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Abstract

Background—Medication and psychotherapy treatments for posttraumatic stress disorder 

(PTSD) provide insufficient benefit for many patients. Substantial preclinical and clinical data 

indicate abnormalities in the hypothalamic-pituitary-adrenal axis, including signaling by 

corticotropin-releasing factor, in the pathophysiology of PTSD.

Methods—We conducted a double-blind, placebo-controlled, randomized, fixed-dose clinical 

trial evaluating the efficacy of GSK561679, a corticotropin-releasing factor receptor type 1 (CRF1) 

antagonist in adult women with PTSD. The trial randomized 128 participants, of whom 96 

completed the six-week treatment period.

Results—In both the intent-to-treat and completer samples, GSK561679 failed to show 

superiority over placebo on the primary outcome of change in Clinician Administered PTSD Scale 

total score. Adverse event frequencies did not significantly differ between GSK561679- and 

placebo-treated subjects. Exploration of the CRF1 SNP rs110402 found response to GSK561679 

and placebo did not significantly differ by genotype alone. However, subjects who had 

experienced a moderate or severe history of childhood abuse and who were also GG homozygotes 

for rs110402 showed significant improvement after treatment with GSK561679 (n=6) but not with 

placebo (n=7) on the PTSD Symptom Scale, Self-Report.

Conclusions—The results of this trial, the first evaluating a CRF1 antagonist for the treatment of 

PTSD, combined with other negative trials of CRF1 antagonists for major depressive disorder, 

generalized anxiety disorder, and Dunlop social anxiety disorder, suggest that CRF1 antagonists 

lack efficacy as monotherapy agents for these conditions.

ClinicialTrials.gov—Evaluation of GSK561679 in Women With Post-Traumatic Stress 

Disorder; https://clinicaltrials.gov/ct2/show/NCT01018992?term=NCT01018992&rank=1; 

NCT01018992

Keywords

clinical trial; adrenocorticotropic hormone; women; pharmacogenetics; dexamethasone; child 
abuse
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is a common psychiatric syndrome afflicting 

individuals who have been exposed to traumatic events (1). The symptomatology of PTSD is 

multiplex, encompassing components of intrusive re-experiencing of the traumatic event, 

avoidance of reminders of the event, negative or reduced range of mood, and hyperarousal 

and excessive reactivity to the environment. The pathophysiology of PTSD is broad, 

including abnormalities in fear processing (2), sympathetic nervous system (SNS) 

hyperactivity (3), and disturbed hypothalamic-pituitary-adrenal (HPA) axis functioning (4). 

Excessive fear processing is targeted by two established forms of PTSD treatment: exposure-

based psychotherapies and selective serotonin reuptake inhibitors (SSRIs). Excessive SNS 

activity, as measured by systolic blood pressure, is targeted by prazosin and perhaps by 

atypical antipsychotics, which have some efficacy for certain PTSD symptoms (5). However, 

response rates to existing interventions are less than 60%, with only 20–30% of patients 

achieving remission with medication (6), indicating the need for additional therapeutic 

options. A wealth of studies implicating HPA axis disruption in PTSD pathophysiology 

suggests that directly targeting this system may prove to be a fruitful approach (7).

Activation of the HPA axis in response to stress begins with the release of corticotropin-

releasing factor (CRF)from the hypothalamus. CRF is a 41-amino acid peptide 

neurotransmitter that mediates the stress response via its effects on neuroendocrine, immune, 

autonomic, and behavioral systems (8). CRF binding to CRF type 1 receptors (CRF1) in the 

pituitary stimulates release of adrenocorticotropin (ACTH), which enters the systemic 

circulation and induces release of cortisol from the adrenal cortex. In healthy subjects, the 

acute actions of cortisol produce negative feedback to the HPA axis via glucocorticoid 

receptors in the pituitary and hypothalamus. Abnormalities of the HPA axis in patients with 

PTSD include low circulating levels of ACTH and cortisol, and hyper-suppression of these 

hormones after low-dose dexamethasone administration (4). Elevated CRF concentrations 

are present in the cerebrospinal fluid of PTSD patients (9–11), though mildly ill patients 

may not show this abnormality (12). Outside the hypothalamus and anterior pituitary, CRF1 

are expressed widely in the cortex and cerebellum, hippocampus, amygdala, and bed nucleus 

of the stria terminalis (BNST) (13). Activation of CRF receptor binding in the amygdala 

induces fear responses (14), and administration of CRF in animal models produces PTSD-

relevant anxiety behaviors, including heightened acoustic startle response, sleep disturbance, 

and increased conditioned fear response (15). Early life stress in animal models produces 

hyperactivity of CRF neurons and chronic activation of limbic brain regions (16,17).

Several CRF1 antagonists studied in animal models have demonstrated potential therapeutic 

value for stress-related disorders (30). An early human trial suggested efficacy of CRF1 

antagonism for major depression (31) and another CRF1 antagonist produced anxiolytic 

effects in healthy adults given 7.5% CO2 (32). However, larger trials examining several 

CRF1 antagonists in clinical populations have not found efficacy for the treatment of major 

depression, generalized anxiety disorder, or social anxiety disorder (29).

GSK561679 is an orally active, selective CRF1 antagonist that demonstrates anxiolytic 

effects in animal models (33). The investigator brochure for GSK561679 reports that in 
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healthy adults, GSK561679 dose-dependently suppressed ACTH response to stress in the 

Trier Social Stress Test and after intravenous administration of CRF, but only inconsistently 

reduced cortisol responses in these challenge tests. In social anxiety disorder patients, a 

single 400 mg dose of GSK561679 reduced reactivity in the amygdala after exposure to 

facial expressions, similar to a single dose of alprazolam. The drug achieves good brain 

penetration in rodents and is not a substrate for p-glycoprotein transport. The primary route 

of metabolism is through cytochrome P450 3A4. Preclinical studies found GSK561679 

caused changes to the testes and seminiferous epithelium in male animals, thereby limiting 

human clinical trials to female participants.

We aimed to determine whether GSK561679 was efficacious for PTSD. Secondary aims 

were to evaluate the tolerability of GSK561679 and its effects on depressive symptoms. We 

also examined the potential moderating impact of HPA axis-related genes implicated in the 

development of PTSD. The clinical trial reported here is a component of the National 

Institute of Mental Health (NIMH) National Cooperative Drug Discovery/Development 

Groups (NCDDG) program, which aims to facilitate partnerships between academic clinical 

and preclinical researchers and industry to support the discovery of drug development tools 

and apply ‘first in human, first in patient testing.’

METHODS AND MATERIALS

Study Overview

A detailed description of the study rationale, methods, and design was previously published 

and is summarized here (34). The study design was a randomized, double-blind, placebo-

controlled, parallel-group clinical trial of GSK561679, which enrolled patients from January, 

2010 to June, 2014. After a screening phase lasting 1–4 weeks, patients entered a 6-week 

double blind treatment phase, followed by a one-month off-drug follow-up phase to monitor 

safety and durability of any clinical changes. Four academic sites conducted the study: 

Emory University, Icahn School of Medicine at Mount Sinai, Baylor College of Medicine, 

and the University of California San Francisco. Approval to conduct the study was obtained 

from the institutional review board of each university and its affiliated Veterans Affairs 

Hospitals, if applicable. The study was conducted in accordance with the Helsinki 

Declaration of 1975 and its amendments and is listed as NCT01018992 at Clinicaltrials.gov.

Participants

All participants provided written informed consent prior to beginning study procedures. 

Recruitment was conducted by advertising and clinic referral. Eligible participants were 

women aged 18–65 years who met DSM-IV TR criteria for PTSD, chronic, determined 

using the Structured Clinical Interview for DSM-IV (SCID) (35) and confirmed through a 

clinical interview with a study psychiatrist. For patients with multiple DSM-IV-qualifying 

traumas, we defined the “index” trauma as the trauma currently causing the greatest distress 

or impairment to the patient, identified from Parts 1 and 2 of the Posttraumatic Diagnostic 

Scale (PDS) (36). PTSD had to be at least moderately severe at the screening and baseline 

visits, defined as Clinician Administered PTSD Scale for DSM-IV (CAPS) (37) past-month 

and past-week total scores ≥50. Important exclusion criteria included: any current or past 
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diagnosis of schizophrenia or other psychotic disorder, bipolar disorder, or obsessive 

compulsive disorder; current substance abuse or dependence; use of a psychotropic agent, 

other than a non-benzodiazepine hypnotic; use of a systemic steroid medication; significant 

uncontrolled medical conditions, or current clinically significant suicidal or homicidal 

ideation; current participation in a structured psychotherapy targeting PTSD symptoms; and 

any current or planned litigation regarding the traumatic event.

Randomization

Randomization to GSK 561679 or placebo was 1:1 with permuted blocks generated 

separately for each site by a statistician who was not involved in the analysis of the data (see 

34). The investigational pharmacist assigned the eligible patient to the treatment indicated by 

the randomization list at the baseline visit.

Study Medication

The selected dose of 350 mg/d of GSK561679 was based on the tolerability and biological 

activity observed during Phase 1 testing. Study medication was dispensed in two bottles 

containing 100 mg or 50 mg white tablets of GSK561679 or matching placebo. Patients took 

three 100 mg tabs and one 50 mg tab each evening between 1800 and 2000, and recorded the 

time in a dosing diary.

Study Visits and Assessments

The PDS and CAPS were administered at screening to assess trauma severity. Patients 

completed the PTSD Symptom Scale, Self-report (PSS-SR) (38), the Childhood Trauma 

Questionnaire (CTQ) (39), the Montgomery-Asberg Depression Rating Scale (MADRS) 

(40,41), the Quick Inventory of Depressive Symptomatology, Self-report (QIDS-SR) (42), 

the Clinical Global Impression of Severity (CGI-S) (43), the Sheehan Disability Scale (SDS) 

(44), and the clinician-administered version of the Columbia Suicide Severity Rating Scale 

(C-SSRS) (45). An electrocardiogram, laboratory testing, urine drug screen, medical history 

and a physical exam were conducted to ensure medical appropriateness for the study. 

Adverse events were captured by open-ended questions and via the Patient Rated Inventory 

of Side Effects (PRISE) (46) at each post-screening visit.

On the day prior to the baseline (randomization) visit patients underwent phlebotomy for 

measurement of ACTH and cortisol, and baseline laboratory tests, and took 0.5 mg of 

dexamethasone at 23:00 that evening for the low-dose dexamethasone suppression test. 

Patients returned the next morning to repeat phlebotomy for post-dexamethasone ACTH and 

cortisol concentrations. Ratings visits occurred at baseline and weeks 1, 2, 4, and 6 post-

randomization, with administration of past-week CAPS, MADRS and the self-report 

symptom measures. Neuroendocrinological testing was repeated during the fifth week post-

randomization. Plasma samples for GSK561679 concentrations were collected at weeks 1, 2, 

4, and 6. Methods for DNA genotyping are presented in the online Supplement.

The primary outcome was change in past-week CAPS total score from baseline to week 6, 

assessed at weeks 1, 2, 4 and 6. CAPS raters were initially trained through use of a scoring 

guide and watching a training video interview. Interrater reliability was assessed annually 
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via independent scoring of standardized videotaped CAPS interviews. Raters whose scores 

were >4 points from the median for each interview underwent additional training until 

reliability was achieved.

Statistical Analyses

All analyses used R v.3.2 (https://www.r-project.org). Generalized linear models evaluated 

the effects of treatment on univariate outcomes; multilevel models examined treatment 

effects on longitudinal outcomes. Analyses evaluated treatment effects with and without 

adjustment for site effects. Since inclusion of site as a covariate failed to alter any conclusion 

derived from models without site, the results are based on the more parsimonious unadjusted 

models. Primary analyses utilized intention-to-treat principles with multilevel models 

maximizing the use of all available data using restricted maximum likelihood estimation, 

and dichotomous outcomes imputed as negative/non-responsive to treatment.

CRF1 SNP rs110402 was the main focus of the genetic analysis. Direct genotypes were 

taken from the HumanOmniExpress-24 array (rs110402 MAF =0.401, HWE test p-value = 

0.52), with patients categorized according to rs110402 A allele carrier status (GG=33 

carriers and 53 A-allele carriers, of which 38 patients had the AG genotype and 15 were 

homozygous for the A allele, Table S2). To assess A-allele carrier main effects as well as 

interaction of the carrier status with childhood abuse on change in psychiatric symptoms, we 

performed linear regression models adjusted for age, baseline symptom severity and 

ancestry PC (Figure S8), with the percent change in CAPS score, PSS score and MADRS 

score as outcomes. Individuals were categorized as having experienced either no or only 

mild abuse versus having experienced at least one type of moderate to severe abuse 

(56=abused, 30=non-abused) as previously described using the CTQ (47). To conserve 

power, we refrained from testing three-way interactions of SNP x child abuse x treatment on 

symptom changes, but analyzed two-way interactions of SNP x child abuse on outcome, 

stratified by treatment status. Significance was considered at p<0.05 and due to limited 

power, all genetic analyses are considered exploratory only, so no correction for multiple 

testing was applied.

RESULTS

The CONSORT diagram (Figure S1) depicts the overall participant flow for the trial, with 

n=266 enrolled, n=128 participants randomized, and n=96 completing treatment. The mean 

age of the sample was 40.5±12.1 years; only three participants identified combat as their 

index trauma. The baseline demographic and clinical characteristics of the sample are 

presented in Table 1.

Retention and Treatment Compliance

Kaplan-Meier survival curves failed to demonstrate differential attrition as a function of 

treatment group χ2(1)=0.2, p=0.647. Among individuals (n=91) who completed treatment 

and who demonstrated compliance with the medication regimen (verified via serum levels at 

the week 6 or early termination visit only in the GSK561679 condition) retention did not 

differ as a function of treatment group (Placebo n=49, GSK561679 n=42; χ2(1)=1.183, 
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p=0.278). The mean week 6 concentration of GSK561679 among compliant patients 

receiving the active drug was 923±603 ng/ml.

CAPS Outcomes

Evaluation of the CAPS past week total score as a function of time, treatment, and their 

interaction found no differential change over time between GSK561679 and placebo (t(435) 

= 0.713, p≤0.477) (Figure 1). The three CAPS-derived symptom clusters of re-experiencing, 

avoidance, and hyperarousal, also found no differential change over time for GSK561679 

versus placebo (all p>.05).

Response rates did not differ between treatments, whether defined as a 50% decrease from 

baseline (Placebo: 18 (27.7%), GSK561679: 14 (22.2%); χ2(1)=0.543, p=.305) or 30% 

decrease (Placebo: 34 (52.3%), GSK561679: 28 (44.4%); (χ2(1)=0.384, p=.238).

MADRS Outcomes

Longitudinal modeling of MADRS scores found no differential change over time between 

the treatments (t(425) = −0.693, p≤0.489) (Figure S2).

Completers and Compliers

Reanalysis of symptom outcomes (i.e., CAPS and MADRS) using all completers, as well as 

the completers and compliers sample, failed to substantively alter any conclusions. Among 

the completers and compliers sample who received GSK561679, the mean week 6 serum 

concentrations between responders (≥30% improvement from baseline) and non-responders 

did not differ (Responders: 852±427 ng/ml; Non-responders: 706± 419 ng/ml; F(1,35) = 1.1, 

p≤0.301).

Secondary Outcomes

Multilevel modeling evaluated several secondary outcomes as a function of time, treatment 

and their interaction. Change in PSS-SR Total scores over time did not reveal a treatment-

by-time interaction (t(436)=−0.022, p=0.983). Similar null results were found for the re-

experiencing (t(438)=−0.016, p=0.987), hyperarousal (t(437)=0.300, p=0.764), and 

avoidance (t(436)= −0.263, p=0.793) subscales of the PSS-SR. The QIDS-SR (t(427)=0.748, 

p=0.455), CGI-S (t(411)=1.126, p=0.207), and SDS (t(188)= −0.440, p=0.660) also failed to 

show differential change for GSK561679 over placebo.

Treatment Outcome Moderators

We conducted post-hoc exploratory evaluation of potential clinical moderators to account for 

potential heterogeneity in treatment response. We found no significant moderation of the 

results by patient age, time since traumatic event, comorbid MDD, CAPS score at screening, 

or CTQ total score.

Genotype by childhood abuse interaction on symptom change stratified by treatment

We first tested the interaction effect of SNP rs110402 carrier status and childhood abuse on 

the percent change of CAPS score, as well as PSS-SR score, separately in GSK561679-
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treated and placebo-treated patients. rs110402 carrier status showed no significant main 

effect on the percent change of PTSD symptoms from pre- to post-treatment (p>0.05), or on 

CAPS score change over treatment (p>0.05), in either treatment group. However, childhood 

abuse as well as the interaction of genotype by child abuse significantly predicted PSS-SR 

percent change in the GSK561679 group (Abuse: s=1.534, p=0.021; SNP x abuse: s=−1.904, 

p=0.043) but not in the placebo group (Abuse: s=−0.629, p=0.53; s=0.421, SNP x abuse 

p=0.68). More specifically, GG genotype carriers who had experienced childhood abuse 

showed the highest PSS-SR percent change after GSK561679 treatment (Figure 2). Plotting 

PSS-SR scores by group over time showed that among the patients with childhood abuse, 

GG homozygotes who received GSK561679 had consistently lower symptom scores over all 

5 post-baseline time-points (Figure 3A and 3B).

Interestingly, the interaction of genotype by child abuse on PSS total score was most 

pronounced for the two PSS-SR subscales of re-experiencing and arousal. Significant 

interaction effects for the re-experiencing (GSK561679: s=−2.472; p= 0.006; placebo: 

s=0.075; p=0.92) and arousal subscales (GSK561679: s=2.034; p= 0.019; placebo: s=0.054; 

p=0.94) emerged in subjects treated with GSK561679, but not for the PSS-SR avoidance 

subscale (GSK561679: s=−0.945; p= 0.36; placebo: s=0.565 p=0.44) (Figures S3, S4, and 

S5).

Genotype by childhood abuse interaction on depressive symptoms stratified by treatment

Due to the implications of rs110402 for depression after childhood abuse we also tested the 

interaction effect of rs110402 and child abuse on the percent change in MADRS scores. 

There was no main effect of child abuse, nor was there an interaction effect of genotype by 

abuse, in either of the treatment groups (p>0.05 for all).

Analysis of treatment or genotype effect on blood cortisol and ACTH levels and interaction 
effects of treatment x cortisol/ACTH levels on psychiatric symptom change

We tested for main effects of GSK561679 as well as rs110402 A-allele carrier status on 

change in cortisol concentrations over treatment time. There was no significant effect of 

GSK561679 compared to placebo on morning basal plasma cortisol concentrations after 5 

weeks of treatment (p>0.05) (Figure S6). There was also no significant effect on cortisol 

suppression following the dexamethasone suppression test (DST) at baseline, nor a 

significant difference in cortisol suppression at baseline compared to week 5 (p>0.05) (Table 

2, Figure S7). Genotype analyses of rs110402 carrier status showed similar null results 

(p>0.05 for all). Neither the interaction of treatment by morning cortisol levels at baseline, 

nor treatment by change of morning cortisol levels from pre to 5 weeks, were correlated with 

pre to post percent change of psychiatric symptoms (CAPS, PSS, MADRS). Further there 

was no interaction effect of treatment with changes in the dexamethasone suppression test 

from pre to 5 weeks on percent change of psychiatric symptoms (p>0.05 for all). For ACTH 

analyses, we used the same models replacing cortisol by plasma ACTH concentrations. No 

significant main or interaction effects were observed (p>0.05 for all).
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Safety and Tolerability

One serious adverse event occurred in each treatment arm, and both were considered 

unrelated to the study medication. Evaluation of suicidal ideation and behavior using the C-

SSRS did not find differential levels of either ideation or behavior. No adverse events 

occurred significantly more frequently in the GSK561679 than placebo arm (Tables S3, S4).

DISCUSSION

This clinical trial found that a potent CRF1 antagonist provided no benefit for reduction of 

PTSD symptoms beyond those achieved with placebo. The failure of the GSK561679 to 

demonstrate efficacy is unlikely due to aspects of symptom severity or placebo 

responsiveness of the sample. The baseline CAPS total score of 76 was very similar to 

baseline scores in positive trials of SSRIs and venlafaxine, and the mean change in CAPS 

score of 28 points in the placebo arm was similar to the degree of placebo improvement in 

those trials, which ranged from 23.2–26.2 points (48–52).

One explanation for the trial’s failure to show benefit of GSK561679 may be found in our 

analysis of the rs110402 SNP of the CRF1 gene. Among patients with a history of childhood 

abuse, GG homozygotes at this locus, in contrast to A-allele carriers, demonstrated 

significant improvements in self-reported hyperarousal and re-experiencing symptoms with 

GSK561679 treatment, which were absent in the placebo-treated patients. Thus, the 

responsiveness of patients to CRF receptor antagonism may depend on their genetic 

endowment and environmental exposures, which could be linked to an increased activity of 

the CRF system in these individuals. However, this abuse by allele status analysis was 

exploratory, the number of patients in each arm was relatively small, and the effect was 

observed on the PSS-SR, not the primary CAPS scale, so this finding requires replication in 

larger samples before definitive conclusions about this association can be made.

Some data do not support the model that disruptions in CRF signaling are associated with 

anxiety disorders, raising the possibility that the negative result is a consequence of poor 

target selection. Adult wild-type and CRF knock-out mice demonstrate similar behavioral 

responses to stressors, even though CRF knock-outs fail to activate the HPA axis in response 

to stressors (53). In the central nucleus of the amygdala, CRF1 activation reduces glutamate-

mediated excitatory postsynaptic currents (EPSCs) and increases EPSCs in the lateral 

septum (54). Conflicting data exist on whether chronic antidepressant administration 

impacts basal CRF mRNA expression in the paraventricular nucleus (55–57), or diminishes 

stress-induced CRF gene expression in the paraventricular nucleus (57). Other data suggest 

antidepressants reduce CRF1 mRNA expression in the amygdala (56), but this finding has 

not been replicated (57). Finally, a small study of PTSD patients who achieved remission 

with paroxetine found no significant pre- to post-treatment change in cerebrospinal fluid 

(CSF) CRF concentrations (12). In combat veterans with PTSD, observation of trauma 

reminder stimuli resulted in unexpected reductions in CSF CRF concentrations (58).

Another alternative is that the negative results of this study may be due to the differential 

anxiolytic and anxiogenic effects of CRF1 activation by brain region. In the forebrain, CRF1 

increases anxiety by amplifying activity in the hippocampal formation via increased firing 
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frequency of glutamatergic inputs. Stress increases CRF concentrations in the locus 

ceruleus, which can induce anxiety-like behavior in animals (59), and CRF receptor 

antagonists applied to the locus ceruleus diminish NE release to the hippocampus (60) and 

prefrontal cortex (61). CRF activity at CRF1 in the dorsal raphe reduces activity of 

serotonergic neurons (62). In the PFC, CRF acting through CRF1 sensitizes post-synaptic 

5HT-2 receptors that mediate anxiety behaviors in mice (63). In contrast, to these effects, 

loss of CRF1 signaling in midbrain dopaminergic neurons increases anxiety by inhibiting 

dopamine release in the prefrontal cortex (64).

Another consideration for the trial’s negative results is the potential sex-specific responses to 

CRF and CRF1 antagonists. In contrast to male mice, who show clear behavioral and HPA 

axis responses to infusion of either CRF or a CRF1 antagonist into the dorsal raphe, female 

mice demonstrate modest changes (65). Because participation in the current trial was limited 

to women, the potential efficacy of GSK561679 in men could not be assessed. Design of 

future human studies of CRF1 antagonists should prospectively consider possible sex-

specific effects of CRF-modulating drugs.

As part of this NCDDG program, a study evaluating the anxiolytic effects of GSK561679 

was conducted in healthy adults using a startle paradigm (66). Contrary to expectations, a 

single 400 mg dose of GSK561679 increased startle in response to a stimulus predictive of 

electric shock (i.e., increased fear), but had no effect on unpredictable shock (i.e., anxiety), 

although GSK561679 also reduced baseline startle, which complicates interpretation of the 

startle potentiation results. In contrast, alprazolam in this study was found to reduce anxiety 

but did not impact fear. Although these results did not support preclinical rodent data 

suggesting that CRF1 antagonism decreases anxiety measures, they were consistent with the 

rodent data suggesting that CRF1 antagonism can increase startle responses potentiated by 

cued fears (67). Taken together, these data suggest that CRF1 antagonism can inhibit the 

BNST, thereby reducing the “brake” that BNST exerts on the reactivity of the central 

nucleus of the amygdala to fear stimuli (68), but that this inhibitory effect is inadequate to 

reduce behavioral expressions of anxiety. These different regional actions of CRF1 

antagonism within the central nervous system (CNS) may have yielded competing effects on 

patients’ anxiety levels. In addition, the current trial used only a fixed dose of 350 mg/day; 

employing higher doses may have produced different effects.

Alternatively, if CRF overactivity is truly present in PTSD, the negative study result may 

indicate that once PTSD is established, blockade of CRF’s extrahypothalamic sensitization 

effects on anxiety signaling are insufficient to alter expression of anxiety behaviors. The 

great majority of animal studies implicating the role of CRF1 activation in anxiety responses 

are based on short-term stressors and drug exposures. For example, in mice, CRF1 

antagonism immediately after a predator stressor successfully blocks the initiation and 

consolidation of the stressor’s effects on startle (69). In human adults affected with 

depression, PTSD, or anxiety disorders, CRF activation at the time of stress may produce 

circuit-level changes that, once established, are only weakly responsive to further 

modulation of CRF signaling. Indeed, chronic over-expression of CRF in adult mice 

produces only modest effects on behavior (70). Under this model, CRF1 antagonists may 
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prove more efficacious as preventative treatments immediately post-trauma, rather than as 

monotherapy treatments for established conditions.

While this trial was underway, GSK561679 was found to be ineffective in the treatment of 

major depressive disorder (71) and one study in social anxiety disorder was completed with 

undisclosed results (72). The negative result in the current trial suggests that CRF1 receptor 

antagonists are unlikely to prove useful for the treatment of anxiety disorders, despite the 

wealth of suggestive preclinical data (29). Our preliminary data on attempting to subtype 

patients according to possible CRH-system hyperactivity, suggest, however, that CRF1 

antagonists may be effective in specific biological subgroups of patients. This observation 

needs to be confirmed by additional, larger studies. Other possible explanations for the 

failure of CRF1 antagonists include inadequate CNS penetration of the compounds, 

inadequate treatment duration, abnormal concentrations of CRF binding protein in the CNS 

(73), competing actions by urocortins (54), or strong compensatory systems that oppose any 

anxiolytic effect of CRF1 antagonism (74). The effects of CRF2 activation in the presence of 

CRF1 antagonism are unknown (75), although existing data suggest that preserved CRF2 

signaling in the absence of CRF1 activation should have provided a protective effect against 

anxiety (76,77). Despite the failures of CRF1 antagonists in mood and anxiety disorders, this 

mechanism of action may find clinical value in other areas of psychiatry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Change in CAPS past-week total scores by treatment group
S.E. bars represent ± 1 S.E. CAPS, Clinician Administered PTSD Scale
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Figure 2. Significant interaction effect of rs110402 and childhood abuse on percent change PSS-
SR score
The boxplots describe the mean percent change of PSS total score in abused and non-abused 

patients treated with the GSK561679 or placebo. GG carriers are shown in light grey and 

AA/AG in dark grey. Higher PSS percent change corresponds to improvement (reduction) in 

PTSD symptoms from baseline to endpoint. rs110402 A carrier status by childhood abuse 

exposure showed a significant interaction effect on PSS score percent change over treatment 

in subjects treated with GSK561679 (s=-1.904, p=0.043) but not in subjects treated with 

placebo (s=0.421, p=0.68). rs110402 GG carriers exposed to child abuse displayed the 

highest percent change of PSS symptoms following GSK561679 treatment. PSS-SR, PTSD 

Symptom Scale, Self-Report

Dunlop et al. Page 17

Biol Psychiatry. Author manuscript; available in PMC 2018 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. PSS-SR score change over time among patients treated with GSK561679 by abuse level
Mean (± SEM) PSS-SR total score at 5 time points during treatment with GSK561679 in: A) 

patients with a history of childhood abuse and, B) patients with mild/no childhood abuse, 

stratified by rs110402 carrier status (GG in light grey, AA/AG in dark grey). When treated 

with GSK561679, the GG genotype carriers that experienced childhood abuse showed 

consistently lower symptom scores over all 5 time points compared to abused AG/AA 

carriers while this genotype effect is not observed in the non-abused group. PSS-SR, PTSD 

Symptom Scale, Self-Report
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Table 1

Demographic and clinical variables at baseline

Variable Placebo n=65 n (%) GSK561679 n=63 n (%)

Race

 White/Caucasian 32 (49) 40 (64)

 African American 28 (43) 18 (29)

 Other 5 (8) 5 (8)

Hispanic 5 (8) 8 (13)

Current Major Depression 43 (66) 41 (65)

Education (n=125)

 <High School 4 (6) 7 (11)

 High School degree/Some college 29 (45) 24 (38)

 College degree 15 (23) 19 (30)

 Graduate degree 16 (25) 11 (18)

 Current Smoker 17 (26) 12 (19)

Time since primary trauma (n=125)

 ≤6 months 5 (8) 6 (10)

 6 months – 3 years 15 (24) 11 (18)

 3–5 years 11 (18) 5 (8)

 ≥5 years 32 (51) 39 (64)

Mean (SD) Mean (SD)

Age (yrs) 40.4 (12.3) 40.6 (11.8)

Traumatic events, lifetime 3.7 (2.2) 3.5 (1.6)

CAPS Past Month Total 79.8 (15.6) 82.0 (12.5)

CAPS Past Week Total 74.8 (17.6) 77.5 (14.3)

PSS-SR Total 30.0 (9.3) 31.1 (7.1)

MADRS 25.1 (8.3) 26.5 (7.0)

QIDS-SR 13.6 (4.5) 13.3 (4.1)

CTQ Total 75.9 (23.9) 79.3 (27.2)

SDS 16.3 (7.1) 15.5 (7.1)

CGI-S 4.7 (0.7) 4.7 (0.7)

CAPS: Clinician-administered PTSD Scale; CGI-S: Clinician Global Impression-Severity; CTQ: Childhood Trauma Questionnaire; MADRS: 
Montgomery Asberg Depression Rating Scale; PSS-SR: PTSD Symptom Scale – Self-report; QIDS-SR: Quick Inventory of Depressive 
Symptomatology-Self-report; SDS: Sheehan Disability Scale;
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