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Abstract

The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has 

continued unabated over the past year. Initial successes in obtaining near-atomic resolution 

structures with cryo-EM were enabled to a large extent by advances in microscope and detector 

technology. Here, we review some of the complementary technical improvements that are helping 

sustain the cryo-EM revolution. We highlight advances in image processing that permit high 

resolution structure determination even in the presence of structural and conformational 

heterogeneity. We also review selected examples where biochemical strategies for membrane 

protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches 

for further improving the preparation of reliable plunge-frozen specimens.

Introduction

Whether the meteoric rise of cryo-EM is viewed as a revolution, or as an evolution that is a 

result of the steady growth of biological electron microscopy, there is little doubt that it is 

making a major impact in structural biology. The number of structures reported at near-

atomic resolutions (resolutions better than 4 Å) in the EM Data Bank jumped from only 36 

in 2014 to 114 and 240 in the years 2015 and 2016, respectively. The number of publications 

per year associated with EMDB entries almost tripled between 2011 and 2016 (123 to 325). 

An impressive spectrum of biological problems are beginning to be addressed, ranging from 

progress with more traditional cryo-EM favorites such as ribosomes [1,2] and icosahedral 

viruses [3,4], to previously uncharted territory in studies of membrane proteins [5,6] and a 

host of multi-protein complexes [7-11] of varying sizes. The advent of direct electron 

detectors is deservedly credited with being a key factor in driving recent advances in high-

resolution structure determination by single particle cryo-EM [12-14]. However, it will be 

necessary for advances to also occur in other aspects of the cryo-EM workflow so that the 

hardware advances in microscope and detector architecture can be properly leveraged to 

ensure continued growth of the cryo-EM field.
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Among the many challenges most frequently encountered, some can be readily identified as 

important current bottlenecks to progress. For example, during the process of specimen 

preparation, where a thin aqueous suspension is created and plunge-frozen, functionally 

relevant protein complexes that are stable in bulk solution may become dissociated [15-17]. 

In addition, proteins and protein complexes in aqueous solution are intrinsically flexible to 

varying extents [18], creating structural heterogeneity that can be even more pronounced in 

multi-domain proteins and multi-protein complexes [19,20]. These types of heterogeneity 

can confound the process of cryo-EM structure determination, since it relies on averaging 

projection images from tens of thousands of individual macromolecules [21,22]. Structurally 

homogeneous samples can sometimes be prepared by removal of flexible components or by 

introducing stabilizing mutations, but these may come at the price of steering the samples 

away from physiologically relevant conditions [23]. Finally, even when all of the 

biochemistry has been optimized, non-uniform distribution of proteins on substrate grids, 

including problems such as aggregation and preferred orientation, can still stymie progress 

[24]. While customized solutions are sometimes necessary to solve each of these problems, 

this review highlights advances on three specific fronts (3D classification of heterogeneous 

structures, protein stabilization, and specimen preparation) where a variety of novel 

strategies are being employed to tackle outstanding problems in the field.

Computational strategies to address conformational heterogeneity

The presence of multiple, coexisting conformations in a sample is a challenge for high 

resolution structure determination by both single particle cryo-EM and X-ray 

crystallography, as both depend on averaging information from multiple copies of the 

relevant biological entity. In the crystallographic context, conformational heterogeneity can 

impede crystal formation [25], and even when crystals are successfully obtained, this can 

lead to disorder in parts of the structure that are prone to greater mobiity. When functionally 

relevant conformational changes are introduced in pre-formed crystals, crystal disruption can 

occur [26]; historically, hemoglobin was the first instance where this phenomenon was 

reported [27]. In contrast, with cryo-EM structure determination, it is often possible to 

discern this heterogeneity computationally, either by focusing analysis only on structurally 

homogeneous regions of the complex [28], or by deriving an ensemble of structures when 

there are discrete subpopulations [29]. In most cases, conformational separation also 

provides invaluable clues to the functional mechanism, as illustrated in the examples 

discussed below.

Glutamate dehydrogenase (GDH), a highly conserved hexameric enzyme [30], plays a 

central role in glutamate metabolism by catalyzing the deamination of glutamate to generate 

α-ketoglutarate (AKG), coupled with the transfer of a pair of electrons to either NAD+ or 

NADP+. In its apo-form, GDH exists in an “open” conformation, with a stable core region 

and more mobile nucleotide binding domains. Whereas the highest resolution reported 

structure of this state by X-ray crystallography is at 2.7 Å resolution [31], single particle 

cryo-EM analysis that takes into account some of the heterogeneity of the periphery can 

achieve a resolution of ∼1.8 Å in the ordered core regions (Figure 1a) [11]. Crystallographic 

analysis of the closed state of GDH has always required the presence GTP and glutamate as 

well as NADH, leaving open the question of the individual effect of NADH binding to the 
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protein conformation. Cryo-EM analyses show that binding of NADH alone results in an 

equilibrium between closed and open states, which differ with respect to the conformation of 

NADH in the regulatory site (Figure 1b) [32]. Cryo-EM approaches thus not only yielded 

higher resolution structural information for stable regions of the molecule, but also enabled 

the discovery of a potential role for NADH in regulation of GDH activity.

A second example comes from structural studies of p97, a hexameric AAA+ ATPase and 

cancer target. p97 binds multiple factors, including ubiquitin-binding adaptors, ubiquitin 

ligases and deubiquitinating enzymes; as a multi-domain molecular machine, it is expected 

to adopt multiple conformational states. However, structural studies of full-length p97 by X-

ray crystallography have been limited to low resolution (3.5 Å to 4.7 Å), precluding an 

understanding of structural changes under native conditions and in complex with enzymatic 

inhibitors including those of clinical interest. Recent single particle cryo-EM analyses have 

significantly advanced mechanistic understanding of p97 function by resolving three well-

defined, co-existing conformational states that are simultaneously populated when ATPγS is 

added to p97 (Figure 1c) [33]. These three states reveal an unambiguous and step-wise set of 

conformational changes upon binding of ATPγS, providing both a “movie” of how p97 is 

activated and new mechanistic insights into how a conformation-selective inhibitor binds at 

the interface between the two nucleotide-binding domains to lock the enzyme in an inactive 

state.

A third example comes from structural studies of the yeast ribosome bound to a viral mRNA 

containing an internal ribosome entry site (IRES). To initiate translation, a structured IRES 

RNA moiety interacts with the 40S subunit or the 80S ribosome, without the need for 

additional host initiation factors. Translocation of the IRES mRNA, however, requires 

binding of the eukaryotic elongation factor 2 (eEF2). Using maximum-likelihood based 

classification approaches, five distinct IRES-eEF2- bound ribosome structures were 

identified within a single mixture (Figure 1d) [1], with differences in the conformations of 

ribosomal subunits, IRES RNA and the translocase eEF2. This collection of distinct 

structures suggests a plausible sequence of steps for the eF2-induced translocation of IRES 

and also revealed previously unresolved intermediate states, providing new insights into the 

structural basis for the mechanism of translocase action. Conformational sorting by cryo-EM 

of ribosomes engineered to stall the association of ribosomal components, has also yielded 

significant insights into the how these complex particles use multiple pathways to achieve 

assembly [29].

Obtaining reliable quantitation of the proportional occupancy of each of the conformational 

substates identified by computational separation can be difficult, but some interesting 

approaches using complementary structural methods are emerging. In a recent study of the 

archaeal AAA+ ATPase VAT, Huang et al. confirmed the presence of both a “stacked ring” 

(a planar, closed ring structure) and a “split ring” (a broken ring structure with a slight 

helical pitch) conformation of this hexameric ATPase using NMR, and further verified that 

the “stacked ring” represented the more common conformation [34].
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Taming Membrane Proteins for Cryo-EM

Despite the abundance of membrane proteins in nature, relatively few of the crystal 

structures in the Protein Data Bank are of membrane proteins. Until the breakthrough 

demonstration that near-atomic resolution structures of membrane proteins could be 

obtained using single particle cryo-EM [5], the only membrane protein structures that were 

determined at high resolution using electron microscopy were obtained using electron 

crystallography of 2D crystals of the proteins embedded in a lipid bilayer [35].

Because removal of membrane proteins from their native lipid bilayer environment by 

detergent solubilization can destabilize them (reviewed in [24]), there is considerable 

interest in finding ways to generate stable, but essentially “aqueous” solutions of membrane 

proteins. Amphipols, whose application to stabilizing membrane proteins was recognized 

over two decades ago [36], are amphipathic polymers that can replace detergent molecules 

surrounding the transmembrane region and restrict overall conformational flexibility. 

Following the initial application of amphipols to obtain a high resolution structure for the 

TRPV1 channel [5], their use as a detergent alternative has grown significantly. Although 

there is concern that the use of amphipols may steer the conformation away from 

physiologically relevant conditions, many new structures of membrane proteins solubilized 

with amphipols have been reported, including structures of the ryanodine receptor [37], Trp 

channels [38-40], gamma secretase [41,42], as well as a V-type ATPase [43].

A growing number of membrane proteins are also being successfully studied by cryo-EM in 

detergent micelles. Recent examples of membrane proteins whose structures have been 

determined to high resolution in detergent include the ryanodine receptor [44,45], Trp 

channels [46,47], gamma secretase [48], glutamate receptor [49], the calcium channel 

Cav1.1 [50], and the mitochondrial complex [51-53]. While these successes demonstrate that 

it is possible to achieve high resolution in detergent with some classes of proteins, issues 

with both protein stability and the presence of excess detergent remain stumbling blocks to 

obtaining high resolution. A recently reported gradient-based method, GraDeR [54] (Figure 

2a), removes excess boundary detergent, offering a novel approach to enhancing membrane 

protein stability in the context of the detergent-solubilized state. The GraDeR method 

achieves detergent reduction by slow removal of excess amphipathic detergents such as 

lauryl maltose-neopentyl glycol (LMNG) [54], and has been recently used to obtain cryo-

EM structure for the innexin-6 channel [55].

Reconstitution of membrane proteins into nanodiscs has been proposed to offer the best 

compromise between maintaining a lipid-like environment at the boundary of the membrane 

protein, while also allowing the membrane proteins to be present as “single particles” that 

can be studied using cryo-EM [56]. Nanodiscs are essentially small discs of lipid bilayers 

bounded by a stable protein ring that is thought to form a belt around the periphery of the 

disc (Figure 2b). Variations in the size of the nanodisc can potentially preclude achieving 

high resolution structures [57] (Figure 2c), driving the need for improved methods to 

generate more homogeneously-sized nanodisc assemblies. Although there are only a few 

membrane proteins whose structures have been determined to high resolution in the 

nanodisc-embedded state [58,59] (Figure 2d), the fact that structures determined using this 
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approach can also provide information on boundary lipids makes this an appealing 

alternative to be developed further.

Grid Modification Methods for Specimen Preparation

The principles underlying current methods for cryo-EM specimen preparation have 

remained largely unchanged from those developed in the early 80's. In the vast majority of 

cases, samples of purified protein are applied to an electron microscope grid, blotted with 

filter paper to leave behind a thin aqueous film, and then plunge-frozen in a cryogen such as 

liquid ethane cooled by liquid nitrogen. This process can result in significant interfacial 

forces on the suspended proteins, leading sometimes to dissociation of labile complexes, as 

well as other issues such as preferential orientation, aggregation, and non-homogeneous 

distribution over the grid, all of which can lower successful outcomes in cryo-EM imaging. 

A number of methods that attempt to improve the traditional grid preparation process are 

being reported [60], including the introduction of modifications to grid structure and the use 

of chemistry to improve protein distribution and cryo-EM image quality.

One interesting category of grid modification includes variations on the theme of “affinity 

grids”, where, for example, antibodies attached to a grid can capture untagged proteins or 

complexes out of lysate, without requiring prior purification [61,62]. This has successfully 

been used for the high resolution 3D reconstruction of an icosahedral virus [63]. A similar 

approach, using Ni-NTA modified grids to capture His-tagged proteins, has also been used 

to perform “on-grid” purification [64,65], including for smaller protein complexes (Figure 

3a). However, both of these techniques can also have limitations. Not only does the presence 

of the antibody introduce an additional layer of complexity for 3D reconstruction, but can 

lead to preferential orientation of the bound macromolecule, which, in turn, leads to loss of 

structural information and lower resolution in the direction of the electron beam.

Another, similar method attempts to overcome some of the drawbacks of the antibody-based 

affinity grid approach. In this technique, a 2D crystal of streptavidin is deposited on the 

surface of a grid [66] (Figure 3b). Protein complexes of interest (purified in solution) are 

then biotinylated; because biotin binds non-specifically to the protein surface, this should in 

theory not result in preferential distribution of orientations. However, because the 

streptavidin coat is crystalline, the density for the streptavidin can be computationally 

removed from the micrograph (Figure 3c). Glaeser and colleagues have demonstrated that it 

is possible to determine high resolution structures of the ribosome using this method [67]. It 

remains to be seen if this technique can successfully yield high resolution structures also of 

smaller protein complexes.

An assortment of other methods are also emerging to tackle the general problem of 

improving specimen quality. The quality of crystallographic structures is generally higher 

under conditions where the protein is thermally stable [68], and extending this to cryo-EM is 

being explored in approaches such as the “Proteoplex” screen devised by Stark and 

colleagues [17]. The use of surface modification to enhance the proportion of protein 

complexes that distribute into the “holes” of holey carbon grids is another strategy that helps 

offset preferential binding of protein complexes to carbon film substrates [69]. A more 
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radical approach (“Spotiton”) that potentially eliminates the need for the process of blotting 

prior to plunge-freezing has been proposed [24, 70]. In this procedure, picoliter sized 

amounts of protein solution are delivered to individual grid squares, and can be used in 

conjunction with grids specially modified with carbon nanowires to facilitate better 

spreading of the aqueous film by capillary action [71].

Conclusion

The application of electron microscopy for protein structure determination, as embodied in 

single particle cryo-EM, is now firmly established as a cutting-edge method for studying 

protein complexes spanning a wide range of sizes. The use of single particle cryo-EM to 

obtain structures of dynamic protein complexes with sizes smaller than 500 kDa has been 

especially transformative in structural biology. In 2012, prior to the recent advances in 

detector technology, there were only four single particle cryo-EM structures available in the 

EMDB of protein complexes with sizes smaller than 500 kDa [72]. None of these structures 

were at resolutions better than ∼ 8 Å, and few expected then that it would only be four years 

before numerous single particle cryo-EM structures at resolutions better then 3 Å would be 

reported for proteins in this size range. As discussed in this review, there is increasing 

recognition that in addition to the availability of better detectors and improved image 

processing tools, customized approaches for protein stabilization and specimen preparation 

will also be necessary to further advance the reach of cryo-EM in the coming years.
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Highlights

• The number of structures determined by cryo-EM is continuing to grow 

rapidly

• Computational methods are helping resolve conformational heterogeneity

• Improved biochemical methods are driving advances in cryo-EM of 

membrane proteins

• Novel approaches for cryo-EM specimen preparation are being explored
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Figure 1. 
Using computational strategies to reveal conformational heterogeneity. (a) In its open 

conformation, the nucleotide binding domains (NBDs) of glutamate dehydrogenase (GDH) 

are significantly more mobile than the core region (sharpened map showing core overlaid 

with unsharpened map showing lower resolution NBDs, upper right). Left: projection views 

of 3D classes of apo GDH; center: region from GDH core that reaches 1.8 Å resolution. 

Adapted from [11]. (b) When bound by NADH alone, GDH displays two distinct 

conformations, open (left) and closed (right). The orientation of NADH in the regulatory site 

differs between these two states (insets). Adapted from [32]. (c) In the presence of ATPγS, 
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the AAA+ ATPase p97 displays three distinct conformations (depending on ATPγS 

occupancy), which can be differentiated by distinct orientations of the D1 domain (purple) 

and the N domain (green) versus the D2 domain (blue). Adapted from [33]. (d) 

Computational methods have been used to separate 5 distinct conformations of the 

ribosome, tracking the translocation of viral IRES through the molecular machine. From [1].
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Figure 2. 
Novel techniques for visualizing integral membrane proteins by cryo-EM. (a) In the GraDeR 

technique [54], membrane proteins solubilized in an amphipathic detergent are run over a 

gradient, with increasing concentrations of glucose and decreasing concentrations of 

detergent. This removes excess detergent. (b) To assemble membrane proteins into 

nanodiscs, free phospholipids and membrane scaffold protein (MSP), which contains the 

lipids in a set size “disc”, are mixed with purified membrane protein. Detergent is 

subsequently removed. Based on [56]. (c) Three 3D classes of the membrane channel CorA 

in nanodiscs, showing that nanodisc size can vary significantly, precluding high resolution 

structure determination by 3D averaging. From [57]. (d) Side (left) and top (right) 2D 

classes of the membrane protein TRPV1 in nanodiscs. From [58].
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Figure 3. 
Affinity grids can control protein distribution and orientation. (a) Ni-NTA-based affinity 

grids. A copper mesh grid with holey carbon is functionalized with polyethylene glycol; 

long polymers with Ni-NTA are mixed with short polymers. Long polymers capture His-

tagged proteins. Adapted from [65]. (b-c) Streptavidin-based affinity grids. (b) 2D crystals 

of streptavidin are layered on top of holey carbon grids. Biotinylated proteins stick to the 

streptavidin surface of the grid. (c) The streptavidin crystal can be seen on the surface of the 

grid, and density for the streptavidin crystal can be computationally removed. Top: cryo-EM 

micrograph of biotinylated ribosome on streptavidin affinity grid; center: Fourier transform 

of the image; bottom: IQ plot showing the diffraction pattern from the streptavidin crystal. 

From [67].
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