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Abstract

The germplasm collection of 87 wheat-wheatgrass hybrids developed in Tsitisin Main

Botanical Garden (Russia, Moscow) was evaluated for resistance to pre-harvest sprouting

(PHS) by spike sprouting (SS) and germination index (GI) assays as well as for spike and

grain features. The PHS resistance variation and haplotype polymorphism of the wheat-

grass ThVp-1 and wheat TaVp-1B genes orthologues of Vp-1 was revealed in the studied

collection. Four haplotypes of ThVp-1 were revealed: ThVp-1a (41% of the entries), ThVp-

1b (13%), ThVp-1c (29%), and ThVp-1d (15%). The association between the allelic state of

ThVp-1 and PHS resistance in the wheat-wheatgrass hybrids was shown: haplotype ThVp-

1d of the wheatgrass Vp-1 gene is significantly associated with reduced PHS in the wheat-

wheatgrass hybrids (mean SS 0.33, mean GI 0.64). The resistant entries may be perspec-

tive as a source of PHS resistance in the development of commercial cultivars of perennial

wheat.

Introduction

Wheat-wheatgrass hybrids are partial amphidiploids produced by crossing Trtitcum species

and various wheatgrass species. Bread wheat (T. aestivum L., 2n = 6x = 42, genome composi-

tion BBAADD) and intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth &

D.R. Dewey, 2n = 6x = 42, genome composition JvsJvsJrJrStSt) or tall wheatgrass (Th. ponticum
(Podp.) Z.-W. Liu & R.-C. Wang, 2n = 10x = 70, genome composition JJJJJJJsJsJsJs) are the

most commonly used for the development of wheat-wheatgrass hybrids. The genetically stable

wheat-wheatgrass hybrids are mainly octaploid (2n = 56), carrying 42 chromosomes of wheat

and 14 chromosomes from various subgenomes of wheatgrass. Different wheat-wheatgrass

amphidiploids carry various combinations of wheatgrass chromosomes [1–5].

The wheat-wheatgrass hybrids were developed in many countries, including Russia, USA,

Germany, Canada and China. N. V. Tsitsin was the first who crossed wheat and wheatgrass

(Thinopyrum sp.) in order to obtain perennial wheat in the 1920s and whose cultivars of partial
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amphiploid wheat-wheatgrass hybrids were recommended for cultivation at an industrial scale

in the former USSR in the 1970s [6]. The aim of the development of wheat-wheatgrass hybrids

was to combine the quality of bread wheat with economically beneficial properties of wheat-

grass, such as perennial life, winter hardiness and frost resistance, resistance to diseases and

pests, and tolerance to abiotic stresses (cold, drought, salinity, etc.). Despite the great potential

as a grain or forage crop, wheat-wheatgrass hybrids are currently not cultivated at an industrial

scale. However, recently, wheat-wheatgrass hybrid once again attracted attention as a perspec-

tive crop [4, 5, 7, 8]. Perennial wheat is an example of a transformative technology, having a

number of technological and economic advantages over annual crops: perennial wheat is able

to reduce the impact on the environment, is less expensive to manage and can provide stable

yields on marginal lands [9, 10]. Wheat-wheatgrass hybrids differ in resistance to diseases and

pests [11, 12]. Several resistance genes to fungal, viral diseases and pests were transferred from

the genomes of intermediate and tall wheatgrasses into wheat genome [13, 14]. Thus, wheat-

wheatgrass hybrids can be used as a breeding bridge between wheat and wheatgrass as a source

of valuable traits genes for wheat improvement.

Pre-harvest sprouting (PHS) poses a serious problem for production of cereals including

wheat in many grain-producing regions of Russia, Canada, USA and China and needs

improvement by breeding [15–17]. PHS occurs in response to heavy rains and dew during har-

vest and can lead to serious yield losses and reduced grain quality. Flour produced from

sprouted grain has a low falling number because of high activity of alpha-amylases that breaks

down starch and reduces baking quality [18, 19].

The germination of grain is influenced by a large number of environmental and inherited

genetic factors, among the latter the most important are spike morphology and seed dormancy.

PHS resistance is influenced by such inherited spike features as spike shape, presence of awns,

openness of florets, glume rigidity and germination inhibitors in husks [20], epicuticular wax of

glumes, glume adherence, spike inclination and others [21]. Seed dormancy is determined by

seed coat and embryo features [22]. Seed coat determines the rate of moisture penetration into

the seed. In addition, the seed coat may contain germination inhibitors. The red color of wheat

grain is associated with dormancy provided by seed coat and determined by gene Rmapped to

distal region of homeological group 3 [16, 22, 23–28]. The effect of the red color of seed coat

may be explained by a genetic linkage between PHS resistance genes and the R gene or it may

be due to a pleiotropic effect of the R gene [23]. Later it was shown that the R genes for grain

color are transcriptional activators of the flavonoid synthesis genes TaMyb10 [27].

A total of 110 quantitative trait loci (QTLs) or loci associated with PHS resistance in wheat

have been mapped to all wheat chromosomes [29–32], the majority of them are located on the

group three chromosomes [33–38] and chromosome 4A [30, 39–41]. Consequently, genes

underlying these QTLs were identified such as TaPHS1 for Qphs.pseru-3AS on 3AS [42] and

most likely TaMKK3-A for Phs-A1 on 4AL [43]. There is increasing evidence that epigenetic

changes through DNA and histone methylation may play a role in seed dormancy and, there-

fore, may determine the PHS resistance of cultivars [44, 45]. In cereals, the role of ARGO-
NAUTE4_9 class genes in wheat and barley PHS resistance was explored recently and the

correlation between DNA methylation status, polymorphism in AGO802B and PHS resistance

was demonstrated in wheat [46, 47].

The Viviparous-1 (Vp-1) gene is an important regulator of late embryogenesis in maize and

a regulator of late embryo development in bread wheat [48]. Vp-1 plays an important role in

processes of seed maturation, such as dehydration and the transition to dormancy in various

plant species [49–52]. The Vp-1 gene encodes an important dormancy-related transcription

factor that is involved in the abscisic acid (ABA) signal transduction: a positive correlation was

observed between seed dormancy and embryo sensitivity to ABA [53, 54].

Pre-harvest sprouting resistance wheat-wheatgrass hybrids
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The Vp-1 genes of wheat, TaVp-1, are localized on the long arms of the homeologous group

3 chromosomes. Six alleles of TaVp-1B were identified and designated as TaVp-1Ba, TaVp-
1Bb, TaVp-1Bc, TaVp-1Bd, TaVp-1Be, and TaVp-1Bf [28, 55–57]. The alleles TaVp-1Bb and

TaVp-1Bc detected by an STS molecular marker are associated with higher seed dormancy and

PHS resistance [28]. For the TaVp-1A gene, also some allelic variations associated with PHS

resistance were detected [58]. In general, allelic variants of Vp-1 affect PHS resistance in white-

grained wheat. However, the effect of the allelic state of the Vp-1 gene on PHS resistance was

shown in red-grained triticale depending on the intensity of the grain color [59].

At the present time, two molecular markers based on the sequences of the orthologous Vp-
1 genes of Thinopyrum intermedium, Th. ponticum, Th. bessarabicum (Savul. & Rayss) and

Pseudoroegneria spicata (Pursh) have been developed. These markers allow for the identifica-

tion of various alleles of the Vp-1 gene orthologue of wheatgrass (ThVp-1) in a wheat back-

ground [60, 61]. The primers for the markers were designed on the conservative regions while

the sequence between them is highly polymorphic and can be distinguished directly by PCR

using the STS marker Vivip [61] or with preliminary restriction endonuclease digestion using

the CAPS marker Vp1BB4_HaeIII [60]. The effect of ThVp-1 on seed dormancy has never

been explored.

Although PHS resistance is important for both the development of commercial cultivars of

wheat-wheatgrass hybrids and for wheat breeding using wheat-wheatgrass germplasm, this

trait has not been studied yet in wheat-wheatgrass hybrids. The aim of this work is to study the

germplasm collection of the wheat-wheatgrass hybrids for PHS resistance using different

assays, and to assess the effect of grain color, spike parameters and Vp-1 of wheat and wheat-

grass on PHS resistance.

Materials and methods

Plant materials

The wheat-wheatgrass hybrid germplasm collection includes 87 entries bred by N.V. Tsitsin,

V.F. Lyubimova, V.I. Belov et al. (Department of Distant Hybridization, Tsitsin Main Botani-

cal Garden, Russian Academy of Sciences) (Table 1). Bread wheat cv. Nota and Th. interme-
dium accession PI 401200 (Germplasm Research International Network) were used as controls

for the TaVp-1 and ThVp-1 genes, respectively, in PCR experiments.

Assay of germination index (GI) and spike sprouting (SS)

The entries were grown in the fields of the Department of Distant Hybridization (Tsitsin Main

Botanical Garden, Russian Academy of Sciences) at the Snegiri settlement, Istrinsky district of

Moscow region (55˚51’32"N 37˚1’54"E). Germination index was determined according to

Walker-Simmons method [62]. The spikes were harvested at full ripeness and threshed manu-

ally. 25 seeds in four replicates were placed crease down on moist filter paper in Petri dishes,

which were then placed in lit climatic chamber (12 hours day, 12 hours night) at +20˚C. The

number of germinated seeds was counted daily and removed after counting during 7 days.

The seeds were taken as germinated at radical emergence. Water was added to Petri dishes as

needed using a sprayer. The remaining seeds were left to germinate for one month to deter-

mine their viability. Seeds that did not sprout within a month were excluded from further cal-

culations. The germination index (GI) was calculated according to the formula:

GI ¼
7n1 þ 6n2 þ 5n3 þ 4n4 þ . . .þ 1n7

7TG
;
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Table 1. Characteristics of the wheat-wheatgrass hybrid collection.

Entry Wheatgrass ThVp-1

haplotype

Wheat Vp-1

allele

GI SS* Grain

color

Glume

color

Awn

presence (+) / absence

(–)

Threshability

12 ThVp-1d Vp-1Ba 0.69 0.56 light red white – easy

33 ThVp-1c Vp-1Ba 0.94 0.48 light red white + easy

49 ThVp-1a Vp-1Ba 0.81 0.51 light red white – easy

90 ThVp-1b Vp-1Bc 0.74 0.58 light red white + easy

166 ThVp-1a Vp-1Ba 0.71 0.33 dark red white – easy

168 ThVp-1b Vp-1Bc 0.62 0.51 dark red red – easy

186 ThVp-1a Vp-1Ba 0.85 0.52 light red white – easy

192 ThVp-1a Vp-1Ba 0.91 0.55 light red white – easy

237 ThVp-1c Vp-1Ba 0.89 0.5 light red white + hard

243 ThVp-1c Vp-1Ba 0.68 0.45 light red white – easy

249 ThVp-1c Vp-1Ba 0.73 0.61 dark red white + easy

548 ThVp-1d Vp-1Ba 0.75 0.66 light red red – easy

1375 ThVp-1d hg 0.78 0.42 dark red white – hard

1382 ThVp-1a Vp-1Ba 0.86 0.36 light red white – easy

1451 ThVp-1c Vp-1Bc 0.87 0.01 blue white – hard

1512 ThVp-1b Vp-1Bc 0.64 0.49 light red red – easy

1514 ThVp-1d Vp-1Bc 0.95 0.5 dark red red – easy

1533 ThVp-1a Vp-1Ba 0.54 0.04 dark red white – easy

1546 ThVp-1c hg 0.77 0.54 light red white – easy

1626 ThVp-1d Vp-1Ba 0.76 0.41 light red red – easy

1646 ThVp-1a Vp-1Ba 0.90 0.40 light red white – easy

1654 ThVp-1c Vp-1Bc 0.62 0.01 blue white – hard

1674 ThVp-1b Vp-1Bc 0.78 0.44 light red white + easy

1689 ThVp-1a Vp-1Bc 0.73 0.44 light red white – easy

1690 ThVp-1a Vp-1Ba 0.78 0.66 light red white – easy

1692 ThVp-1b Vp-1Bc 0.60 0.62 dark red white – easy

1735 ThVp-1d Vp-1Ba 0.42 0.08 light red white – easy

1737 ThVp-1a hg 0.61 0.48 dark red white – easy

1744 ThVp-1a Vp-1Ba 0.73 0.12 light red white – easy

1745 ThVp-1d Vp-1Ba 0.61 0.09 light red white – easy

1748 ThVp-1a Vp-1Ba 0.72 0.07 light red white – easy

1755 ThVp-1a Vp-1Ba 0.90 0.45 light red red – easy

1761 ThVp-1a Vp-1Bc 0.91 n/a dark red white – easy

1770 ThVp-1b Vp-1Ba 0.99 0.58 light red white – easy

1772 ThVp-1c Vp-1Ba 0.94 0.81 light red white small awns easy

1774 ThVp-1c Vp-1Ba 0.45 0.12 dark red white small awns easy

1777 ThVp-1a Vp-1Ba 0.60 0.29 light red white – easy

1780 ThVp-1d Vp-1Ba 0.61 0.01 light red white – easy

1783 ThVp-1a hg 0.71 0.33 light red white – easy

1784 ThVp-1c Vp-1Bc 0.95 0.81 light red white – easy

1788 ThVp-1a hg 0.93 n/a light red white – easy

1792 ThVp-1c hg 0.93 0.89 light red red – easy

1803 ThVp-1c Vp-1Bc 0.97 0.86 light red white small awns easy

1805 ThVp-1c Vp-1Ba 0.92 0.65 light red white – easy

1842 ThVp-1a Vp-1Bc 0.87 n/a light red white – easy

1866 ThVp-1a Vp-1Ba 0.74 0.52 light red red – easy

1868 ThVp-1c hg 0.85 0.46 light red white – easy

1869 ThVp-1c Vp-1Ba 0.87 0.29 dark red white small awns easy

(Continued )
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Table 1. (Continued)

Entry Wheatgrass ThVp-1

haplotype

Wheat Vp-1

allele

GI SS* Grain

color

Glume

color

Awn

presence (+) / absence

(–)

Threshability

1872 ThVp-1c Vp-1Ba 0.99 0.69 dark red red + easy

1874 ThVp-1a Vp-1Bc 0.86 0.09 dark red red – easy

1876 ThVp-1d hg 0.52 0.25 light red white – easy

1877 ThVp-1a hg 0.81 0.51 light red white – easy

1878 ThVp-1a Vp-1Ba 0.68 0.45 light red white – easy

2087 ThVp-1b Vp-1Bc 0.73 0.41 dark red white – easy

3215 ThVp-1c hg 0.85 0.44 light red white – easy

3240 ThVp-1c Vp-1Bc 0.80 0.54 light red white – easy

4015 ThVp-1b Vp-1Bc 0.68 0.64 dark red white – easy

4023 ThVp-1b Vp-1Bc 0.80 0.59 dark red white – easy

4044 ThVp-1a Vp-1Ba 0.98 0.86 light red white – easy

4056 hg hg 0.74 0.89 n/a white – easy

4061 ThVp-1b Vp-1Ba 0.83 0.64 light red white – easy

4082 ThVp-1a Vp-1Ba 0.74 0.89 light red white small awns easy

5156 ThVp-1d Vp-1Bc 0.64 0.47 light red white – easy

5542 ThVp-1a hg 0.82 n/a light red – easy

5795 ThVp-1d Vp-1Ba 0.77 0.43 light red white – easy

1416-bo ThVp-1a Vp-1Bc 0.42 0.15 dark red white – easy

1416-o ThVp-1a Vp-1Bc 0.84 0.92 light red white + easy

150-b ThVp-1a Vp-1Ba 0.75 0.63 light red white small awns easy

150-k ThVp-1c Vp-1Bc 0.41 0.2 light red red small awns easy

1665-o ThVp-1c hg 0.75 0.65 light red white + easy

1665-h ThVp-1c hz 0.67 n/a light red white small awns easy

1765-b ThVp-1d Vp-1Ba 0.71 n/a light red white – easy

1765-k ThVp-1d Vp-1Ba 0.15 0.02 light red red – easy

1795-so ThVp-1a Vp-1Ba 0.69 n/a dark red white + easy

1795-slo hg Vp-1Ba 0.66 0.47 dark red white small awns easy

1804-b ThVp-1a hz 0.87 n/a light red white – easy

1804-k ThVp-1a Vp-1Bc 0.82 0.43 light red red – easy

1807-o ThVp-1c Vp-1Ba 0.81 0.57 light red white + easy

1807-h ThVp-1c Vp-1Ba 0.85 n/a light red white small awns easy

1861-bo ThVp-1a hz 0.82 n/a light red white – easy

1865-bkbk ThVp-1c Vp-1Bc 0.94 n/a dark red white – easy

1865-bkk ThVp-1c Vp-1Bc 0.97 n/a dark red red – easy

1870-bo ThVp-1a Vp-1Ba 0.80 n/a light red white – easy

ZP26 ThVp-1a Vp-1Ba 0.86 0.60 light red white – easy

M169 ThVp-1b Vp-1Bc 0.70 0.44 light red white – easy

M3202 ThVp-1a Vp-1Ba 0.84 0.65 light red white – easy

Otrastayushchaya

38

ThVp-1a Vp-1Bc 0.79 0.45 light red white small awns easy

GI—germination index.

SS–spike sprouting.

hz–heterozygote.

hg–heterogeneous entry.

n/a–not available.

*—SS was assessed in 74 out of 87 entries due to the lack of plant material.

https://doi.org/10.1371/journal.pone.0188049.t001
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where TGwere total grains, n1, n2,. . . n7 were the numbers of seeds germinated on the first,

second, and subsequent days until the seventh day.

Spike sprouting assay (SS) of the wheat-wheatgrass entries was conducted in moist chamber

on the shelves wrapped in plastic film. The spikes were harvested at full ripeness, steeped in

distilled water for an hour, five spikes per each entry were bound into sheaves and placed on

the shelves in an upright position. The sheaves were placed into a chamber and sprayed three

times a day for 5 minutes each time. Visual counting of clearly sprouted grains was performed

at the third day of sprouting provocation. Then, the spikes were dried and threshed to deter-

mine the total number of grains in them. The SS value was calculated as a ratio of sprouted

grains to the total number of grains.

In addition, the spike morphology was estimated–presence of awns, glume color, grain

color, and threshability.

DNA extraction and molecular markers

The DNA of the wheat-wheatgrass hybrids was extracted from seedlings using CTAB protocol

[63].

The PCR analysis was performed using markers Vp1BB4_HaeIII and Vivip for the wheat-

grass ThVp-1 genes and Vp-1B3 for the wheat TaVp-1B gene.

The primers Vp1BB4 were developed by Yang et al. (2007) [28] (Vp-1BB4F: 5'-CAATGAG
CTGCAGGAGGGTGA-3', Vp-1BB4R: 5'-ATCATCCCTAACTAGGGCTACG-3') and con-

verted by us into the CAPS marker Vp1BB4_HaeIII [60]. The conditions for PCR amplifica-

tion were 94�C for 1 min; followed by 35 cycles of 95�C for 1 min; 64�C for 1 min; 72�C for 1

min, with a final extension of 72�C for 10 min. The PCR products were digested using the

HaeIII endonuclease for 12 h at 37�C.

The STS marker Vivip was designed by Kocheshkova et al. (2014) [61] (VivipF: 5'- GGGT
GATTTCATCGTGCTT-3',VivipR: 5'-TCTCCAACACTTGATTTTGACC-3'). The condi-

tions for PCR amplification were 95˚C for 7 min, followed by 35 cycles of 95˚C for 1 min,

60˚C for 1 min and 72˚C for 1 min, with the final extension of 72˚C for 10 min.

The primers and conditions for PCR amplification of Vp-1B3 are described in Yang et al.

(2007) [28].

The PCR fragments were separated on 2% agarose gel with TBE buffer at 6 V/cm field

strength with GeneRuler 100 bp DNA Ladder (Thermo Fisher Scientific) as a size marker,

stained with ethidium bromide, and visualized using UV light.

Statistical analysis

The grouping of the data was carried out using Sturges’ rule [64, 65]. Analysis of variance

(ANOVA) was performed in the ‘Statistica 6.0’ program. The differences in GI and SS among

genotypes with different PCR profiles were tested using Fisher’s least significant difference

(LSD) test as in Chang et al. (2010 a,b) [57, 66].

Results

PHS resistance is determined by two groups of traits: spike morphology (presence of awns,

glume adherence, spike inclination, etc.) and grain characteristics (color, germination inhibi-

tors in seed coat, hormonal status, etc.) [15, 16, 62, 67–71]. The effect of the first group can be

reflected by evaluating spike sprouting (SS) in intact spikes in moist chamber, and the second

group by germination index (GI) of the threshed grains in Petri dishes.
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Spike sprouting assay (SS)

For a set of 74 entries spike sprouting (SS) was estimated (Fig 1, Table 1). The proportion of

germinated seeds was determined visually on the third day of spikes wetting.

Using the Sturges’ rule, a set of 74 entries was divided into 8 clusters with the corresponding

SS ranges. The most resistant entries sorted to cluster 1 were 1451, 1654, 1780, 1765-k, 1533,

1748, 1735, 1745, 1874, 1744, 1774 (Table 2).

Fig 1. Estimation of the PHS resistance by spike sprouting assay. 1–1451; 2–150-k; 3–1626; 4–4044.

https://doi.org/10.1371/journal.pone.0188049.g001
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Germination index (GI)

For a set 87 entries the germination index (GI) was evaluated. Using the Sturges’ rule, the set

was divided into 8 clusters with the corresponding GI ranges (Table 3).

The entries of different clusters are characterized by different dynamics of germination (Fig

2). The immediate germination of the majority of grains on the 1st day is represented by 1761

(cluster 8). ZP26 (cluster 7) and 4082 (cluster 6) showed the peak on the 2nd day, 1777 (cluster

5) and 1876 (cluster 4) on the 3rd day, 1735 (cluster 3) on the 5th day. Extended dynamics of

germination is intrinsic for 1765-k, the most PHS resistant entry. Therefore, the lower GI

value, the more delayed and faint peak of germination can be observed.

Entry 1451 showed both minimum SS value (0.01) and a high GI value (0.87). As 1451 is

extremely hard to thresh and has rigid glumes adherent to the caryopsis, its high PHS resis-

tance in the spike is determined primarily by the spike architecture, and the seeds themselves

have a low dormancy level. The spike architecture, apparently, also explains PHS resistance in

1748 and 1874 (SS 0.07 and 0.09), which possess low seed dormancy (GI 0.72 and 0.86).

1765-k has low SS (0.02) and low GI (0.15), hence its PHS resistance can be explained equally

by the seed and spike characteristics. 1735, 1774 and 150-k showed high resistance in the SS

and GI assays, which allows us to consider them as generally resistant to PHS. 4044, 1416-o,

1792, 1803 showed high SS and GI, and thus can be considered as susceptible to PHS. There-

fore, the spike features of these entries are unable to provide PHS resistance and to compensate

for the low seed dormancy. The entries with low GI and high SS were not revealed (Table 4).

Table 2. Classification of the wheat-wheatgrass collection entries based on the results of the SS assay.

Cluster Range of

SS

Number of

entries

Wheat-wheatgrass entries

1 0,01–0,12 11 1451, 1654, 1780, 1765-k, 1533, 1748, 1735, 1745, 1874, 1744, 1774

2 0,13–0,24 2 1416-bo, 150-k

3 0,25–0,36 6 1876, 1777, 1869, 166, 1783, 1382

4 0,37–0,48 19 1646, 1626, 2087, 1375, 1804-k, 5795, 1674, 1689, 3215, M169, 1755, 1878, 243, Otrastayushchaya 38, 1868,

1795-slo, 5156, 1737, 33

5 0,49–0,60 17 1512, 1514, 237, 168, 1877, 49, 186, 1866, 1546, 3240, 192, 12, 1807-o, 1770, 90, 4023, ZP26

6 0,61–0,72 11 249, 1692, 150-b, 4015, 4061, 1665-o, 1805, 1690, M3202, 548, 1872

7 0,73–0,84 2 1772, 1784

8 0,85–0,97 6 1803, 4044, 1792, 4056, 4082, 1416-o

https://doi.org/10.1371/journal.pone.0188049.t002

Table 3. Classification of wheat-wheatgrass entries by germination index (GI).

Cluster Range of

GI

Number of

entries

Wheat-wheatgrass entries

1 0,15–0,25 1 1765-k

2 0,26–0,35 0 —

3 0,36–0,46 4 150-k, 1416-bo, 1735, 1774

4 0,47–0,56 2 1876, 1533

5 0,57–0,67 11 1777, 1692, 1780, 1745, 1737, 1654, 168, 5156, 1512, 1795-slo, 1665-h

6 0,68–0,78 27 243, 1878, 4015, 12, 1795-so, M169, 166, 1783, 1765-b, 1748, 1744, 2087, 1689, 249, 1866, 90, 4056, 4082,

150-b, 1665-o, 548, 1626, 5795, 1546, 1375, 1674, 1690

7 0,79–0,88 24 Otrastayushchaya 38, 3240, 4023, 1870-bo, 49, 1877, 1807-o, 1804-k, 5542, 1861-bo, 4061, M3202, 1416-o,

3215, 1868, 186, 1807-h, 1874, 1382, ZP26, 1451, 1869, 1842, 1804-b

8 0,89–0,99 18 237, 1646, 1755, 192, 1761, 1805, 1792, 1788, 33, 1772, 1865-bkbk, 1514, 1784, 1803, 1865-bkk, 4044, 1770,

1872

https://doi.org/10.1371/journal.pone.0188049.t003
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That indicates that a high level of seed dormancy is enough for providing acceptable PHS

resistance.

Distribution of wheatgrass ThVp-1 haplotypes

Markers Vp1BB4_HaeIII and Vivip allow the identification of various alleles of the wheatgrass

ThVp-1 gene in a wheat background [60, 61]. The DNA fragments of Vp1BB4_HaeIII pro-

duced by PCR and subsequent restriction endonuclease digestion were analyzed in all entries.

Vp1BB4_HaeIII enables the identification of additional fragments different from wheat after

restriction of the PCR product. Such additional bands were interpreted as fragments amplified

from ThVp-1 [60].

In our study, the analysis of 87 entries using Vp1BB4_HaeIII revealed two sizes of addi-

tional fragments of ThVp-1, namely, approximately 600 bp and approximately 550 bp (Fig 3,

Table 5). Consequently, Vp1BB4_HaeIII can distinguish three possible ThVp-1 states: presence

of the ~600 bp fragment, presence of the ~550 bp fragment and absence of both fragments. No

entry with simultaneous presence of both the ~550 and ~600 bp fragments was found.

The Vivip marker was designed based on sequences of another polymorphic regions of the

orthologous Vp-1 genes of Th. intermedium, Th. ponticum, Th. bessarabicum, and P. spicata.

The results of the identification of the ThVp-1 polymorphism using Vivip are independent

from Vp1BB4_HaeIII [61]. In our study, the PCR analysis of 87 entries using Vivip allowed

the identification of two additional amplified DNA fragments of wheatgrass origin, namely,

approximately 350 bp, and approximately 370 bp (Fig 4). In the studied collection of the

wheat-wheatgrass hybrids three possible states of Vivip were revealed: absence of both frag-

ments, presence of the ~350 bp fragment, and presence of the ~370 bp fragment (Fig 4,

Table 5).

Fig 2. Example of dynamics of grain germination of various wheat-wheatgrass entries in Petri dishes.

https://doi.org/10.1371/journal.pone.0188049.g002

Table 4. Classification of entries based on the results of germination index (GI) and spike sprouting

(SS) assays.

Low GI High GI

Low SS 1765-k, 1735, 1744, 150-k. 1451, 1748, 1874

High SS Not found 4044, 1416-o, 1792, 1803

https://doi.org/10.1371/journal.pone.0188049.t004
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The analysis of the results of two molecular markers have revealed that the 370 bp fragment

detected by Vivip occurs in the same wheat-wheatgrass entries as the 550 bp fragment, which

is detected by Vp1BB4_HaeIII. Thus, fragments ~550 bp of Vp1BB4_HaeIII and ~370 bp of

Vivip detect the same allele of the wheatgrass ThVp-1 gene.

1795-slo and 4056 showed heterogeneity for the allelic state of ThVp-1, so, they were

excluded from the further statistical analysis.

The analysis of 87 entries using both markers Vp1BB4_HaeIII and Vivip showed four possi-

ble haplotypes of the wheatgrass ThVp-1 gene that are present in the studied wheat-wheatgrass

hybrids (Table 5). These four variants are characterized by the molecular markers, as follows:

1) Absence of the specific wheatgrass DNA fragments of both markers (designated ThVp-1a,

36 entries); 2) Presence of the ~600 bp fragment detected by Vp1BB4_HaeIII and absence of

specific fragments of Vivip (desisgnated ThVp-1b, 11 entries); 3) Presence of the ~550 bp frag-

ment of Vp1BB4_HaeIII and presence of the ~370 bp fragment Vivip (desisgnated ThVp-1c,
25 entries); 4) Absence of specific fragments for Vp1BB4_HaeIII and presence of the ~350 bp

fragment revealed by Vivip (desisgnated ThVp-1d, 13 entries).

Thus, we have identified a polymorphism of the wheatgrass ThVp-1 gene in the wheat-

wheatgrass hybrid collection and they were grouped into 4 classes (haplotypes) depending on

Fig 3. Electrophoresis of the CAPS-marker Vp1BB4_HaeIII fragments. The ~600 bp (arrow) and ~550 bp (*) are diagnostic fragments

for the wheatgrass ThVp1 gene. M—size standard (100 bp DNA Ladder), 1 –Triticum aestivum cv. Nota, 2–90, 3–150 k., 4–168, 5 –Th.

intermedium PI 401200.

https://doi.org/10.1371/journal.pone.0188049.g003

Table 5. The combined results of application of the Vp1BB4_HaeIII and Vivip markers in the wheat-wheatgrass hybrids.

Wheatgrass ThVp-1

haplotypes

Marker results Wheat-wheatgrass entries

Vp1BB4_HaeIII Vivip

ThVp-1a No specific

fragments

No specific

fragments

49, 150-b, 166, 186, 192, 1382, 1416-bo, 1416-o, 1533, 1646, 1689, 1690, 1737, 1744,

1748, 1755, 1761, 1777, 1783, 1788, 1795-so, 1804-b, 1804-k, 1842, 1861-bo, 1866,

1870-bo, 1874, 1877, 1878, 4044, 4082, 5542, ZP26, M3202, Otrastayushchaya 38

ThVp-1b ~600 bp No specific

fragments

90, 168, 1512, 1674, 1692, 1770, 2087, 4015, 4023, 4061, M169

ThVp-1c ~550 bp ~370 bp 33, 150-k, 237, 243, 249, 1451, 1546, 1654, 1665-h, 1665-o, 1772, 1774, 1784, 1792,

1803, 1805, 1807-o, 1807-h, 1865bkbk, 1865-bkk, 1868, 1869, 1872, 3215, 3240

ThVp-1d No specific

fragments

~350 bp 12, 548, 1375, 1514, 1626, 1735, 1745, 1765-k, 1765-b, 1780, 1876, 5156, 5795

https://doi.org/10.1371/journal.pone.0188049.t005
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the results of the combined use of Vp1BB4_HaeIII and Vivip. The distribution of haplotypes

in the collection is as follows: the predominant haplotype is ThVp-1a (41%), second place is

allele ThVp-1c (29%), followed by haplotypes ThVp-1d (15%) and ThVp-1b (13%).

The association between ThVp-1 haplotypes and PHS resistance based on GI in the entire

germplasm collection was evaluated statistically using the analysis of variance (ANOVA)

(Table 6).

The ANOVA indicated significant GI differences between the groups of wheat-wheatgrass

hybrids with various ThVp-1 haplotypes. Statistically significant differences were observed

between haplotypes ‘a’ and ‘d’ and between haplotypes ‘c’ and ‘d’. Thus, entries with the ThVp-
1d haplotype had significantly lower average GI than ThVp-1a and ThVp-1c genotypes con-

firming the association of ThVp-1 and seed dormancy.

The ANOVA conducted after arcsin
p

x transformation of the SS values and Fisher’s F-test

revealed no significant differences between the groups of wheat-wheatgrass hybrids with dif-

ferent ThVp-1 haplotypes. However, LSD test showed that the group of wheat-wheatgrass

hybrids with ThVp-1d haplotype gave lower value of SS than groups with haplotypes ‘b’ and ‘c’

(Table 7).

Distribution of wheat TaVp-1 haplotypes

As wheat-wheatgrass hybrids combine wheat and wheatgrass genomes, our collection was also

evaluated for the allelic state of the wheat TaVp-1 gene using the STS marker developed by

Yang et al. (2007) [28] (Table 1). The structure of the studied germplasm collection was as fol-

lows: 51% of the entries carried allele TaVp-1Ba, 31% carried allele TaVp-1Bc, 15% showed

heterogeneity, 3% were heterozygotes (the latter two groups were not involved in the statistical

analysis).

The GI differences between groups of wheat-wheatgrass hybrids with different allelic state

of wheat TaVp-1B were not significant with similar mean GI values (Table 8).

No significant differences of SS between groups of wheat-wheatgrass hybrids with different

TaVp-1B alleles were revealed (Table 9).

Fig 4. An example of electrophoresis of PCR products of the STS marker Vivip. The DNA fragments

indicating the presence of wheatgrass ThVp-1 are ~350 bp and ~370 bp. 1 –Triticum aestivum cv. Nota;

2–1665, 3–5156, 4 –ZP26, 5 –Th. intermedium PI 401200, M–size standard, 100 bp DNA Ladder.

https://doi.org/10.1371/journal.pone.0188049.g004

Table 6. Association between ThVp-1 haplotypes and GI values in the wheat-wheatgrass hybrid collection.

ThVp-1 haplotype Number of entries Mean GI* Standard deviation Range

ThVp-1a 36 0.78b 0.12 0.42–0.98

ThVp-1b 11 0.74ab 0.11 0.60–0.99

ThVp-1c 25 0.82b 0.15 0.41–0.99

ThVp-1d 13 0.64a 0.20 0.15–0.95

* Fobserved = 4.635 > Fcritical = 2.717; p = 0.0048.

Different letters in this column indicate significant differences (P<0.05; Fisher’s LSD test) among different ThVp-1 haplotypes

https://doi.org/10.1371/journal.pone.0188049.t006
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In addition, no statistically significant association was revealed between PHS resistance

measured by SS and GI and the presence of awns, glumes color, and grain color (data not

shown).

Discussion

In our work for the first time, the PHS resistance polymorphism in wheat-wheatgrass hybrids

was revealed by GI and SS evaluation. In our study, the wheat-wheatgrass hybrids significantly

differ from each other in PHS resistance. Similarly, wheat-wheatgrass hybrids are also highly

polymorphic in other traits such as diseases resistance, grain yield, post-harvest regrowth abil-

ity, forage biomass [4, 5, 72–74]. Among the resistant entries with low GI we identified two

types of germination dynamics, namely, an extended germination and delayed peak. In gen-

eral, the majority of the entries were susceptible to PHS (92% are susceptible to PHS, classes

5–8, Table 3). It may be a serious problem for the introduction of wheat-wheatgrass hybrids as

a cereal crop in regions where climate favors PHS. Currently, the main attempts to develop

perennial wheat-wheatgrass hybrids as a crop are being made in Australia [4, 5, 72], where

PHS is not a relevant problem and probably that is why it receives little attention.

PHS resistance in grasses is controlled by multiple factors. QTLs for PHS resistance have

been found on all chromosomes of wheat in different studies [23, 29, 34–36, 75–90]. Many

studies of the PHS resistance in wheat is focused on TaVp-1, the polymorphism of its haplo-

types and its effect on PHS [28, 57–59, 66, 91–94]. In the majority of them the influence of dif-

ferent alleles of TaVp-1B and TaVp-1A was shown primarily in white-grained wheat, though

in some studies the effect of TaVp-1 was found in red-grained wheat and triticale as well [59,

93]. Given the fact that all wheat-wheatgrass entries possess red or blue grain, which is usually

associated with resistance, the absence of resistance in the majority of entries is apparently a

result of the negative impact of the wheatgrass genome. For example, a negative effect of chro-

mosome 6Agi of intermediate wheatgrass on PHS resistance was revealed in the studies of the

recombinant inbred substitution lines of wheat [21]. This should be considered in breeding

and development of cultivation technology of commercial wheat-wheatgrass cultivars. In addi-

tion, one should note, that the proportion of entries demonstrating resistance to sprouting in

Table 7. Association between ThVp-1 haplotypes and SS values in the wheat-wheatgrass hybrid collection.

ThVp-1

haplotype

Number of

entries

Mean SS arcsin
p

x

transformed*
Mean SS reverse

transformed

Standard deviation (for arcsin
p

x

transformed means)

Range

(non-

transformed)

ThVp-1a 28 0.73ab 0.45 0.27 0.04–0.92

ThVp-1b 11 0.83b 0.54 0.09 0.41–0.64

ThVp-1c 21 0.77b 0.49 0.31 0.01–0.89

ThVp-1d 12 0.57a 0.29 0.28 0.01–0.66

* Fobserved = 2.13 < Fcritical = 2.74; p = 0.104.

Different letters in this column indicate significant differences (P<0.05; Fisher’s LSD test) among different ThVp-1 haplotypes

https://doi.org/10.1371/journal.pone.0188049.t007

Table 8. Association between TaVp-1B alleles (of wheat origin) and GI values in the wheat-wheatgrass hybrid collection.

Allele of wheat Vp-1B Number of entries Mean GI* Standard deviation Range

Vp-1Bc 27 0.76 0.15 0.41–0.97

Vp-1Ba 44 0.76 0.16 0.15–0.99

* Fobserved = 0.003 < Fcritical = 3,982; p = 0.959

https://doi.org/10.1371/journal.pone.0188049.t008
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intact spikes is higher than the proportion of entries demonstrating seed dormancy in the eval-

uation of GI. Apparently, this is due to the spike architecture of wheat-wheatgrass hybrids.

Spikes of wheat-wheatgrass hybrids are generally more dense and hard to thresh in compari-

son to bread wheat. Four entries (237, 1375, 1654, 1451) differ from others by rough glumes,

which adhere very closely to the grain. This feature significantly hardens the process of thresh-

ing, and, on the other hand, contributes to the delay of water uptake [40, 95].

Apparently, the variability of PHS resistance of wheat-wheatgrass hybrids in our case is

mainly due to diversity in the wheatgrass genetic component. We found only two alleles of

wheat TaVp-1, namely TaVp-1Bc and TaVp-1Ba, the most common for different wheat culti-

vars [28, 57–59, 66, 91–94]. We did not reveal any significant differences in PHS resistance

between wheat-wheatgrass entries with wheat gene alleles TaVp-1Bc and TaVp-1Ba. As rela-

tively few wheat cultivars were used for the development of the studied wheat-wheatgrass

entries, we can hardly expect a wide genetic variability of wheat genes controlling PHS in a

wheat-wheatgrass hybrid genome [6, 96]. On the other hand, the probability of high polymor-

phism of wheatgrass genes affecting PHS in different wheat-wheatgrass hybrids is strong,

because most of the partial amphiploids carry a synthetic mixed extra genome which has a dif-

ferent combination of chromosomes each time a partial amphiploid is produced [1–5].

Wheat-wheatgrass hybrids carry individual composition of wheatgrass chromosomes,

inherited from Th. intermedium and/or Th. ponticum and derived from different subgenomes

[1–5]. We may suggest that the recombination between different homeological chromosomes

of wheatgrass in the genome of a wheat-wheatgrass hybrid is a rare event. Despite the PCR-

based markers Vp1BB4_HaeIII and Vivip applied in our study were developed on the basis of

the Vivparous-1 sequence, we may have estimated not only the effect of ThVp-1 but also the

effect of the linkage group 3 of Thinopyrum in the present study. The role of Thinopyrum chro-

mosomes 3 may be similar to chromosomes 3 of wheat that harbor the majority of QTLs asso-

ciated with PHS resistance [34–38, 75], transcriptional factor TaVp-1 [28, 57–59, 66, 91–94],

TaMyb10 responsible for seed color [27] and epigenetic factors of DNA methylation AGO802
[46]. PHS resistance can also be regulated not only by polymorphism in DNA sequence but

also by epigenetic factors through DNA and histone methylation [46, 47] that have not been

studied in wide hybrids yet and can have its own specificity. As PHS resistance is a complex

trait regulated by multiple factors molecular makers Vp1BB4_HaeIII and Vivip cannot be

used as the only diagnostic tool in marker-assisted selection of wheat-wheatgrass hybrids or

perennial wheat. However, they can be efficiently applied in breeding process after additional

exploration and validation in complex with other molecular and phenotypic estimation meth-

ods to select PHS resistant wheat-wheatgrass entries and perennial wheat.

We have shown that the studied entries are diverse in wheatgrass component and that this

diversity is associated with PHS resistance. The differences in PHS resistance between wheat-

wheatgrass hybrids can be explained by genetic variations and/or epigenetic modifications.

Genetic variations may represent variations in different levels: different combinations of

Table 9. Association between TaVp-1B alleles (of wheat origin) and SS values in the wheat-wheatgrass hybrid collection.

Allele of

wheat

Vp-1B

Number of

entries

Mean SS arcsin
p

x

transformed

Mean SS reverse

transformed*
Standard deviation

(for arcsin
p

x transformed

means)

Range

(non-

transformed)

Vp-1Bc 23 0.73 0.46 0.30 0.01–0.92

Vp-1Ba 40 0.72 0.45 0.27 0.01–0.89

* Fobserved = 0.21376 < Fcritical = 1.74; p = 0.64519

https://doi.org/10.1371/journal.pone.0188049.t009
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wheatgrass chromosomes (the genome level), differences in the chromosomes of the homeolo-

gous group 3, where genes Vp-1 and R are localized (the chromosome level) or structural and

functional differences in the Vp-1 genes (the gene level). Along with that, we have shown that

the greatest resistance to PHS is innate to the entries of wheat-wheatgrass hybrids bearing hap-

lotype ThVp-1d of the wheatgrass Vp-1 gene (mean SS is 0.33, and mean GI is 0.64).

Conclusion

We, for the first time, demonstrated the variability of wheat-wheatgrass hybrids in resistance

to PHS. Most entries showed susceptibility that may pose a serious problem in wheat-wheat-

grass hybrid either as a source of genetic variability in wheat breeding or as a crop in regions

with conditions favorable to PHS. Interestingly, although all estimated entries have red grain

associated with high seed dormancy, only few showed relatively low GI. Using PCR-based

markers we demonstrated the polymorphism of the haplotypes of the wheatgrass ThVp-1 gene

in the wheat-wheatgrass hybrid collection and have revealed the significant effect of the ThVp-
1 gene on the PHS resistance. The further study may help to shed the light on the role of

ThVp-1 gene and its interaction with TaVp-1 in regulation of seed dormancy.
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