Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Oct 13;73(Pt 11):1636–1641. doi: 10.1107/S2056989017014384

Crystal structures and Hirshfeld surfaces of differently substituted (E)-N′-benzyl­idene-N-methyl-2-(thio­phen-2-yl)acetohydrazides

Laura N F Cardoso a,b, Thais C M Noguiera a, Carlos R Kaiser b, James L Wardell a,c, Marcus V N de Souza a, William T A Harrison c,*
PMCID: PMC5683480  PMID: 29152340

The title compounds feature various types of weak inter­molecular inter­actions but their decomposed Hirshfeld fingerprint plots show significant differences.

Keywords: crystal structure, carbohydrazide, methyl­ation, weak hydrogen bonds

Abstract

The syntheses and crystal structures of (E)-N′-(3-cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, C15H13N3OS, (I), and (E)-N′-(4-meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, C15H16N2O2S, (II), with different substituents in the meta and para position of the benzene ring are described. Compounds (I) and (II) both crystallize with two mol­ecules in the asymmetric unit, with generally similar conformations [r.m.s. overlay fits for (I) and (II) of 0.334 and 0.280 Å, respectively] that approximate to L-shapes. The thio­phene rings in (I) are well ordered, whereas those in (II) exhibit ‘flip’ rotational disorder [occupancies 0.662 (2) and 0.338 (2) for mol­ecule 1, and 0.549 (3) and 0.451 (3) for mol­ecule 2]. The packing for (I) features short C—H⋯O inter­actions arising from the C—H grouping adjacent to the cyanide group and C—H⋯Nc (c = cyanide) links arising from the methine groups to generate [110] double chains. Weak C—H⋯π inter­actions inter­link the chains into a three-dimensional network. The packing for (II) features numerous C—H⋯O and C—H⋯π inter­actions arising from different donor groups to generate a three-dimensional network. Hirshfeld fingerprint plots indicate significant differences in the percentage contact surfaces for (I) and (II).

Chemical context  

Thio­phene derivatives are important heterocyclic compounds widely used as building blocks in many agrochemicals and pharmaceuticals (Swanston, 2006). A valuable group of thio­phenyl derivatives are the series of acyl­hydrazine derivatives, 2-[ArCH=N—NRCO(CH2)n-thio­phene, where R = Me or H, and n = 0 or 1. Recent studies have investigated their anti-TB activities (Cardoso et al., 2014) and anti-cancer activities (Cardoso et al., 2017). We now report the crystal structures of two derivatives of the 2-[ArCH=N—NMeCOCH2-thio­phene series, bearing different substituents at the meta and para positions of the benzene ring, viz. (E)-N′-(3-cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (I), and (E)-N′-(4-meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (II). These complement our recent structural study (Cardoso et al., 2016a ) of isomeric ortho-, meta- and para-nitro derivatives in the same family.

Structural commentary  

The mol­ecular structure of (I) is shown in Fig. 1, which indicates the presence of two mol­ecules, A (containing S1) and B (containing S2), in the asymmetric unit of the triclinic unit cell. The thio­phene rings are well ordered [C11—S1—C14 = 92.14 (8); C26—S2—C29 = 92.39 (8)°]. For mol­ecule A, the dihedral angle between the thio­phene and benzene rings is 64.44 (5)°. The central CH=N—N(CH3)—C(=O) fragment (C7/C8/C9/N1/N2/O1) in (I) is almost planar (r.m.s. deviation = 0.022 Å) and subtends dihedral angles of 2.28 (9) and 66.47 (5)° with the benzene and thio­phene rings, respectively. The major twist in the mol­ecule occurs about the C9—C10 bond [N2—C9—C10—C11 = −91.98 (16)°], giving the mol­ecule an approximate overall L-shape. As seen for related compounds (Cardoso et al., 2016a ), the N1—N2 bond length of 1.3797 (17) Å is significantly shortened compared to the reference value of ∼1.41 Å for an isolated N—N single bond and the C9—N2 amide bond of 1.3702 (19) Å is lengthened: these distance data can be inter­preted in terms of significant delocalization of electrons over the methyl­idene–acetohydrazide fragment of the mol­ecule. For mol­ecule B, comparable geometrical data are as follows: C16–C21 benzene ring = A, C26–C29/S2 thio­phene ring = B, C22/N4/N5/C23/C4/O2 linking chain (r.m.s. deviation = 0.033 Å) = C; dihedral angles A/B, A/C and B/C = 66.40 (8), 10.85 (9) and 58.33 (5)°, respectively; N5—C24—C25—C26 = −82.29 (18)°, N4—N5 = 1.3651 (17), C24—N5 = 1.3766 (19) Å. These data are generally similar to the corresponding values for mol­ecule A and the r.m.s. overlay fit of mol­ecules A and B of 0.334 Å and visual inspection (Fig. 2) confirms this.graphic file with name e-73-01636-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I) showing 50% displacement ellipsoids.

Figure 2.

Figure 2

Overlay plot of mol­ecules A (red) and B (black) for (I).

Compound (II) (Fig. 3) also crystallizes in space group P Inline graphic with Z′ = 2 (mol­ecule A containing S1 and mol­ecule B containing S2). In this case, both thio­phene ring show ‘flip’ disorder over two conformations rotated by ∼180° in a 0.662 (2):0.338 (2) ratio about the C10—C11 bond for A and a 0.549 (3):0.451 (3) ratio about the C25—C26 bond for B. The major orientation for A has the S atom pointing towards the benzene ring. For B, the disorder is close to statistical, but there is a slight preference for the S atom to point away from the benzene ring. For mol­ecule A, the dihedral angle between the thio­phene and benzene rings is 79.38 (7)°. The central CH=N—N(CH3)—C(=O) fragment (C7/C8/C9/N1/N2/O1) is almost planar (r.m.s. deviation = 0.013 Å) and the benzene and thio­phene rings are twisted from it by 0.89 (12) and 78.80 (9)°, respectively. Thus, as for (I), the major twist in the mol­ecule occurs about C9—C10 [N2—C9—C10—C11 = −86.1 (3)°], and an approximate overall L-shape results. Atom C15 of the meth­oxy group deviates slightly, by 0.068 (2) Å, from the plane of its attached ring. The N1—N2 [1.3780 (16) Å] and C9—N2 [1.3690 (18) Å] bond lengths show the same pattern as for (I), again indicating delocalization of electrons over the central grouping. Corresponding data for mol­ecule B in (II) are as follows: C16–C21 benzene ring = A, C26–C29/S2 thio­phene ring = B, C22/N3/N4/C23/C4/O3 linking chain (r.m.s. deviation = 0.021 Å) = C; dihedral angles A/B, A/C and B/C = 70.61 (8), 9.73 (17) and 77.66 (6)°, respectively; N4—C24—C25—C26 = 84.33 (17)°, N3—N4 = 1.3768 (17), C24—N4 = 1.375 (2) Å, displacement of C30 from the A ring = 0.155 (3) Å. Again, the two mol­ecules have broadly similar conformations (Fig. 4) and the r.m.s. overlay fit is 0.280 Å.

Figure 3.

Figure 3

The mol­ecular structure of (II) showing 50% displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

Figure 4.

Figure 4

Overlay plot of mol­ecules A (red) and B (black) for (II). Only the major orientation of the thio­phene ring is shown.

Supra­molecular features  

Given that there are no classical donor groups, the packing motifs for (I) and (II) are dominated by a variety of non-classical C—H⋯O, C—H⋯N and C—H⋯S, C—H⋯π and π-π- inter­actions (Tables 1 and 2).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.31 3.1691 (19) 151
C7—H7⋯N6ii 0.95 2.53 3.452 (2) 164
C19—H19⋯O2i 0.95 2.27 3.1980 (19) 164
C22—H22⋯N3iii 0.95 2.61 3.536 (2) 164
C10—H10BCg4iv 0.99 2.97 3.4724 (18) 113
C12—H12⋯Cg3 0.95 2.60 3.436 (2) 147
C23—H23CCg2iv 0.98 2.90 3.5646 (19) 126
C25—H25BCg1v 0.99 2.71 3.6910 (18) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S1i 0.95 2.87 3.7326 (14) 152
C10—H10B⋯O3 0.99 2.56 3.5366 (19) 169
C13—H13⋯O2ii 0.95 2.58 3.499 (2) 164
C15—H15A⋯O3iii 0.98 2.50 3.478 (2) 176
C25—H25A⋯O1 0.99 2.38 3.3206 (19) 157
C28—H28⋯O4iv 0.95 2.42 3.307 (2) 156
C29—H29⋯O1v 0.95 2.50 3.422 (2) 163
C30—H30A⋯O1vi 0.98 2.45 3.419 (2) 168
C6—H6⋯Cg1i 0.95 2.67 3.6071 (15) 169
C8—H8CCg2i 0.98 2.72 3.4831 (16) 135
C21—H21⋯Cg3vii 0.95 2.90 3.6721 (18) 140
C23—H23ACg4vii 0.98 2.81 3.6560 (16) 145
C23—H23CCg4viii 0.98 2.88 3.6067 (16) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

In (I), it is notable that both C—H groupings adjacent to the cyanide groups [i.e.:C4 (mol­ecule A) and C19 (mol­ecule B) in the 4-positions of the benzene rings] participate in short C—H⋯O inter­actions to generate separate [110] chains of A and B mol­ecules, both of which feature C(10) chain motifs, with adjacent mol­ecules in the chain related by translation symmetry. We may speculate that these C—H groupings have been ‘activated’ (made more acidic) by being adjacent to the electron-withdrawing cyanide group (Pedireddi & Desiraju, 1992). The chains are cross-linked by C—H⋯N hydrogen bonds: in each case the donor is the methine group [i.e. C7 (mol­ecule A) and C22 (mol­ecule B)] and the acceptor is the cyanide-N atom of the other asymmetric mol­ecule, i.e. AB and BA. This results in double chains (Fig. 5) propagating in [110] in which Inline graphic(18) loops are apparent. The chains are cross-linked by C—H⋯π inter­actions, with all the rings (i.e. both thio­phene and both benzene rings) acting as acceptors. The shortest centroid–centroid separation between aromatic rings is 3.9895 (10) Å, indicating that any π–π stacking effects in (I) are very weak at best.

Figure 5.

Figure 5

Fragment of a [110] hydrogen-bonded chain in the crystal of (I). Symmetry codes as in Table 1; additionally (iv) x + 1, y, z − 1. All hydrogen atoms not involved in hydrogen bonds omitted for clarity.

The packing for (II) is less ‘tidy’ in the sense that C—H entities belonging to several different groups (benzene ring, methyl­ene group adjacent to the thio­phene ring, thio­phene ring, meth­oxy group) act as donors and none of the C—H⋯O links are particularly short. There are mol­ecule A → mol­ecule A, AB, BA and BB links. Perhaps the most notable are a pair of bonds arising from the methyl­ene groups that generate A + B dimers incorporating Inline graphic(8) loops, as shown in Fig. 3 above. A number of C—H⋯π inter­actions are observed, with all the rings acting as acceptors, but there are no aromatic π–π stacking inter­actions in (II) (shortest centroid–centroid separation > 4.9Å). When the different inter­molecular inter­actions are taken together, a three-dimensional network arises in the crystal of (II).

Hirshfeld analysis  

Hirshfeld surface fingerprint plots for (I) (Fig. 6) and (II) (Fig. 7) were calculated with CrystalExplorer17 (Turner et al., 2017). The plot for (I) has ‘wingtip’ features that correspond to the short C—H⋯O hydrogen bonds described above, although the wingtips are not as pronounced as those seen for classical hydrogen bonds (compare: McKinnon et al., 2007). In (II), the wingtips are less apparent, presumably reflecting the longer (and weaker) C—H⋯O inter­actions in this structure, even though there are more of them in (II) than in (I).

Figure 6.

Figure 6

Hirshfeld fingerprint plot for (I)

Figure 7.

Figure 7

Hirshfeld fingerprint plot for (II)

When the fingerprint plots for (I) and (II) are decomposed into the separate types of contacts (McKinnon et al., 2007), some inter­esting differences arise (Table 3): H⋯H contacts represent the highest percentage in both structures, but they are far more significant in (II), representing over half the contact area, some 20% more than in (I). This deficit is largely made up by N⋯H/H⋯N contacts (i.e. the C—H⋯N hydrogen bonds) in (I), which are barely present in (II). The O⋯H/H⋯O contacts are slightly higher in (II) than (I), presumably reflecting that fact that there are many more C—H⋯O bonds in (II) (compare Table 2), although the H⋯O contacts are shorter in (I). The percentages of C⋯H/H⋯C contacts in the two compounds are very similar, whereas C⋯C contacts are insignificant in both structures, which presumably correlates with the very weak π–π stacking described above. Finally, S⋯H/H⋯S contacts are clearly more prominent in (I) although any C—H⋯S bonds in (I) would be regarded as very weak at best (shortest H⋯S separation = 2.95 Å). When the two mol­ecules in the asymmetric unit of (I) are compared with each other (Table 3), there is little difference between them and the same applies to (II).

Table 3. Hirshfeld contact inter­actions (%).

Contact type (I) A (I) B (I) (II) A (II) B (II)
H⋯H 30.8 35.1 33.0 51.0 53.9 52.5
C⋯H/H⋯C 27.1 25.7 26.4 23.9 22.6 23.2
O⋯H/H⋯O 8.4 9.4 8.9 13.7 14.5 14.1
N⋯H/H⋯N 16.2 14.1 15.1 2.6 2.3 2.4
C⋯C 2.9 3.0 2.9 2.1 1.6 1.8
C⋯N/N⋯C 2.8 3.8 3.3 1.8 2.6 2.2
S⋯H/H⋯S 9.0 6.9 7.9 3.5 2.2 2.9
others 2.8 2.0 2.4 1.4 0.3 0.9

Database survey  

A survey of the Cambridge Structural Database (Groom et al., 2016) updated to September 2017 for the common central –CH=N—N(CH3)—C(=O)—CH2– fragment of the title compounds revealed seven matches, viz. ALAHEC (Cardoso et al., 2016b ); FOTMUX (Ramírez et al., 2009a ); KULREP (Ramírez et al., 2009b ); OFEBIL (Cao et al., 2007), and EYUBAD, EYUBEH and EYUBIL: this latter trio of refcodes correspond to the three isomeric nitro compounds (Cardoso et al., 2016a ) noted in the Chemical Context section above.

Synthesis and crystallization  

The appropriate thienyl acetohydrazide derivative (Cardoso et al., 2014) (0.20 g, 1.0 equiv.) was suspended in acetone (5 ml) and potassium carbonate (4.0 equiv.) was added. The reaction mixture was stirred at room temperature for 30 minutes and methyl iodide (4.0 equiv.) was added. The reaction mixture was maintained at 313 K, until TLC indicated the reaction was complete. The mixture was then rotary evaporated to leave a residue, which was dissolved in water (20 ml) and extracted with ethyl acetate (3 × 10 ml). The organic fractions were combined, dried with anhydrous MgSO4, filtered and the solvent evaporated at reduced pressure. The crystals used for the intensity data collections were recrystallized from methanol solution at room temperature to yield colourless plates of (I) and colourless slabs of (II).

(E)-N′-(3-Cyano­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (I). Yield: 78%; yellow solid; m.p. 690–692 K. 1H NMR (400 MHz; DMSO) δ: 8.24 (1H; s; N=CH), 8.14 (1H; d; J HH = 7.9 Hz; H-11′), 8.04 (1H; s; H-7′), 7.87 (1H; d; J HH = 7.7 Hz; H-9′), 7.70–7.66 (1H; m; H-10′), 7.36 (1H; dd; J HH = 5.1 and 1.2 Hz; H-5), 6.99–6.98 (1H; m; H-3), 6.96–6.94 (1H; m; H-4) 4.41 (2H; s; CH2), 3.33 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 170.9 (C=O), 138.5 (N=CH), 137.0 (C-2), 136.0 (C-6′ and C-9′), 132.8 (C-11′), 131.4 (C-7′), 130.4 (C-10′), 130.0 (C-3), 126.7 (C-4), 125.2 (C-5), 118.5 (CN), 111.9 (C-8′), 34.3 (N—CH3), 28.1 (CH2). MS/ESI: [M + Na]: 306. IR νmax (cm−1; KBr pellets): 1678 (C=O); 3101 (N—CH3).

(E)-N′-(4-Meth­oxy­benzyl­idene)-N-methyl-2-(thio­phen-2-yl)acetohydrazide, (II). Yield: 62%; yellow solid; m.p. 629–630 K. 1H NMR (400 MHz; DMSO) δ: 7.94 (1H; s; N=CH), 7.76 (2H; d; J HH = 8.6; H-7′ and H-11′), 7.34 (1H; d; J HH = 4.8 Hz; H-5), 7.03 (2H; d; J HH = 8.6 Hz; H-9′ and H-8′ and H-10′), 6.97–6.93 (2H; m; H-3 and H-4), 4.34 (2H; s; CH2), 3.81 (3H; s; OCH3) 3.33 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 170.4 (C=O), 160.5 (C-9′), 140.4 (N=CH), 137.2 (C-2), 128.6 (C-7′ and C-11′), 127.3 (C-3), 126.5 (C-6′), 126.4 (C-4), 125.0 (C-5), 114.2 (C-8′ and C-10′), 55.2 (OCH3), 34.3 (N—CH3), 27.8 (CH2). MS/ESI: [M + Na]: 299. IR νmax (cm−1; KBr pellet): 1668 (C=O); 2962 (N—CH3).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The hydrogen atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) or 1.5U eq(methyl carrier) was applied in all cases. The N-methyl group was allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction): in every case this group rotated from its initial orientation to minimize steric inter­action with H7; the final orientation leads to a rather short C8—H⋯O1 intra­molecular contact but we do not regard this as a bond. The thio­phene rings in both mol­ecules of (II) show ‘flip’ rotational disorder.

Table 4. Experimental details.

  (I) (II)
Crystal data
Chemical formula C15H13N3OS C15H16N2O2S
M r 283.34 288.36
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 100 100
a, b, c (Å) 9.3594 (7), 10.1143 (7), 15.8070 (12) 7.2148 (5), 8.8307 (5), 24.1120 (17)
α, β, γ (°) 106.704 (5), 92.432 (7), 106.777 (5) 80.025 (6), 87.601 (7), 76.097 (6)
V3) 1359.31 (18) 1468.67 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.24 0.22
Crystal size (mm) 0.18 × 0.12 × 0.03 0.19 × 0.13 × 0.05
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (CrystalClear; Rigaku, 2012) Multi-scan (CrystalClear; Rigaku, 2012)
T min, T max 0.786, 1.000 0.820, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18105, 6217, 5204 19273, 6732, 5764
R int 0.034 0.038
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.104, 1.04 0.044, 0.127, 1.06
No. of reflections 6217 6732
No. of parameters 363 367
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.32 0.63, −0.51

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017014384/vm2205sup1.cif

e-73-01636-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014384/vm2205Isup2.hkl

e-73-01636-Isup2.hkl (494.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017014384/vm2205IIsup3.hkl

e-73-01636-IIsup3.hkl (534.9KB, hkl)

CCDC references: 1578318, 1578317

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

supplementary crystallographic information

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Crystal data

C15H13N3OS Z = 4
Mr = 283.34 F(000) = 592
Triclinic, P1 Dx = 1.385 Mg m3
a = 9.3594 (7) Å Mo Kα radiation, λ = 0.71075 Å
b = 10.1143 (7) Å Cell parameters from 15155 reflections
c = 15.8070 (12) Å θ = 2.2–27.5°
α = 106.704 (5)° µ = 0.24 mm1
β = 92.432 (7)° T = 100 K
γ = 106.777 (5)° Plate, colourless
V = 1359.31 (18) Å3 0.18 × 0.12 × 0.03 mm

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Data collection

Rigaku Mercury CCD diffractometer 5204 reflections with I > 2σ(I)
ω scans Rint = 0.034
Absorption correction: multi-scan (CrystalClear; Rigaku, 2012) θmax = 27.5°, θmin = 2.6°
Tmin = 0.786, Tmax = 1.000 h = −11→12
18105 measured reflections k = −12→13
6217 independent reflections l = −20→20

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4808P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6217 reflections Δρmax = 0.51 e Å3
363 parameters Δρmin = −0.32 e Å3
0 restraints

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.44883 (17) 0.46449 (16) 0.16930 (10) 0.0182 (3)
C2 0.44634 (18) 0.57507 (16) 0.24628 (10) 0.0198 (3)
H2 0.3740 0.5550 0.2851 0.024*
C3 0.54885 (18) 0.71367 (16) 0.26619 (10) 0.0196 (3)
H3 0.5453 0.7879 0.3182 0.024*
C4 0.65642 (18) 0.74502 (16) 0.21093 (10) 0.0207 (3)
H4 0.7269 0.8397 0.2250 0.025*
C5 0.65933 (17) 0.63477 (16) 0.13419 (10) 0.0183 (3)
C6 0.55554 (17) 0.49516 (16) 0.11306 (10) 0.0180 (3)
H6 0.5579 0.4215 0.0604 0.022*
C7 0.34349 (17) 0.31634 (16) 0.14643 (10) 0.0187 (3)
H7 0.3492 0.2430 0.0946 0.022*
C8 0.15716 (19) 0.03219 (16) 0.09561 (10) 0.0227 (3)
H8A 0.1446 0.0603 0.0421 0.034*
H8B 0.0780 −0.0588 0.0904 0.034*
H8C 0.2560 0.0183 0.1018 0.034*
C9 0.04341 (17) 0.11622 (16) 0.23031 (10) 0.0202 (3)
C10 0.03819 (17) 0.24178 (16) 0.30984 (10) 0.0196 (3)
H10A 0.0702 0.3332 0.2944 0.024*
H10B −0.0668 0.2255 0.3230 0.024*
C11 0.13786 (17) 0.25767 (15) 0.39154 (10) 0.0182 (3)
C12 0.09228 (19) 0.22118 (17) 0.46509 (10) 0.0228 (3)
H12 −0.0103 0.1799 0.4709 0.027*
C13 0.2143 (2) 0.25137 (18) 0.53227 (11) 0.0260 (3)
H13 0.2019 0.2329 0.5876 0.031*
C14 0.35045 (19) 0.30956 (17) 0.50833 (11) 0.0251 (3)
H14 0.4440 0.3371 0.5449 0.030*
C15 0.77123 (18) 0.66406 (16) 0.07614 (10) 0.0201 (3)
N1 0.24352 (14) 0.28688 (13) 0.19727 (8) 0.0185 (3)
N2 0.14646 (15) 0.14648 (13) 0.17394 (8) 0.0194 (3)
N3 0.86018 (16) 0.68439 (14) 0.02951 (9) 0.0244 (3)
O1 −0.04085 (14) −0.00766 (12) 0.21693 (8) 0.0268 (3)
S1 0.33237 (4) 0.32713 (4) 0.40385 (3) 0.02304 (10)
C16 0.12951 (17) 0.59905 (16) 0.81831 (10) 0.0178 (3)
C17 0.19830 (17) 0.55084 (16) 0.74397 (10) 0.0193 (3)
H17 0.1600 0.4524 0.7071 0.023*
C18 0.32126 (17) 0.64447 (16) 0.72338 (10) 0.0199 (3)
H18 0.3666 0.6096 0.6726 0.024*
C19 0.37944 (18) 0.78915 (17) 0.77615 (10) 0.0212 (3)
H19 0.4638 0.8534 0.7617 0.025*
C20 0.31126 (18) 0.83843 (16) 0.85109 (10) 0.0204 (3)
C21 0.18679 (17) 0.74391 (16) 0.87227 (10) 0.0192 (3)
H21 0.1414 0.7782 0.9232 0.023*
C22 −0.00144 (17) 0.50111 (16) 0.84135 (10) 0.0183 (3)
H22 −0.0419 0.5329 0.8948 0.022*
C23 −0.23822 (18) 0.31465 (17) 0.89282 (10) 0.0212 (3)
H23A −0.1578 0.3386 0.9417 0.032*
H23B −0.3220 0.2317 0.8951 0.032*
H23C −0.2736 0.3987 0.8988 0.032*
C24 −0.24432 (18) 0.14399 (16) 0.74387 (10) 0.0205 (3)
C25 −0.17210 (19) 0.11278 (16) 0.65922 (10) 0.0209 (3)
H25A −0.0613 0.1532 0.6752 0.025*
H25B −0.1977 0.0061 0.6323 0.025*
C26 −0.21947 (17) 0.17434 (16) 0.59025 (10) 0.0189 (3)
C27 −0.30906 (18) 0.09509 (18) 0.51024 (11) 0.0240 (3)
H27 −0.3551 −0.0073 0.4928 0.029*
C28 −0.32632 (19) 0.18168 (19) 0.45580 (11) 0.0270 (4)
H28 −0.3847 0.1437 0.3985 0.032*
C29 −0.24891 (19) 0.32583 (18) 0.49576 (11) 0.0248 (3)
H29 −0.2465 0.3998 0.4694 0.030*
C30 0.37254 (18) 0.98796 (17) 0.90659 (11) 0.0225 (3)
N4 −0.05999 (14) 0.37105 (13) 0.78716 (8) 0.0177 (3)
N5 −0.18037 (15) 0.27735 (13) 0.80764 (8) 0.0193 (3)
N6 0.42280 (17) 1.10717 (15) 0.95097 (9) 0.0275 (3)
O2 −0.35504 (14) 0.05496 (12) 0.75548 (8) 0.0281 (3)
S2 −0.15679 (5) 0.35686 (4) 0.59911 (3) 0.02189 (10)

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0199 (8) 0.0169 (7) 0.0193 (7) 0.0065 (6) 0.0007 (6) 0.0074 (6)
C2 0.0208 (8) 0.0197 (7) 0.0198 (7) 0.0069 (6) 0.0033 (6) 0.0069 (6)
C3 0.0223 (8) 0.0176 (7) 0.0174 (7) 0.0065 (6) 0.0021 (6) 0.0029 (6)
C4 0.0212 (8) 0.0175 (7) 0.0223 (8) 0.0042 (6) 0.0014 (6) 0.0068 (6)
C5 0.0192 (8) 0.0195 (7) 0.0179 (7) 0.0068 (6) 0.0022 (6) 0.0080 (6)
C6 0.0201 (8) 0.0179 (7) 0.0171 (7) 0.0080 (6) 0.0015 (6) 0.0055 (6)
C7 0.0207 (8) 0.0165 (7) 0.0175 (7) 0.0060 (6) −0.0003 (6) 0.0035 (6)
C8 0.0276 (9) 0.0159 (7) 0.0195 (7) 0.0028 (6) 0.0031 (6) 0.0019 (6)
C9 0.0194 (8) 0.0189 (7) 0.0210 (7) 0.0044 (6) 0.0000 (6) 0.0062 (6)
C10 0.0176 (7) 0.0194 (7) 0.0223 (7) 0.0074 (6) 0.0038 (6) 0.0057 (6)
C11 0.0172 (7) 0.0143 (6) 0.0217 (7) 0.0062 (6) 0.0038 (6) 0.0019 (6)
C12 0.0210 (8) 0.0266 (8) 0.0213 (8) 0.0114 (6) 0.0076 (6) 0.0038 (6)
C13 0.0300 (9) 0.0307 (8) 0.0177 (7) 0.0149 (7) 0.0043 (6) 0.0028 (6)
C14 0.0246 (8) 0.0238 (8) 0.0235 (8) 0.0101 (6) −0.0023 (6) 0.0007 (6)
C15 0.0220 (8) 0.0161 (7) 0.0205 (7) 0.0051 (6) −0.0003 (6) 0.0046 (6)
N1 0.0191 (7) 0.0142 (6) 0.0205 (6) 0.0035 (5) −0.0001 (5) 0.0049 (5)
N2 0.0218 (7) 0.0128 (6) 0.0191 (6) 0.0022 (5) 0.0020 (5) 0.0019 (5)
N3 0.0259 (7) 0.0223 (7) 0.0219 (7) 0.0049 (6) 0.0046 (6) 0.0048 (5)
O1 0.0274 (6) 0.0181 (5) 0.0268 (6) −0.0018 (5) 0.0043 (5) 0.0038 (5)
S1 0.0175 (2) 0.02163 (19) 0.0281 (2) 0.00403 (15) 0.00253 (15) 0.00725 (16)
C16 0.0182 (7) 0.0169 (7) 0.0187 (7) 0.0056 (6) −0.0002 (6) 0.0065 (6)
C17 0.0202 (8) 0.0169 (7) 0.0201 (7) 0.0059 (6) 0.0003 (6) 0.0052 (6)
C18 0.0206 (8) 0.0225 (7) 0.0174 (7) 0.0080 (6) 0.0033 (6) 0.0063 (6)
C19 0.0197 (8) 0.0216 (7) 0.0224 (8) 0.0042 (6) 0.0005 (6) 0.0095 (6)
C20 0.0226 (8) 0.0170 (7) 0.0201 (7) 0.0046 (6) −0.0021 (6) 0.0060 (6)
C21 0.0206 (8) 0.0192 (7) 0.0183 (7) 0.0060 (6) 0.0012 (6) 0.0069 (6)
C22 0.0199 (8) 0.0185 (7) 0.0176 (7) 0.0073 (6) 0.0027 (6) 0.0057 (6)
C23 0.0241 (8) 0.0208 (7) 0.0185 (7) 0.0060 (6) 0.0050 (6) 0.0063 (6)
C24 0.0241 (8) 0.0163 (7) 0.0215 (7) 0.0064 (6) 0.0025 (6) 0.0066 (6)
C25 0.0264 (8) 0.0146 (7) 0.0208 (7) 0.0071 (6) 0.0045 (6) 0.0035 (6)
C26 0.0201 (8) 0.0174 (7) 0.0194 (7) 0.0071 (6) 0.0067 (6) 0.0044 (6)
C27 0.0212 (8) 0.0251 (8) 0.0221 (8) 0.0049 (6) 0.0039 (6) 0.0045 (6)
C28 0.0243 (9) 0.0352 (9) 0.0221 (8) 0.0121 (7) 0.0015 (6) 0.0072 (7)
C29 0.0288 (9) 0.0297 (8) 0.0211 (8) 0.0159 (7) 0.0060 (6) 0.0089 (6)
C30 0.0235 (8) 0.0210 (8) 0.0228 (8) 0.0041 (6) 0.0041 (6) 0.0093 (6)
N4 0.0178 (6) 0.0165 (6) 0.0198 (6) 0.0047 (5) 0.0031 (5) 0.0078 (5)
N5 0.0203 (7) 0.0168 (6) 0.0201 (6) 0.0041 (5) 0.0059 (5) 0.0063 (5)
N6 0.0310 (8) 0.0216 (7) 0.0260 (7) 0.0038 (6) 0.0058 (6) 0.0060 (6)
O2 0.0301 (7) 0.0188 (5) 0.0294 (6) −0.0007 (5) 0.0063 (5) 0.0068 (5)
S2 0.0295 (2) 0.01730 (18) 0.01936 (19) 0.00892 (15) 0.00386 (15) 0.00484 (14)

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Geometric parameters (Å, º)

C1—C6 1.392 (2) C16—C17 1.396 (2)
C1—C2 1.403 (2) C16—C21 1.397 (2)
C1—C7 1.467 (2) C16—C22 1.470 (2)
C2—C3 1.389 (2) C17—C18 1.381 (2)
C2—H2 0.9500 C17—H17 0.9500
C3—C4 1.388 (2) C18—C19 1.391 (2)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.399 (2) C19—C20 1.402 (2)
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.400 (2) C20—C21 1.399 (2)
C5—C15 1.444 (2) C20—C30 1.442 (2)
C6—H6 0.9500 C21—H21 0.9500
C7—N1 1.2848 (19) C22—N4 1.2887 (19)
C7—H7 0.9500 C22—H22 0.9500
C8—N2 1.4607 (19) C23—N5 1.4615 (19)
C8—H8A 0.9800 C23—H23A 0.9800
C8—H8B 0.9800 C23—H23B 0.9800
C8—H8C 0.9800 C23—H23C 0.9800
C9—O1 1.2246 (18) C24—O2 1.2210 (19)
C9—N2 1.3702 (19) C24—N5 1.3766 (19)
C9—C10 1.523 (2) C24—C25 1.518 (2)
C10—C11 1.502 (2) C25—C26 1.510 (2)
C10—H10A 0.9900 C25—H25A 0.9900
C10—H10B 0.9900 C25—H25B 0.9900
C11—C12 1.367 (2) C26—C27 1.373 (2)
C11—S1 1.7316 (16) C26—S2 1.7294 (15)
C12—C13 1.426 (2) C27—C28 1.427 (2)
C12—H12 0.9500 C27—H27 0.9500
C13—C14 1.360 (2) C28—C29 1.368 (2)
C13—H13 0.9500 C28—H28 0.9500
C14—S1 1.7175 (17) C29—S2 1.7146 (17)
C14—H14 0.9500 C29—H29 0.9500
C15—N3 1.148 (2) C30—N6 1.151 (2)
N1—N2 1.3797 (17) N4—N5 1.3651 (17)
C6—C1—C2 119.22 (14) C17—C16—C21 119.18 (14)
C6—C1—C7 118.67 (13) C17—C16—C22 121.66 (14)
C2—C1—C7 122.10 (14) C21—C16—C22 119.17 (13)
C3—C2—C1 120.46 (14) C18—C17—C16 120.83 (14)
C3—C2—H2 119.8 C18—C17—H17 119.6
C1—C2—H2 119.8 C16—C17—H17 119.6
C4—C3—C2 120.75 (14) C17—C18—C19 120.78 (14)
C4—C3—H3 119.6 C17—C18—H18 119.6
C2—C3—H3 119.6 C19—C18—H18 119.6
C3—C4—C5 118.88 (14) C18—C19—C20 118.77 (14)
C3—C4—H4 120.6 C18—C19—H19 120.6
C5—C4—H4 120.6 C20—C19—H19 120.6
C4—C5—C6 120.80 (14) C21—C20—C19 120.65 (14)
C4—C5—C15 119.99 (13) C21—C20—C30 120.45 (14)
C6—C5—C15 119.21 (13) C19—C20—C30 118.90 (14)
C1—C6—C5 119.88 (14) C16—C21—C20 119.79 (14)
C1—C6—H6 120.1 C16—C21—H21 120.1
C5—C6—H6 120.1 C20—C21—H21 120.1
N1—C7—C1 119.32 (13) N4—C22—C16 118.31 (13)
N1—C7—H7 120.3 N4—C22—H22 120.8
C1—C7—H7 120.3 C16—C22—H22 120.8
N2—C8—H8A 109.5 N5—C23—H23A 109.5
N2—C8—H8B 109.5 N5—C23—H23B 109.5
H8A—C8—H8B 109.5 H23A—C23—H23B 109.5
N2—C8—H8C 109.5 N5—C23—H23C 109.5
H8A—C8—H8C 109.5 H23A—C23—H23C 109.5
H8B—C8—H8C 109.5 H23B—C23—H23C 109.5
O1—C9—N2 120.86 (14) O2—C24—N5 120.83 (14)
O1—C9—C10 121.55 (14) O2—C24—C25 121.72 (14)
N2—C9—C10 117.60 (13) N5—C24—C25 117.45 (13)
C11—C10—C9 112.24 (12) C26—C25—C24 114.41 (13)
C11—C10—H10A 109.2 C26—C25—H25A 108.7
C9—C10—H10A 109.2 C24—C25—H25A 108.7
C11—C10—H10B 109.2 C26—C25—H25B 108.7
C9—C10—H10B 109.2 C24—C25—H25B 108.7
H10A—C10—H10B 107.9 H25A—C25—H25B 107.6
C12—C11—C10 126.61 (14) C27—C26—C25 125.78 (14)
C12—C11—S1 110.52 (12) C27—C26—S2 110.37 (12)
C10—C11—S1 122.87 (11) C25—C26—S2 123.74 (11)
C11—C12—C13 113.18 (15) C26—C27—C28 113.37 (15)
C11—C12—H12 123.4 C26—C27—H27 123.3
C13—C12—H12 123.4 C28—C27—H27 123.3
C14—C13—C12 112.47 (15) C29—C28—C27 112.07 (15)
C14—C13—H13 123.8 C29—C28—H28 124.0
C12—C13—H13 123.8 C27—C28—H28 124.0
C13—C14—S1 111.68 (13) C28—C29—S2 111.79 (12)
C13—C14—H14 124.2 C28—C29—H29 124.1
S1—C14—H14 124.2 S2—C29—H29 124.1
N3—C15—C5 178.57 (16) N6—C30—C20 179.34 (19)
C7—N1—N2 117.84 (12) C22—N4—N5 119.44 (13)
C9—N2—N1 116.96 (12) N4—N5—C24 116.38 (12)
C9—N2—C8 120.85 (12) N4—N5—C23 122.32 (12)
N1—N2—C8 122.11 (12) C24—N5—C23 121.30 (13)
C14—S1—C11 92.14 (8) C29—S2—C26 92.39 (8)
C6—C1—C2—C3 0.1 (2) C21—C16—C17—C18 −0.2 (2)
C7—C1—C2—C3 179.36 (14) C22—C16—C17—C18 −179.99 (14)
C1—C2—C3—C4 −0.6 (2) C16—C17—C18—C19 −0.1 (2)
C2—C3—C4—C5 0.5 (2) C17—C18—C19—C20 0.3 (2)
C3—C4—C5—C6 0.2 (2) C18—C19—C20—C21 −0.2 (2)
C3—C4—C5—C15 −179.27 (14) C18—C19—C20—C30 179.21 (14)
C2—C1—C6—C5 0.5 (2) C17—C16—C21—C20 0.2 (2)
C7—C1—C6—C5 −178.73 (13) C22—C16—C21—C20 −179.92 (14)
C4—C5—C6—C1 −0.7 (2) C19—C20—C21—C16 −0.1 (2)
C15—C5—C6—C1 178.75 (13) C30—C20—C21—C16 −179.44 (14)
C6—C1—C7—N1 −179.33 (14) C17—C16—C22—N4 −5.5 (2)
C2—C1—C7—N1 1.4 (2) C21—C16—C22—N4 174.70 (14)
O1—C9—C10—C11 87.85 (18) O2—C24—C25—C26 97.62 (18)
N2—C9—C10—C11 −91.98 (16) N5—C24—C25—C26 −82.29 (18)
C9—C10—C11—C12 −106.11 (17) C24—C25—C26—C27 −109.77 (17)
C9—C10—C11—S1 73.77 (15) C24—C25—C26—S2 74.51 (17)
C10—C11—C12—C13 −179.17 (14) C25—C26—C27—C28 −175.81 (14)
S1—C11—C12—C13 0.93 (17) S2—C26—C27—C28 0.39 (18)
C11—C12—C13—C14 −0.3 (2) C26—C27—C28—C29 0.0 (2)
C12—C13—C14—S1 −0.46 (18) C27—C28—C29—S2 −0.47 (18)
C1—C7—N1—N2 −179.87 (12) C16—C22—N4—N5 179.09 (13)
O1—C9—N2—N1 −175.82 (14) C22—N4—N5—C24 175.30 (13)
C10—C9—N2—N1 4.0 (2) C22—N4—N5—C23 −5.4 (2)
O1—C9—N2—C8 0.9 (2) O2—C24—N5—N4 −177.92 (14)
C10—C9—N2—C8 −179.28 (13) C25—C24—N5—N4 2.0 (2)
C7—N1—N2—C9 178.23 (14) O2—C24—N5—C23 2.7 (2)
C7—N1—N2—C8 1.6 (2) C25—C24—N5—C23 −177.35 (13)
C13—C14—S1—C11 0.84 (13) C28—C29—S2—C26 0.59 (13)
C12—C11—S1—C14 −1.01 (12) C27—C26—S2—C29 −0.55 (12)
C10—C11—S1—C14 179.09 (12) C25—C26—S2—C29 175.74 (13)

(E)-N'-(3-Cyanobenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (I) . Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.95 2.31 3.1691 (19) 151
C7—H7···N6ii 0.95 2.53 3.452 (2) 164
C19—H19···O2i 0.95 2.27 3.1980 (19) 164
C22—H22···N3iii 0.95 2.61 3.536 (2) 164
C10—H10B···Cg4iv 0.99 2.97 3.4724 (18) 113
C12—H12···Cg3 0.95 2.60 3.436 (2) 147
C23—H23C···Cg2iv 0.98 2.90 3.5646 (19) 126
C25—H25B···Cg1v 0.99 2.71 3.6910 (18) 169

Symmetry codes: (i) x+1, y+1, z; (ii) x, y−1, z−1; (iii) x−1, y, z+1; (iv) −x, −y+1, −z+1; (v) −x, −y, −z+1.

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Crystal data

C15H16N2O2S Z = 4
Mr = 288.36 F(000) = 608
Triclinic, P1 Dx = 1.304 Mg m3
a = 7.2148 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8307 (5) Å Cell parameters from 16502 reflections
c = 24.1120 (17) Å θ = 2.4–27.5°
α = 80.025 (6)° µ = 0.22 mm1
β = 87.601 (7)° T = 100 K
γ = 76.097 (6)° Slab, colourless
V = 1468.67 (17) Å3 0.19 × 0.13 × 0.05 mm

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Data collection

Rigaku Mercury CCD diffractometer 5764 reflections with I > 2σ(I)
ω scans Rint = 0.038
Absorption correction: multi-scan (CrystalClear; Rigaku, 2012) θmax = 27.5°, θmin = 2.4°
Tmin = 0.820, Tmax = 1.000 h = −9→9
19273 measured reflections k = −11→11
6732 independent reflections l = −31→30

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.5738P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
6732 reflections Δρmax = 0.63 e Å3
367 parameters Δρmin = −0.51 e Å3
0 restraints

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.67008 (18) 0.60106 (16) −0.02475 (6) 0.0180 (3)
C2 0.5794 (2) 0.75469 (16) −0.01600 (6) 0.0203 (3)
H2 0.5751 0.7804 0.0208 0.024*
C3 0.4965 (2) 0.86847 (16) −0.06029 (6) 0.0218 (3)
H3 0.4357 0.9720 −0.0539 0.026*
C4 0.50131 (19) 0.83212 (16) −0.11471 (6) 0.0200 (3)
C5 0.5850 (2) 0.67911 (16) −0.12395 (6) 0.0203 (3)
H5 0.5857 0.6529 −0.1606 0.024*
C6 0.66768 (19) 0.56475 (16) −0.07866 (6) 0.0194 (3)
H6 0.7235 0.4600 −0.0847 0.023*
C7 0.76607 (19) 0.48091 (16) 0.02163 (6) 0.0187 (3)
H7 0.8145 0.3742 0.0166 0.022*
C8 0.9558 (2) 0.24722 (16) 0.10720 (6) 0.0214 (3)
H8A 0.8552 0.1999 0.0968 0.032*
H8B 1.0132 0.1882 0.1430 0.032*
H8C 1.0541 0.2431 0.0778 0.032*
C9 0.8960 (2) 0.46599 (17) 0.16159 (6) 0.0214 (3)
C10 0.8168 (2) 0.64228 (17) 0.16296 (6) 0.0235 (3)
H10A 0.6984 0.6816 0.1403 0.028*
H10B 0.7852 0.6583 0.2022 0.028*
C11 0.9622 (2) 0.73367 (16) 0.13961 (6) 0.0208 (3)
C12 1.13089 (14) 0.74915 (10) 0.17678 (4) 0.0390 (3) 0.662 (2)
H12 1.1602 0.7098 0.2154 0.047* 0.662 (2)
S1A 1.13089 (14) 0.74915 (10) 0.17678 (4) 0.0390 (3) 0.338 (2)
C13 1.2333 (2) 0.84657 (19) 0.13194 (8) 0.0360 (4)
H13 1.3437 0.8787 0.1407 0.043*
C14 1.1583 (2) 0.88417 (18) 0.07941 (8) 0.0320 (4)
H14 1.2118 0.9443 0.0492 0.038*
C15 0.4195 (3) 0.9248 (2) −0.21167 (7) 0.0349 (4)
H15A 0.3625 1.0230 −0.2370 0.052*
H15B 0.3453 0.8461 −0.2132 0.052*
H15C 0.5512 0.8841 −0.2234 0.052*
N1 0.78323 (16) 0.52285 (13) 0.06906 (5) 0.0181 (2)
N2 0.87351 (17) 0.41187 (13) 0.11301 (5) 0.0188 (2)
O1 0.98112 (17) 0.37640 (13) 0.20239 (4) 0.0287 (2)
O2 0.41861 (15) 0.95573 (12) −0.15535 (4) 0.0257 (2)
S1 0.96968 (7) 0.81888 (6) 0.07181 (2) 0.02516 (17) 0.662 (2)
C12A 0.96968 (7) 0.81888 (6) 0.07181 (2) 0.02516 (17) 0.338 (2)
H12A 0.8915 0.8263 0.0402 0.030* 0.338 (2)
C16 0.7764 (2) 0.37271 (18) 0.53247 (6) 0.0232 (3)
C17 0.8223 (2) 0.21881 (18) 0.51957 (6) 0.0259 (3)
H17 0.8225 0.2045 0.4814 0.031*
C18 0.8670 (2) 0.08863 (18) 0.56149 (7) 0.0273 (3)
H18 0.8965 −0.0147 0.5522 0.033*
C19 0.8691 (2) 0.10806 (18) 0.61799 (6) 0.0246 (3)
C20 0.8182 (2) 0.25909 (19) 0.63179 (6) 0.0263 (3)
H20 0.8150 0.2731 0.6700 0.032*
C21 0.7718 (2) 0.38993 (18) 0.58890 (7) 0.0261 (3)
H21 0.7363 0.4931 0.5984 0.031*
C22 0.7391 (2) 0.51354 (18) 0.48843 (6) 0.0246 (3)
H22 0.6957 0.6158 0.4983 0.030*
C23 0.6759 (2) 0.79073 (19) 0.40919 (7) 0.0303 (3)
H23A 0.5514 0.8036 0.4280 0.045*
H23B 0.6659 0.8684 0.3744 0.045*
H23C 0.7702 0.8073 0.4342 0.045*
C24 0.7715 (2) 0.60876 (19) 0.34096 (7) 0.0273 (3)
C25 0.8229 (2) 0.43990 (19) 0.32963 (6) 0.0269 (3)
H25A 0.8984 0.4346 0.2945 0.032*
H25B 0.9018 0.3700 0.3609 0.032*
C26 0.6444 (2) 0.38433 (19) 0.32416 (7) 0.0270 (3)
C27 0.58683 (12) 0.23749 (10) 0.36718 (4) 0.0472 (3) 0.549 (3)
H27 0.6492 0.1698 0.3994 0.057* 0.549 (3)
S2A 0.58683 (12) 0.23749 (10) 0.36718 (4) 0.0472 (3) 0.451 (3)
C28 0.3942 (3) 0.2460 (3) 0.33734 (10) 0.0525 (6)
H28 0.3185 0.1725 0.3502 0.063*
C29 0.3408 (3) 0.3617 (3) 0.29275 (9) 0.0481 (5)
H29 0.2236 0.3762 0.2737 0.058*
C30 0.9352 (3) −0.0128 (2) 0.71366 (7) 0.0395 (4)
H30A 0.9796 −0.1178 0.7365 0.059*
H30B 0.8089 0.0380 0.7268 0.059*
H30C 1.0253 0.0522 0.7172 0.059*
N3 0.76545 (17) 0.49815 (15) 0.43654 (5) 0.0236 (3)
N4 0.73577 (18) 0.63152 (15) 0.39574 (5) 0.0254 (3)
O3 0.7577 (2) 0.72180 (15) 0.30224 (5) 0.0378 (3)
O4 0.92322 (17) −0.02841 (13) 0.65599 (5) 0.0317 (3)
S2 0.48492 (10) 0.47394 (10) 0.27350 (3) 0.0423 (3) 0.549 (3)
C27A 0.48492 (10) 0.47394 (10) 0.27350 (3) 0.0423 (3) 0.451 (3)
H27A 0.4809 0.5607 0.2438 0.051* 0.451 (3)

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0141 (6) 0.0180 (6) 0.0235 (7) −0.0069 (5) 0.0000 (5) −0.0033 (5)
C2 0.0184 (6) 0.0208 (6) 0.0234 (7) −0.0052 (5) −0.0003 (5) −0.0073 (5)
C3 0.0185 (6) 0.0174 (6) 0.0298 (8) −0.0027 (5) −0.0019 (5) −0.0061 (5)
C4 0.0149 (6) 0.0189 (6) 0.0262 (7) −0.0057 (5) −0.0022 (5) −0.0006 (5)
C5 0.0189 (6) 0.0221 (7) 0.0215 (7) −0.0071 (5) 0.0001 (5) −0.0045 (5)
C6 0.0176 (6) 0.0170 (6) 0.0247 (7) −0.0054 (5) 0.0012 (5) −0.0046 (5)
C7 0.0171 (6) 0.0163 (6) 0.0239 (7) −0.0064 (5) 0.0015 (5) −0.0037 (5)
C8 0.0213 (7) 0.0157 (6) 0.0276 (7) −0.0059 (5) −0.0013 (5) −0.0022 (5)
C9 0.0230 (7) 0.0221 (7) 0.0195 (7) −0.0085 (5) 0.0030 (5) −0.0013 (5)
C10 0.0276 (7) 0.0225 (7) 0.0210 (7) −0.0068 (6) 0.0047 (5) −0.0053 (5)
C11 0.0238 (7) 0.0161 (6) 0.0224 (7) −0.0031 (5) 0.0001 (5) −0.0047 (5)
C12 0.0445 (6) 0.0307 (5) 0.0468 (6) −0.0145 (4) 0.0042 (4) −0.0129 (4)
S1A 0.0445 (6) 0.0307 (5) 0.0468 (6) −0.0145 (4) 0.0042 (4) −0.0129 (4)
C13 0.0294 (8) 0.0229 (7) 0.0597 (12) −0.0078 (6) −0.0071 (8) −0.0141 (7)
C14 0.0331 (8) 0.0169 (7) 0.0420 (9) −0.0014 (6) 0.0092 (7) −0.0026 (6)
C15 0.0456 (10) 0.0298 (8) 0.0263 (8) −0.0068 (7) −0.0088 (7) 0.0022 (6)
N1 0.0154 (5) 0.0176 (5) 0.0213 (6) −0.0051 (4) −0.0005 (4) −0.0012 (4)
N2 0.0196 (6) 0.0159 (5) 0.0209 (6) −0.0053 (4) −0.0010 (4) −0.0010 (4)
O1 0.0384 (6) 0.0264 (5) 0.0201 (5) −0.0084 (5) −0.0030 (4) 0.0015 (4)
O2 0.0263 (5) 0.0213 (5) 0.0265 (5) −0.0029 (4) −0.0059 (4) 0.0011 (4)
S1 0.0214 (3) 0.0195 (2) 0.0325 (3) −0.00284 (18) 0.00245 (19) −0.00200 (19)
C12A 0.0214 (3) 0.0195 (2) 0.0325 (3) −0.00284 (18) 0.00245 (19) −0.00200 (19)
C16 0.0202 (7) 0.0271 (7) 0.0231 (7) −0.0073 (5) −0.0001 (5) −0.0036 (6)
C17 0.0260 (7) 0.0289 (7) 0.0232 (7) −0.0057 (6) 0.0010 (6) −0.0066 (6)
C18 0.0273 (8) 0.0247 (7) 0.0306 (8) −0.0051 (6) 0.0006 (6) −0.0079 (6)
C19 0.0205 (7) 0.0257 (7) 0.0269 (8) −0.0072 (5) −0.0023 (5) 0.0008 (6)
C20 0.0280 (8) 0.0305 (8) 0.0219 (7) −0.0093 (6) −0.0012 (6) −0.0045 (6)
C21 0.0279 (8) 0.0238 (7) 0.0276 (8) −0.0067 (6) −0.0010 (6) −0.0059 (6)
C22 0.0233 (7) 0.0249 (7) 0.0262 (7) −0.0071 (6) −0.0015 (6) −0.0033 (6)
C23 0.0324 (8) 0.0263 (7) 0.0330 (8) −0.0101 (6) −0.0020 (6) −0.0025 (6)
C24 0.0249 (7) 0.0348 (8) 0.0243 (7) −0.0137 (6) −0.0049 (6) −0.0004 (6)
C25 0.0237 (7) 0.0349 (8) 0.0224 (7) −0.0088 (6) −0.0016 (6) −0.0024 (6)
C26 0.0248 (7) 0.0327 (8) 0.0258 (7) −0.0075 (6) −0.0005 (6) −0.0101 (6)
C27 0.0372 (5) 0.0359 (4) 0.0734 (7) −0.0118 (3) −0.0040 (4) −0.0176 (4)
S2A 0.0372 (5) 0.0359 (4) 0.0734 (7) −0.0118 (3) −0.0040 (4) −0.0176 (4)
C28 0.0597 (13) 0.0571 (13) 0.0596 (13) −0.0358 (11) 0.0136 (11) −0.0336 (11)
C29 0.0273 (9) 0.0755 (15) 0.0493 (12) −0.0116 (9) 0.0014 (8) −0.0334 (11)
C30 0.0535 (11) 0.0371 (9) 0.0285 (9) −0.0192 (8) −0.0129 (8) 0.0075 (7)
N3 0.0208 (6) 0.0265 (6) 0.0237 (6) −0.0088 (5) −0.0018 (5) −0.0002 (5)
N4 0.0261 (6) 0.0255 (6) 0.0255 (6) −0.0102 (5) −0.0030 (5) −0.0001 (5)
O3 0.0526 (8) 0.0360 (6) 0.0263 (6) −0.0197 (6) −0.0046 (5) 0.0047 (5)
O4 0.0369 (6) 0.0264 (6) 0.0304 (6) −0.0091 (5) −0.0075 (5) 0.0030 (4)
S2 0.0266 (4) 0.0548 (5) 0.0487 (5) −0.0044 (3) −0.0049 (3) −0.0236 (3)
C27A 0.0266 (4) 0.0548 (5) 0.0487 (5) −0.0044 (3) −0.0049 (3) −0.0236 (3)

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Geometric parameters (Å, º)

C1—C6 1.3935 (19) C16—C21 1.393 (2)
C1—C2 1.4051 (18) C16—C17 1.405 (2)
C1—C7 1.4686 (19) C16—C22 1.467 (2)
C2—C3 1.379 (2) C17—C18 1.376 (2)
C2—H2 0.9500 C17—H17 0.9500
C3—C4 1.401 (2) C18—C19 1.403 (2)
C3—H3 0.9500 C18—H18 0.9500
C4—O2 1.3687 (17) C19—O4 1.3659 (18)
C4—C5 1.3931 (19) C19—C20 1.390 (2)
C5—C6 1.3970 (19) C20—C21 1.395 (2)
C5—H5 0.9500 C20—H20 0.9500
C6—H6 0.9500 C21—H21 0.9500
C7—N1 1.2811 (18) C22—N3 1.283 (2)
C7—H7 0.9500 C22—H22 0.9500
C8—N2 1.4611 (17) C23—N4 1.457 (2)
C8—H8A 0.9800 C23—H23A 0.9800
C8—H8B 0.9800 C23—H23B 0.9800
C8—H8C 0.9800 C23—H23C 0.9800
C9—O1 1.2322 (18) C24—O3 1.231 (2)
C9—N2 1.3690 (18) C24—N4 1.375 (2)
C9—C10 1.5297 (19) C24—C25 1.517 (2)
C10—C11 1.506 (2) C25—C26 1.502 (2)
C10—H10A 0.9900 C25—H25A 0.9900
C10—H10B 0.9900 C25—H25B 0.9900
C11—S1A 1.5863 (17) C26—S2A 1.6389 (19)
C11—C12 1.5863 (17) C26—C27 1.6389 (19)
C11—C12A 1.6815 (15) C26—C27A 1.6695 (17)
C11—S1 1.6815 (15) C26—S2 1.6695 (17)
C12—C13 1.540 (2) C27—C28 1.571 (2)
C12—H12 0.9500 C27—H27 0.9500
S1A—C13 1.540 (2) S2A—C28 1.571 (2)
C13—C14 1.354 (3) C28—C29 1.347 (3)
C13—H13 0.9500 C28—H28 0.9500
C14—C12A 1.6288 (19) C29—C27A 1.605 (2)
C14—S1 1.6288 (19) C29—S2 1.605 (2)
C14—H14 0.9500 C29—H29 0.9500
C15—O2 1.430 (2) C30—O4 1.429 (2)
C15—H15A 0.9800 C30—H30A 0.9800
C15—H15B 0.9800 C30—H30B 0.9800
C15—H15C 0.9800 C30—H30C 0.9800
N1—N2 1.3780 (16) N3—N4 1.3768 (17)
C12A—H12A 0.9500 C27A—H27A 0.9500
C6—C1—C2 118.52 (13) C21—C16—C17 118.26 (14)
C6—C1—C7 120.41 (12) C21—C16—C22 119.78 (14)
C2—C1—C7 121.07 (13) C17—C16—C22 121.93 (14)
C3—C2—C1 120.60 (13) C18—C17—C16 120.85 (14)
C3—C2—H2 119.7 C18—C17—H17 119.6
C1—C2—H2 119.7 C16—C17—H17 119.6
C2—C3—C4 120.31 (13) C17—C18—C19 120.20 (14)
C2—C3—H3 119.8 C17—C18—H18 119.9
C4—C3—H3 119.8 C19—C18—H18 119.9
O2—C4—C5 125.10 (13) O4—C19—C20 124.70 (14)
O2—C4—C3 114.90 (12) O4—C19—C18 115.48 (14)
C5—C4—C3 119.99 (13) C20—C19—C18 119.82 (14)
C4—C5—C6 119.10 (13) C19—C20—C21 119.32 (14)
C4—C5—H5 120.5 C19—C20—H20 120.3
C6—C5—H5 120.5 C21—C20—H20 120.3
C1—C6—C5 121.40 (12) C16—C21—C20 121.46 (14)
C1—C6—H6 119.3 C16—C21—H21 119.3
C5—C6—H6 119.3 C20—C21—H21 119.3
N1—C7—C1 118.66 (12) N3—C22—C16 119.79 (14)
N1—C7—H7 120.7 N3—C22—H22 120.1
C1—C7—H7 120.7 C16—C22—H22 120.1
N2—C8—H8A 109.5 N4—C23—H23A 109.5
N2—C8—H8B 109.5 N4—C23—H23B 109.5
H8A—C8—H8B 109.5 H23A—C23—H23B 109.5
N2—C8—H8C 109.5 N4—C23—H23C 109.5
H8A—C8—H8C 109.5 H23A—C23—H23C 109.5
H8B—C8—H8C 109.5 H23B—C23—H23C 109.5
O1—C9—N2 121.10 (13) O3—C24—N4 121.06 (15)
O1—C9—C10 121.10 (13) O3—C24—C25 121.11 (14)
N2—C9—C10 117.78 (12) N4—C24—C25 117.80 (13)
C11—C10—C9 110.00 (11) C26—C25—C24 109.96 (13)
C11—C10—H10A 109.7 C26—C25—H25A 109.7
C9—C10—H10A 109.7 C24—C25—H25A 109.7
C11—C10—H10B 109.7 C26—C25—H25B 109.7
C9—C10—H10B 109.7 C24—C25—H25B 109.7
H10A—C10—H10B 108.2 H25A—C25—H25B 108.2
C10—C11—S1A 122.26 (11) C25—C26—S2A 123.86 (12)
C10—C11—C12 122.26 (11) C25—C26—C27 123.86 (12)
C10—C11—C12A 123.80 (11) C25—C26—C27A 121.30 (12)
S1A—C11—C12A 113.85 (10) S2A—C26—C27A 114.82 (10)
C10—C11—S1 123.80 (11) C25—C26—S2 121.30 (12)
C12—C11—S1 113.85 (10) C27—C26—S2 114.82 (10)
C13—C12—C11 99.52 (10) C28—C27—C26 96.38 (12)
C13—C12—H12 130.2 C28—C27—H27 131.8
C11—C12—H12 130.2 C26—C27—H27 131.8
C13—S1A—C11 99.52 (10) C28—S2A—C26 96.38 (12)
C14—C13—C12 116.71 (14) C29—C28—C27 117.29 (17)
C14—C13—S1A 116.71 (14) C29—C28—S2A 117.29 (17)
C14—C13—H13 121.6 C29—C28—H28 121.4
C12—C13—H13 121.6 C27—C28—H28 121.4
C13—C14—C12A 115.10 (14) C28—C29—C27A 116.63 (16)
C13—C14—S1 115.10 (14) C28—C29—S2 116.63 (16)
C13—C14—H14 122.4 C28—C29—H29 121.7
S1—C14—H14 122.4 S2—C29—H29 121.7
O2—C15—H15A 109.5 O4—C30—H30A 109.5
O2—C15—H15B 109.5 O4—C30—H30B 109.5
H15A—C15—H15B 109.5 H30A—C30—H30B 109.5
O2—C15—H15C 109.5 O4—C30—H30C 109.5
H15A—C15—H15C 109.5 H30A—C30—H30C 109.5
H15B—C15—H15C 109.5 H30B—C30—H30C 109.5
C7—N1—N2 119.49 (11) C22—N3—N4 119.20 (13)
C9—N2—N1 116.55 (11) C24—N4—N3 116.90 (13)
C9—N2—C8 120.98 (11) C24—N4—C23 120.61 (13)
N1—N2—C8 122.28 (11) N3—N4—C23 122.45 (13)
C4—O2—C15 117.14 (12) C19—O4—C30 117.02 (13)
C14—S1—C11 94.79 (8) C29—S2—C26 94.82 (11)
C14—C12A—C11 94.79 (8) C29—C27A—C26 94.82 (11)
C14—C12A—H12A 132.6 C29—C27A—H27A 132.6
C11—C12A—H12A 132.6 C26—C27A—H27A 132.6
C6—C1—C2—C3 −2.5 (2) C21—C16—C17—C18 −1.8 (2)
C7—C1—C2—C3 177.32 (13) C22—C16—C17—C18 176.36 (15)
C1—C2—C3—C4 0.1 (2) C16—C17—C18—C19 −0.6 (2)
C2—C3—C4—O2 −178.41 (13) C17—C18—C19—O4 −177.30 (14)
C2—C3—C4—C5 2.0 (2) C17—C18—C19—C20 2.7 (2)
O2—C4—C5—C6 178.77 (13) O4—C19—C20—C21 177.79 (14)
C3—C4—C5—C6 −1.7 (2) C18—C19—C20—C21 −2.2 (2)
C2—C1—C6—C5 2.8 (2) C17—C16—C21—C20 2.3 (2)
C7—C1—C6—C5 −177.01 (12) C22—C16—C21—C20 −175.90 (14)
C4—C5—C6—C1 −0.7 (2) C19—C20—C21—C16 −0.3 (2)
C6—C1—C7—N1 172.62 (13) C21—C16—C22—N3 171.72 (14)
C2—C1—C7—N1 −7.2 (2) C17—C16—C22—N3 −6.4 (2)
O1—C9—C10—C11 92.19 (16) O3—C24—C25—C26 −93.93 (18)
N2—C9—C10—C11 −86.14 (16) N4—C24—C25—C26 84.33 (17)
C9—C10—C11—S1A −82.95 (15) C24—C25—C26—S2A −116.66 (14)
C9—C10—C11—C12 −82.95 (15) C24—C25—C26—C27 −116.66 (14)
C9—C10—C11—C12A 93.33 (14) C24—C25—C26—C27A 61.63 (16)
C9—C10—C11—S1 93.33 (14) C24—C25—C26—S2 61.63 (16)
C10—C11—C12—C13 178.21 (12) C25—C26—C27—C28 −179.91 (14)
S1—C11—C12—C13 1.59 (11) S2—C26—C27—C28 1.71 (13)
C10—C11—S1A—C13 178.21 (12) C25—C26—S2A—C28 −179.91 (14)
C12A—C11—S1A—C13 1.59 (11) C27A—C26—S2A—C28 1.71 (13)
C11—C12—C13—C14 −0.83 (16) C26—C27—C28—C29 −2.45 (19)
C11—S1A—C13—C14 −0.83 (16) C26—S2A—C28—C29 −2.45 (19)
S1A—C13—C14—C12A −0.25 (19) S2A—C28—C29—C27A 2.5 (2)
C12—C13—C14—S1 −0.25 (19) C27—C28—C29—S2 2.5 (2)
C1—C7—N1—N2 −179.76 (11) C16—C22—N3—N4 −177.97 (13)
O1—C9—N2—N1 −177.36 (13) O3—C24—N4—N3 −176.37 (14)
C10—C9—N2—N1 0.97 (18) C25—C24—N4—N3 5.4 (2)
O1—C9—N2—C8 −2.3 (2) O3—C24—N4—C23 1.5 (2)
C10—C9—N2—C8 176.08 (12) C25—C24—N4—C23 −176.75 (13)
C7—N1—N2—C9 176.67 (12) C22—N3—N4—C24 178.08 (13)
C7—N1—N2—C8 1.63 (19) C22—N3—N4—C23 0.2 (2)
C5—C4—O2—C15 −0.3 (2) C20—C19—O4—C30 −2.7 (2)
C3—C4—O2—C15 −179.90 (13) C18—C19—O4—C30 177.30 (15)
C13—C14—S1—C11 1.12 (13) C28—C29—S2—C26 −1.01 (18)
C10—C11—S1—C14 −178.21 (12) C25—C26—S2—C29 −179.06 (14)
C12—C11—S1—C14 −1.65 (10) C27—C26—S2—C29 −0.63 (12)
C13—C14—C12A—C11 1.12 (13) C28—C29—C27A—C26 −1.01 (18)
C10—C11—C12A—C14 −178.21 (12) C25—C26—C27A—C29 −179.06 (14)
S1A—C11—C12A—C14 −1.65 (10) S2A—C26—C27A—C29 −0.63 (12)

(E)-N'-(4-Methoxybenzylidene)-N-methyl-2-(thiophen-2-yl)acetohydrazide (II) . Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C14/S1, C1–C6, C26–C29/S2 and C16–C21 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C6—H6···S1i 0.95 2.87 3.7326 (14) 152
C10—H10B···O3 0.99 2.56 3.5366 (19) 169
C13—H13···O2ii 0.95 2.58 3.499 (2) 164
C15—H15A···O3iii 0.98 2.50 3.478 (2) 176
C25—H25A···O1 0.99 2.38 3.3206 (19) 157
C28—H28···O4iv 0.95 2.42 3.307 (2) 156
C29—H29···O1v 0.95 2.50 3.422 (2) 163
C30—H30A···O1vi 0.98 2.45 3.419 (2) 168
C6—H6···Cg1i 0.95 2.67 3.6071 (15) 169
C8—H8C···Cg2i 0.98 2.72 3.4831 (16) 135
C21—H21···Cg3vii 0.95 2.90 3.6721 (18) 140
C23—H23A···Cg4vii 0.98 2.81 3.6560 (16) 145
C23—H23C···Cg4viii 0.98 2.88 3.6067 (16) 131

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) −x+2, −y, −z+1; (vii) −x+1, −y+1, −z+1; (viii) −x+2, −y+1, −z+1.

References

  1. Cao, X.-Y., Harrowfield, J., Nitschke, J., Ramírez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944–2965.
  2. Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448. [DOI] [PubMed]
  3. Cardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, M. C. dos S., Pessoa, C. & de Souza, M. V. N. (2017). Med. Chem. Res. 26, 1605–1608.
  4. Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de, Lancaster, S. T. & Harrison, W. T. A. (2016a). Acta Cryst. E72, 1677–1682. [DOI] [PMC free article] [PubMed]
  5. Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–000.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  9. Pedireddi, V. R. & Desiraju, G. R. (1992). J. Chem. Soc. Chem. Commun. pp. 988.
  10. Ramírez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20–24.
  11. Ramírez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456–2463. [DOI] [PubMed]
  12. Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Swanston, J. (2006). Thiophene. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  16. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017014384/vm2205sup1.cif

e-73-01636-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017014384/vm2205Isup2.hkl

e-73-01636-Isup2.hkl (494.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017014384/vm2205IIsup3.hkl

e-73-01636-IIsup3.hkl (534.9KB, hkl)

CCDC references: 1578318, 1578317

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES