unicode format. In this case, the recorded signal may be reconstructed by 

multiplying the integer values by a constant scaling factor, often called a voltage calibration 

constant. Commonly these types of files are stored as .txt or .csv files. This approach 

maximizes accessibility of the data – the files are human-readable, and can be opened using 

any simple text editor software – but is the least efficient for storage and processing. This 

strategy is most appropriate for sharing short clips of the recorded signal. A more efficient 

strategy is to store data in binary format, often using an extension such as .bin. Whereas 

integer values must be encoded using a scheme such as ASCII, binary files store data in 1’s 

and 0’s – more efficient for storage and processing, but not directly readable by humans. 
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That said, binary format is still relatively easy to edit, using a hex-editor or analysis 

environment capable of importing and exporting binary files (such as MATLAB).

Some data storage schemes utilize compression algorithms to significantly reduce the file 

size of the data, with the drawback of making data interpretation and processing somewhat 

more complicated. Probably the most common formats for storing compressed 

neurophysiological data are the MEF44–46 and HDF5 (http://www.hdfgroup.org/) formats. It 

is also reasonable to archive stored data in a format such as .zip, though the compression 

achieved with this approach is not as appreciable as it is for .mef.

It is crucial to store metadata, or information describing the acquired neurophysiological 

data, in a related file. Metadata should include information relevant for the interpretation of 

the recorded data, such as acquisition system settings, electrode placement, recording 

montage, and experimental protocol. Commonly this type of information is stored in a 

header, or block of data placed at the beginning of a data file.

Digital EEG acquisition systems usually store recorded data/metadata in their own specific 

binary data format, thus requiring either a format-specific file reader or knowledge of the 

precise file structure for import. There are some commercially available software products, 

such as Spike2 and Persyst, which enable opening and converting between several file 

formats.

While several versatile formats for neurophysiological data exchange and storage have been 

developed19; 47, our group recommends utilizing the European Data Format (EDF/EDF+, 

http://www.edfplus.info/index.html) for most applications. EDF is probably the most 

commonly used format in the field of epilepsy research, with a well-documented file 

structure48; 49 and many freely available tools for importing and exporting EDF files. 

However, the EDF format may not be suitable for complex, high-bandwidth, high-sampling-

rate datasets that are becoming increasingly more common in experimental neurophysiology 

– in such cases, the MEF format is likely preferable.

Fortunately, powerful platforms already exist to enable the sharing of neural data50. General-

purpose cloud-based storage utilities (Amazon S3, Google Drive, Dropbox, Box, Microsoft 

OneDrive, BlackBlaze) currently enable one to store several GB in the cloud for free, with 

larger storage amounts available with a paid subscription. Additionally, neurophysiology-

specific data storage tools exist, such as the iEEG Portal (www.ieeg.org), Epilepsiae 

(www.epilepsiae.eu), Physionet (www.physionet.org), and Blackfynn 

(www.blackfynn.com). Some of these databases are grant-funded platforms for storing, 

sharing, and annotating arbitrarily large neurophysiology datasets.

Proposal -> Store data in raw or at least minimally processed form (i.e., in referential 

montage, without filtering or postprocessing).

Proposal -> Store all acquisition system settings along with the data: sampling frequency, bit 

resolution, filter settings, acquisition system, research center/principal investigator, date 

obtained, animal model, etc. As applicable, store this data in the header of the file (EDF+ or 
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MEF) or in a separate text or comma-separated value file – or store in both the header and a 

separate human-readable file.

Proposal -> For small- to medium-sized datasets (<0.5 TB) that will be accessed regularly, 

use the EDF+ format if feasible. If it is necessary to use a proprietary format (i.e., a format 

unique to your recording system), ensure that it can be easily converted to EDF+ for long-

term storage.

Proposal -> For large datasets (>0.5 TB) that are accessed regularly, upload data to a cloud-

based storage system.

Proposal -> For long-term storage of small or medium-sized datasets, use either EDF+ or 

MEF format. For archiving of large-sized datasets, use MEF format. Proposal -> When 

possible, make the raw data publically available using a cloud-based sharing platform.

Challenges and opportunities

Many fundamental questions in the field of epilepsy (and neuroscience in general) remain 

unanswered. Similarly, there are significant technical barriers to obtaining high-quality data 

and performing rigorous analyses necessary to answer these questions. Fortunately, the most 

challenging obstacles represent the greatest opportunities for advancing the field. Here, we 

have briefly discussed some of the latest trends in the field relevant to data acquisition and 

software analysis of electrophysiological signals in epilepsy, noting challenges that must be 

addressed and opportunities that may be available.

One of the most fundamental challenges in experimental neurophysiology is improving the 

quality of the hardware used for data acquisition. Opportunities in this realm include the 

development of recording systems with improved signal isolation capabilities, enhanced 

processing power, and advanced filtering algorithms to optimize the extraction of biological 

signals, even in noisy or suboptimal experimental conditions. For example, new wireless 

neuro-telemetry systems51; 52, facilitate the acquisition of relatively artifact-free data, and 

minimize animal discomfort for long-term recordings53. Similarly, recent advances in the 

design and fabrication of electrodes has enabled higher resolution, higher density recording, 

and in some cases has permitted the acquisition of multiple modalities (e.g., MRI, calcium 

dye imaging) of information simultaneously54. With these advances, however, comes the 

challenge of developing new methods for processing and visualizing such high-dimensional 

data.

Improvements in hardware – faster processors, smaller devices, and new implantables – 

should facilitate the development of more advanced algorithms for the analysis of 

neurophysiological data. For instance, improved real-time automated seizure detection and 

prediction algorithms would be useful not only for the investigation of the mechanisms of 

seizures and epileptogenesis in animal models, but would also be quite valuable for the 

development of on-demand treatment/neuromodulation devices in humans. A significant 

challenge in this area is the lack of a “gold standard” for what constitutes a seizure – even 

among experts, inter-observer agreement hovers around 85%, so it is difficult to expect a 

device to improve upon this rate. A major opportunity here is the development of a large, 
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annotated data set, hosted on the cloud, and openly accessible by the community and usable 

for the development and testing of new detection and prediction algorithms. Another 

opportunity is the leveraging of crowdsourcing platforms to facilitate the analysis of neural 

data by experts in other fields. For example, in a recent seizure detection competition hosted 

on the Kaggle website (https://www.kaggle.com/c/seizure-detection), the winning algorithm 

achieved a detection accuracy of 0.96 (area under the curve).

Another area of application for advanced data analysis is “wide-band” EEG – that is, EEG 

signals at the extreme low and high ends of the frequency spectrum. In humans, slow activity 

transients (<0.5 Hz) have been described in premature neonates55 and infantile spasms56, 

while very low frequency activity (<1 Hz) coincides with burst periods in post-asphyxia 

human neonates57 and lateralize with the seizure onset zone in adults with temporal lobe 

epilepsy58. High frequency oscillations, including ripples (80–250 Hz) and fast ripples (250–

500 Hz), have been suggested as a novel epileptogenic biomarker not only in humans but 

also in animals59.

Finally, significant opportunities are available in the realm of data sharing and data 

storage50, largely because of new possibilities afforded by the development of cloud-based 

computing. For instance, it seems likely that in the near future, researchers will be able to 

upload their data to the cloud and process it using standardized analysis and detection 

algorithms, without the need to write customized analysis scripts or maintain expensive 

computing infrastructure. The cloud might also allow the field to circumvent the wide 

variety of file formats currently used for data storage, many of which are proprietary to 

individual vendors. This is an important challenge to address, since even though several 

attempts have been made over time to develop a “universal” format44; 46; 48; 49; 60, the field 

is still nowhere close to a consensus. Also critical for the field to address is to develop a 

universal standard for the storage of meta-data. Hopefully, ongoing efforts towards 

developing a universal data storage format47 will be successful and thus drastically lower the 

barrier to sharing data and reproducing analyses.

Conclusion

In stark contrast to clinical practice, widely accepted standards and experimental protocols 

do not exist for epilepsy research utilizing animal models. In truth, it is probably not 

possible to develop universal standards for all animal-based research on epilepsy, since the 

scope and intent of studies may vary drastically among laboratories. Instead, researchers will 

likely need to develop experimental procedures and protocols as appropriate for their needs, 

but must focus on appropriately documenting and reporting the specifics of their setup and 

analysis to ensure reproducibility and to facilitate translation to the clinic.

There are many important questions that researchers must consider when designing their 

recording setup and experimental protocol. For instance, is it preferable to record from many 

channels for a short period of time, or to record from fewer channels for a longer period of 

time? Is the intent of the experiment to establish that the subject does at some point develop 

seizures, or is the intent to document the number and severity of seizures? Is it necessary to 

obtain very high-resolution recordings (e.g., high sampling frequency), for example to 
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investigate high frequency activity in the model, or would a lower sampling frequency 

suffice? Our hope is that the present paper spurs investigators to consider such questions 

carefully while developing and implementing their experimental setup and analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS

1. In collaboration with the International League Against Epilepsy (ILAE) and 

American Epilepsy Society (AES), this work is part of a larger effort to 

harmonize video-electroencephalography interpretation and analysis methods 

across studies using in vivo and in vitro seizure and epilepsy models.

2. This manuscript describes standard data acquisition and data analysis 

techniques for use in the analysis of neural field recordings, specifically, 

electroencephalographic (EEG), electrocorticographic (ECoG), and stereo-

EEG (SEEG) recordings.

3. For each topic addressed, this report lays out proposals with regard to data 

collection, data analysis, and documentation in an effort to specify analysis 

and reporting standards for high-quality research.

4. The goal of this workgroup is to develop and optimize depositories of 

annotated video-EEG data and software tools, accessible for all interested 

investigators, for the screening and analysis of epileptic or non-epileptic 

patterns of interest.
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Figure 1. Proper equipment setup and grounding
A) Block diagram of sample equipment setup for electrophysiology recording. Electrical 

signals from recording electrodes are referenced and amplified by the pre-amplifier, then 

filtered, digitized, processed, and stored by the recording system (black dashed box at upper 

right). Note that the animal circuit (gray dashed box at lower left) is referenced to the animal 

common and is electrically isolated from the equipment circuit, which is referenced to the 

earth ground. B) Block diagram illustrating how proper grounding technique can prevent a 

ground loop. Top, connecting systems I and II to earth ground at different points (V1 and V2) 

may enable unwanted current (IAC) to flow between V1 and V2, introducing electromagnetic 

artifact on both systems and severely degrading recording quality. Bottom, connecting both 

systems I and II to earth ground at a single point prevents a ground loop by eliminating the 

voltage drop between the two system grounds.
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Figure 2. Analog-to-digital conversion
A) In differential recording, a reference signal (middle) is compared to the acquired signal 

(top), and information common to both inputs is removed (“common mode rejection”). The 

resulting signal (bottom) is free of noise components appearing on both channels. B) Top, 

sampling a 20 Hz signal (black dots) at or above the Nyquist rate (sampled at 250 Hz here) 

enables the original signal to be accurately represented in digital form. Bottom, sampling a 

20 Hz signal (black dots) below the Nyquist rate causes the signal to alias at a lower 

frequency (red line). C) Taking a raw signal (top row) and then downsampling (middle row) 

without first low-pass filtering the data may induce aliasing in the resulting signal (added 

peak in frequency domain at ~20 Hz). Low-pass filtering prior to downsampling (bottom 

row) prevents aliasing. D) Bit resolution determines the precision of the signal digitization 

on the voltage scale. Whereas sampling with 4-bit resolution (top) uses 2^4=16 voltage 

levels to store data, sampling with 3-bit resolution (bottom) uses only 2^3=8 voltage levels 

to store data – reducing the resolution of the acquired signal.
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Figure 3. Filter design and use
A) The response of a sample finite impulse response (FIR) filter (red) returns to zero 26 

samples after a very brief input (“impulse”), while the response of a sample infinite impulse 

response (IIR) filter (black) decays asymptotically to zero. B) Low-pass (gray), high-pass 

(black), and band-pass (red) filters preferentially pass different frequency bands. C) Cutoff 

frequency, passband/stopband ripple (pink boxes), and transition width (gray box) are 

important characteristics of filters, as illustrated in a magnitude vs. frequency plot. D) Linear 

filters (red) provide the same group delay (slope of phase vs. frequency relationship) for all 

frequencies, whereas nonlinear filters (black) do not. E) Filtering a signal (black trace) with 
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a linear filter (gray trace) introduces a constant delay (“group delay”) to all frequency 

components. Therefore, correcting for the delay introduced by a linear filter is simple: shift 

the signal forward by the group delay (red trace).
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Table 1

Definitions of technical terms used throughout the manuscript.

Grounding and referencing

Ground Used in a general sense to refer to the reference point for an electrical circuit.

Electrical isolation The physical and electrical separation of the animal circuit from the mains earth (equipment) circuit.

Earth ground The reference point for the equipment electrical circuit – equivalent to the earth ground in the wall 
outlet.

Animal common The reference point for the isolated portion of the equipment

Ground loop An equipment setup in which two or more ground points on a circuit are at different voltage potentials.

Star topology A setup in which equipment connected to an animal converges to a single earth connection.

Amplification

Preamplifier A low-gain amplifier that converts the neural signal from high-impedance to low-impedance, also called 
the headstage or jackbox.

Common-mode rejection The removal of signals common to both inputs of an amplifier in order to reject ambient noise from the 
recorded signal.

Differential recording Recording a neural signal using a reference relatively close to the signal of interest.

Referential recording Recording a neural signal using a common reference located relatively far from the signal of interest.

Recording montage The grouping of source and reference electrodes used for collecting and reviewing data.

Video Monitoring

Video-EEG Video monitoring in combination with EEG acquisition.

Signal Digitization

Analog-to-digital converter An electronic component that samples a continuous input signal and converts it to a series of discrete 
measurements.

Sampling frequency The frequency at which the continuous input signal is converted to discrete measurements.

Nyquist rate The minimum sampling frequency required for a given application, equal to twice the maximum 
frequency content of the input signal.

Aliasing Signal distortion occurring when high frequency signal content incorrectly appears as lower frequency 
signal content during data acquisition or review.

Nyquist frequency The maximum input frequency that may be accurately captured at a given sampling frequency, equal to 
one half of the sampling frequency.

Downsampling Reducing the sampling frequency of data.

Bit resolution Refers to the number of steps the analog-to-digital converter will use to digitize the input signal – 
calculated as two to the power of the number of bits.

Dynamic range The ratio between the largest signal a system can process and the noise floor.

Voltage conversion factor A constant scaling factor used to reconstruct a digitized signal (stored as integers) to a signal 
represented in volts.

Filtering

Finite impulse response (FIR) filter A filter with a time-limited response to a very brief input.

Infinite impulse response (IIR) 
filter

A filter with a non-time-limited response to a very brief input.

Low-pass filter A filter that preferentially passes frequency content below a specified cutoff frequency, while removing 
frequency content above the cutoff frequency.

High-pass filter A filter that preferentially passes frequency content above a specified cutoff frequency, while removing 
frequency content below the cutoff frequency.

Band-pass filter A filter that preferentially passes frequency content between two cutoff frequencies, while removing all 
other frequency content.
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Group delay The time delay of different frequency components of a filtered signal, equal to the derivative of the 
phase versus frequency response.

Filter Design

Sinc function

A function commonly used to build digital FIR filters, 

Notch filter A filter that removes a specific frequency band, usually 50 or 60 Hz (the frequency of the mains power 
supply).

Spectral Analysis

Fast Fourier Transform (FFT) An efficient algorithm for decomposing a signal into a series of sine waves of different frequencies, 
often used for spectral analysis.

Joint time-frequency analysis 
(JTFA)

A class of techniques that express a signal in both time and frequency domains simultaneously, most 
commonly in order to track the evolution of the signal spectral content over time.

Short-term Fourier transform 
(STFT)

A JTFA algorithm in which an FFT is repeatedly calculated for brief, non-overlapping segments of the 
recorded signal.

Spectrogram A two-dimensional heatmap plot of the frequency content of a signal versus time, calculated using 
Fourier analysis.

Scalogram A two-dimensional heatmap plot of the frequency content of a signal versus time, calculated using 
wavelets.

Stationarity An assumed property of time-series data which posits that the statistical properties of a signal (mean, 
variance, etc) do not fundamentally change over the duration of recording.

Artifact Recognition and Rejection

Features Quantitative measures of a recorded signal.

Data Storage and Data Sharing

Metadata Information describing stored data, such as sampling frequency, date, method of collection, etc.

Header A section of a data file, usually placed at the beginning of a file, which contains information (metadata) 
explaining the rest of the data in the file.
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