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Abstract

In this study, the role of known Parkinson’s disease (PD) genes was examined in families with 

autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some 

families without mutations in known genes were also subject to whole genome sequencing with 

the objective to identify novel parkinsonism-related genes. Families were selected from 4000 

clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a 

minimum of two affected individuals per family were used as inclusion criteria. For disease gene/

mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, 

linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients 

(50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry 

pathogenic mutations in known genes while a novel gene, not previously associated with 

parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including 

missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, 

SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all 

families.
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Introduction

Parkinson’s disease (PD; MIM# 168600) is the second most common neurodegenerative 

disorder, with the prevalence of about 1% in people over 60 years of age [1]. PD results from 

degeneration of dopaminergic neurons in the substantia nigra pars compacta and the 

presence of proteinaceous inclusions called Lewy bodies (LBs) in the surviving neurons [2]. 

PD is characterized by the presence of motor symptoms, including resting tremor, 
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bradykinesia, rigidity, postural instability, stooped posture, and freezing, as well as non-

motor symptoms, such as fatigue, cognitive, behavioral and sensory phenotypes, sleep 

disorders, and autonomic dysfunction [3, 4]. Despite that the majority of PD is sporadic and 

is thought to be caused by a combination of genetic and environmental risk factors, 

approximately 5–10% of patients have monogenic forms of the disease with either an 

autosomal dominant (AD) or autosomal recessive (AR) Mendelian pattern of inheritance [5, 

6]. To date, several genes have been found to be mutated in monogenic PD, with nine genes 

being involved in the pathogenesis of AR PD (ARPD) and/or juvenile parkinsonism (ARJP). 

These include Parkin [6q26; MIM# 600116], PINK1 [1p36.12; MIM# 605909], DJ-1 [1p36; 

MIM# 606324], ATP13A2 [1p36; MIM# 606693], FBXO7 [22q12.3; MIM# 260300], 

PLA2G6 [22q12.3; MIM# 612953], DNAJC6 [1p31.3; MIM# 608375], SYNJ1 [21q22.2; 

MIM# 615530], and VPS13C [15q.22.2; MIM# 616840] [7–16]. Overall, missense, 

nonsense, splice site, frameshift mutations, and whole exon and gene deletions/duplications 

have been identified in all forms of PD, including AD, AR, and sporadic PD/parkinsonism 

[17–19].

In this study, we investigated the known autosomal recessive PD/parkinsonism genes in 50 

Iranian consanguineous families with ARPD or ARJP and identified VAC14 as a novel gene 

for hereditary progressive dystonic tremor and disabling dystonia.

Materials and Methods

Subjects

As part of a large multi-center study, we investigated 4000 clinical files, which belonged to 

Iranian patients with a diagnosis of parkinsonism. Tables 1 and 2 include information about 

the age at onset, pattern of inheritance, and the presence of consanguinity of all clinical files 

examined. Early-onset was considered when the disease symptoms begun before age 46, 

while patients with late-onset disease developed their symptoms at the age of 46 or later 

[20]. A total of 50 recessive families (116 patients) with at least two patients being born to 

consanguineous parents were selected to be examined. Parents did not show any sign of 

parkinsonism or other movement disorder. Selected families were from various parts of Iran, 

and they belonged to different ethnicities. Expert neurologists from different clinical centers 

examined selected families and confirmed their diagnosis. The local ethics committees at 

each participating medical center approved this study, and informed consent, according to 

the Declaration of Helsinki, was obtained from all participants. DNA samples from 

ethnicity-matched neurologically normal individuals were also available (n = 96). DNA 

samples from all participants were isolated from whole blood, using standard procedures.

Genetic Analysis

Multiplex Ligation-Dependent Probe Amplification and Quantitative PCR 
Assays—The salsa multiplex ligation-dependent probe amplification (MPLA) kit P051-c1/

P52-c1 (MRC-Holland, Amsterdam, The Netherlands) was used to detect large deletions or 

duplications, which were later confirmed by using gap PCR or relative quantification of 

implicated exons. The relative quantification was performed and analyzed by using the Eco 

Real-Time PCR System following the 2−ΔΔCt method and as described elsewhere [21, 22].
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Linkage Analysis—Families who showed no mutations in the MLPA assays were subject 

to linkage analyses. Linkage analyses were carried out by using short tandem repeat (STR) 

markers, covering the nine known genes involved in ARPD or AJP. At least six different 

markers were selected for each gene to be examined. STR markers were amplified by PCR, 

and the products were analyzed by polyacrylamide gel electrophoresis (8%).

To reduce the number of candidate genes in one family without mutations in known PD 

genes (F23), all available family members were subject to genome-wide SNP genotyping 

(HumanOmniExpress Exome arrays v1.3; Illumina Inc., San Diego, CA, USA) and 

genotyping data was used to perform homozygosity mapping as previously described [15, 

23].

Whole Genome Sequencing—Two affected individuals from three different families (n 
= 6) without mutations in known PD genes were subject to whole genome sequencing 

(WGS) analyses. WGS was carried out at the New York Genome Center (NYGC). 

Sequencing libraries were constructed with the TruSeq PCR-Free Library kit (Illumina) 

following the manufacturer’s recommended protocol. Libraries were sequenced on the 

Illumina HiSeq X instruments, with 2 × 150 bp paired reads, to a minimum coverage of 

>30×. Sequencing data was processed with NYGC’s automated analysis pipeline, which 

includes alignment to GRCh37 using BWA-MEM (v0.78) [24], and further processing with 

GATK Best Practices, including the marking of duplicates with Picard (v1.83, http://

picard.sourceforge.net) and GATK (v3.2.2) [25]. Single-nucleotide variations (SNVs) and 

indels were called by using the GATK HaplotypeCaller and were jointly genotyped. 

Deletions were called by using Genome STRiP (v2.0) [26] and were jointly called by using 

17 HapMap individuals (CEPH Platinum Genomes pedigree). All deletions annotated as 

PASS in the Genome STRiP results were further filtered by using custom scripts to remove 

redundant calls and breakpoints overlapping repeat regions, or with extensive mapping 

ambiguity. SplazerS, which identifies and split-aligns reads that cross structural variant 

breakpoints, was further used to determine the breakpoints of candidate deletions [27]. First, 

all reads mapping to the candidate region were extracted, and then by using SplazerS, they 

were mapped back to the region to identify and confirm the breakpoint locations. 

Annotations of variants included predictions of the effect of nucleotide change on protein 

sequence using SnpEff; variant frequencies in different populations from the 1000 Genomes 

Project, the NHLBI GO Exome Sequencing Project, cross-species conservation scores from 

PhyloP, Genomic Evolutionary Rate Profiling (GERP), and PhastCons; functional prediction 

scores from PolyPhen-2, SIFT, and Combined Annotation Dependent Depletion (CADD) 

[28]; variant disease associations from OMIM, ClinVar, and Genetic Association Database 

(GAD); regulatory annotations from ENCODE, RegulomeDB, ORegAnno, and KEGG 

pathway annotations; transcription factor binding sites from the TRANSFAC database; and 

Gene Ontology (GO) annotations for biological process, cellular component, and molecular 

function.

Sanger Sequencing—Direct Sanger sequencing was used to examine the PD genes 

found to be associated with disease in one or more families and to validate the mutations 

identified through WGS. Primers, covering all exons and intron-exon boundaries of the 
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genes of interest (Parkin, PINK1, SYNJ1, VAC14), or flanking the identified mutations in 

Parkin and DJ-1 genes, were designed by using a public primer design website (http://

ihg.gsf.de/ihg/ExonPrimer.html; primer sequences available upon request). PCR products 

were then purified, sequenced, and analyzed as previously described [15, 23].

Computational Prediction of Mutation Pathogenicity—The pathogenicity of the 

novel missense mutations identified within the SYNJ1 and VAC14 genes was predicted by 

several computational methods, including MutPred (http://mutpred.mutdb.org/) and 

SNPs&GO (http://snps-and-go.biocomp.unibo.it/snps-and-go/), previously evaluated as most 

efficient [29], as well as MutationTaster (http://www.mutationtaster.org/), SIFT (http://

sift.jcvi.org/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), and CADD [28]. The 

allele frequency of novel mutations was also investigated in the recent released “The 

Genome Aggregation Database” (gnomAD; http://gnomad.broadinstitute.org/).

Results

Genetic Analyses

Twenty-two out of 50 (44%) consanguineous families with parkinsonism were found to have 

PD due to mutations in known genes. The most prevalent mutated gene was Parkin, being 

found mutated in 18 different families. Exon deletions within the Parkin gene were the most 

common mutations, being present in 15 different PD families (Table 3). MLPA assays 

identified large Parkin deletions in 14 different PD families while a homozygous Parkin 
exon 5 deletion was identified through WGS in a single family (Family F3; Fig. 1a). 

Deletions in exons 3 and 5, respectively identified in four and three different families, were 

the most common deletions. The breakpoints of the Parkin exon 5 deletion identified 

through WGS were determined by using both Genome STRiP [26] and SplazerS [27]. A 

large deletion of 128 kb in size was identified in all affected family members. Validation of 

this deletion through Sanger sequencing additionally revealed the presence of a small 12-bp 

insertion within the deletion breakpoints in all affected individuals (Fig. 1b). QPCR analyses 

confirmed its segregation with disease status (Fig. 1c). Additional families with mutations in 

Parkin include two families with the same missense mutation (p.Arg42Pro) and one family 

with a novel single nucleotide deletion (p.Thr414Profs*20; Table 3). The p.Arg42Pro 

mutation was already reported to be pathogenic [30, 31], while the novel p.Thr414Profs*20 

mutation causes a premature stop codon, further supporting its pathogenicity. All Parkin 
mutations were found to segregate with disease status, being found in homozygous state in 

the affected patients and in heterozygous state or absent in the unaffected family members.

We also identified two families, respectively carrying previously reported nonsense PINK1 
mutations (p.Arg246Stop; p.Gln456Stop), one family carrying a novel frameshift DJ-1 
mutation (p.Asp24Metfs*3) and another family carrying a novel SYNJ1 mutation 

(p.Arg795/800/839His) (Table 3). Both PINK1 mutations segregate with disease status: the 

p.Arg246Stop mutation was found in homozygous state in the six patients and in 

heterozygous state in both parents as well as two unaffected siblings, while the 

p.Gln456Stop mutation was found in homozygosis in the three affected members, in 

heterozygosis in the unaffected mother, and absent in the only unaffected sibling. The novel 
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DJ-1 mutation, located in exon 1 and resulting in a premature stop codon, was identified by 

WGS. It did segregate with disease status, being found in homozygosis in both the affected 

patients, heterozygosis in unaffected mother and one unaffected sibling, and absent in 

another unaffected sibling. The novel SYNJ1 mutation did segregate with disease status, was 

found to be absent in 192 ethnicity-matched control chromosomes, and was shown to be 

conserved among other orthologs (Fig. 2a, b). It is not described in public databases, such as 

the NHLBI GO Exome Sequencing Project (http://evs.gs.washington.edu/EVS/) and 

gnomAD, and it was predicted to be pathogenic by various computational methods 

(MutPred score: 0.818; SNPs&GO effect: disease; MutationTaster: disease causing; SIFT: 

deleterious; PolyPhen-2: probably damaging; and CADD_phred: 35). It is located in exon 19 

of the SYNJ1 gene and lies within the inositol-5-phosphatase domain of Synaptojanin 1 

(Fig. 2c) which is known to dephosphorylate a variety of lipids, such as PI(4,5)P2 and 

PI(3,4,5)P3 [15, 32].

Lastly, a novel gene, VAC14 (MIM #604632), was found to be mutated in a single family by 

combining both WGS and HM approaches. Briefly, WGS performed on the two affected 

siblings (Fig. 2d) identified 10 different homozygous genetic variants, not reported or 

present with low frequency in public databases, in both affected individuals. No common 

compound heterozygous variants were identified. Genetic variants were located on 

chromosomes 3, 16, and 19. To assist with disease gene identification and reduce the number 

of candidate variants, HM was then performed and eight different homozygous segments, on 

chromosomes 5, 7, 11 (n = 3), 16, 18, and 21 (data not shown), were identified to be shared 

exclusively by both affected siblings. Four genetic variants were localized on the largest 

autozygous region located on chromosome 16 (21 Mb) and flanked by rs8049176 

(57,655,792 bp) and rs16949243 (79,053,995 bp) SNVs. Among these, the ZFHX3 
p.Pro2304Thr (p.Pro3218Thr) variant was also found to be present in 5 out 16,510 South 

Asian alleles (http://exac.broadinstitute.org/variant/16-72822523-G-T). Two variants 

(p.Asp1849Val, p. Pro2304Thr) located in the same gene (ZFHX3) were predicted non-

deleterious, while the other two located in CES2 (p.Phe127Leu) and VAC14 (p.Ala562Val) 

genes were predicted to be highly pathogenic. However, VAC14 was the only gene found to 

be highly expressed in brain tissues (http://gtexportal.org/home/gene/VAC14) and therefore 

selected as the disease candidate gene. No dystonia genes were found to be mutated in 

affected patients subject to WGS analyses. The novel VAC14 mutation (c.1685C>T) was 

found to segregate with disease status, was absent in 188 ethnicity-matched control 

chromosomes, was shown to be highly conserved across other species (Fig. 2d, e), and was 

predicted to be pathogenic by SNPs&GO (disease), MutationTaster (disease causing), SIFT 

(deleterious), PolyPhen-2 (possibly damaging), and CADD_phred (29.8). Despite being 

absent in public databases, it was recently described with very low frequency (1/252,016) in 

gnomAD database. The Vac14 protein contains two binding domains, the lipid kinase 

PIKFYVE (MIM# 609414; Fab1) and the phosphatase Fig4 (MIM# 609390), through which 

it regulates the synthesis of the signaling lipid PI(3,5)P2 [33, 34]. The VAC14 p.Ala562Val 

mutation is located in exon 15 which encodes part of the Fig4-binding domain. The entire 

VAC14 gene was additionally examined in 20 familial cases with dystonia-parkinsonism 

phenotypes, but no pathogenic mutation was identified.
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Clinical Findings

A detailed description of all observed phenotypic features is presented in Table 3.

Families with Parkin Mutations—The mean age of onset (± standard deviation) of the 

patients with Parkin mutations was 25.3 ± 9.29 (mean age in males = 22.6, mean age in 

females = 29.25). The earliest AAO was 12 (F15P2) while the latest AAO was 45 years 

(F11P1, F11P2). The first symptom in the majority of patients was resting tremor (28/40: 

70%). The progress of the disease was slow (meaning that symptoms continue and worsen 

over a period of years) in 27 patients (67.5%), but fast, with motor symptoms progressing 

very quickly, in 13 (32.5%). Rigidity was seen in 30 patients (75%). Parkin families showed 

variable phenotypic expressivity, including the presence of sensory polyneuropathy in one 

family (F3).

Families with PINK1 Mutations—The mean age of onset (± standard deviation) for 

patients with PINK1 mutations was 26.9 ± 8.06 (mean age in males = 33.25, mean age in 

females = 22.6). The earliest AAO was 15 (F1P2) while the latest AAO was 40 years 

(F1P6). Resting tremor was the first symptom in all patients. Seven patients (70%) showed 

slow disease progression, while the disease progressed quickly in three patients (30%). 

Variable phenotypic expressivity was seen in both families.

Family Carrying a Novel DJ-1 Mutation—The novel DJ-1 mutation (c.70delA) was 

detected in two brothers who displayed oromandibular dystonia and profound psychosis at 

the age of 27. The disease progressed slowly to a marked symmetric parkinsonism with 

rigidity and bradykinesia. There was no significant tremor in these patients. They had 

frequent falling attacks and good response to levodopa therapy. One of the brothers showed 

bilateral cataract.

Family Carrying a Novel SYNJ1 Mutation—The novel SYNJ1 mutation (c.2515C>T) 

was identified in a patient who manifested asymmetric parkinsonism and seizures at 24 

years of age. The disease manifested with tremor and rigidity in the right hand, but became 

generalized with tremor and rigidity in all limbs within a year. The patient showed chin 

tremor and significant dysarthria. He received phenytoin for generalized tonic clonic 

seizures and showed poor response to levodopa therapy. There was no falling or autonomic 

dysfunction, and rapid eye movement (REM) sleep behavior disorder was absent as well. He 

also showed a longitudinal fissured tongue. As this seems to be an uncommon phenomenon, 

we re-examined our previously reported patients carrying the SYNJ1 p.Arg258Gln mutation 

[15], and then observed the same feature in their tongue. There was also a female patient in 

the family who died from liver cancer during the early stage of this study.

Family Carrying a Novel VAC14 Mutation—Both siblings carrying the novel VAC14 
mutation were reported as having parkinsonism; however, a follow-up clinical 

characterization revealed that both patients presented with dystonic gait affecting both lower 

limbs at a young age. Moreover, the disease progression was very severe in one patient 

(F23P1), with dystonia spreading to upper limbs and trunk. He manifested dystonic action 

tremors and became bedridden 5 years after disease presentation, and now had profound 
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hypokinesia and bradykinesia. Patients’ speech was impaired due to severe dysarthria and 

dystonia, but their mental state was normal. In both patients, the disease progressed to 

marked generalized and disabling dystonia. Brain MRI was normal and there was no clinical 

response to levodopa treatment.

Discussion

In this study, we describe the phenotypic and genetic features of 23 consanguineous 

recessive families, featuring either ARPD or ARJP. In total, 56 patients were clinically 

examined. The majority (91.07%) of our patients with mutations reported their first 

symptom before the age of 40, with only five patients (8.93%) manifesting the disease at the 

age of 40 or later. The most common first symptom was resting tremor, being present in 

67.85% of the patients with pathogenic mutations. Psychiatric features were seen only in 

three different families carrying either Parkin (F12, F13) or DJ-1 mutations (F21). Seizures 

were seen in five Parkin and one SYNJ1 mutation carriers. Sensory polyneuropathy, 

previously not reported in patients with Parkin mutations, was observed in three Parkin 
patients (F3). And marked generalized and disabling dystonia was the main phenotype 

observed in VAC14 mutation carriers (F23).

The most common mutated gene was Parkin, with exon deletions being the most prevalent 

mutations. In concordance with previous reports, most of the exon rearrangements fell into 

the genomic region between exons 2 and 8 of the Parkin gene, further confirming this region 

as a mutational hotspot. Novel mutations were also reported in DJ-1 and SYNJ-1 genes. The 

DJ-1 mutation was identified in a family presented with oromandibular dystonia, 

parkinsonism, and phenotypic features similar to those observed in previously reported DJ-1 
mutation carriers [8, 35]. The SYNJ1 mutation identified in this study represents the third 

SYNJ1 mutation reported to date in patients with parkinsonism and the first one reported in 

the inositol-5-phosphatase domain [36], further confirming the role of SYNJ1 in the 

pathogenesis of parkinsonism (Fig. 2c). Like in our patient, seizures were previously 

reported in patients carrying the SYNJ1 p.Arg258Gln mutation [15, 37], as well as in 

patients with early-onset epilepsy, progressive spastic quadriplegia, severe intellectual 

disability, visual impairments, and feeding problems [38, 39]. Given the variable phenotypic 

expressivity of SYNJ1 mutation carriers, it has been postulated that variants with complete 

loss of SYNJ1 dual phosphatase activity (nonsense, frameshift mutations) lead to severe 

progressive neurodegeneration, while reduced SYNJ1 enzymatic activity (caused by 

missense mutations) leads to a milder phenotype associated with parkinsonism and increased 

seizure susceptibility [39].

Lastly, we identified a novel gene (VAC14) to be mutated in patients with progressive and 

disabling dystonia (F23). Although mutations in VAC14 have recently been identified in 

pediatric patients with striatonigral degeneration [40], some differences in clinical 

presentation and course were observed in our family when compared with the previously 

reported VAC14 patients. In our family, disease presentation occurred at older age, ranging 

from 8 to 13 years, versus 18 months and 3 years; no psychomotor regression was observed; 

and despite the marked abnormality in the basal ganglia reported in patients with VAC14 
mutations, our patients showed normal brain MRI with no obvious abnormality in the 
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striatum. However, the oldest patient (F23P1) showed profound hypokinesia and 

bradykinesia at a later age. The VAC14 p.Ala562Val mutation we identified is very likely to 

result in PI(3,5)P2 deficiency, as it lies in the protein’s Fig4-binding domain that is required 

for Vac14 dimerization and is thought to regulate Fab1 activity to maintain normal levels of 

PI(3)P, PI(3,5)P2, and PI(5)P [41]. Low levels of PI(3,5)P2 have already been reported in 

mice exhibiting central and peripheral nervous system neurodegeneration due to Vac14 

deficiency and in mice and patients with pathogenic FIG4 mutations [34, 42]. Moreover, 

both patients and mice with VAC14 mutations have been reported to exhibit vacuolation in 

both cultured fibroblasts and affected neurons that are thought to arise from defects in the 

intracellular membrane trafficking, particularly in the retrograde transport from late 

endosomes to the trans-golgi network (TGN) [34, 40]. Taken together, the VAC14 
p.Ala562Val mutation might also result in vacuolation and impaired retrograde transport 

from late endosomes to the TGN, likely supporting its pathogenicity.

We concluded that Parkin is the most common mutated gene in our population, being found 

mutated in 71.42% (n = 40) of our examined patients with mutations in known genes (n = 

56). Despite the observed, variable phenotypic expressivity in our patients with Parkin or 

PINK1 mutations, the phenotype observed in the majority of Parkin and PINK1 mutation 

carriers was indistinguishable from one another. It was mainly characterized by an early-

onset presentation, resting tremor of the limbs as an onset symptom, and slow disease 

progression. Given the presence of seizures in three different families with SYNJ1 
mutations, we propose that seizures should be considered in prospective subjects with 

SYNJ1 mutations and parkinsonism. Lastly, given the progressive dystonic phenotype 

observed in patients with VAC14 mutations, we suggest nominating VAC14 as DYT27 gene 

and categorizing its phenotype as hereditary progressive dystonia with dystonic gait as a 

symptom of onset, followed by parkinsonian symptoms.

The finding of VAC14 as a novel gene for hereditary progressive dystonia is very interesting 

as it sums up to the large list of parkinsonism-related proteins, including alpha-synuclein, 

Lrrk2, VPS35, parkin, auxilin, and Synaptojanin 1, that act as important regulators of 

synaptic vesicle endocytosis and trafficking pathways at synapses. This together suggests the 

polyphosphoinositide signaling pathway as a relevant therapeutic target for 

neurodegenerative diseases such PD, parkinsonism, and now dystonia.
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Fig. 1. 
Parkin exon 5 deletion (128-kb). a WGS reads were visualized by using the Integrative 

Genomics Viewer (IGV). Two different plots that represent the Parkin exon 5 deletion 

breakpoints are shown. b Sanger chromatograms of the three affected individuals, who 

carried the 128-kb Parkin exon 5 deletion, are shown. Deletion breakpoints are highlighted 

in black (12 bp of the flanking regions), while the 12-bp insertion identified within the 

deletion breakpoints is highlighted in red. c Validation of the Parkin exon 5 deletion through 

qPCR analyses. Y-axis represents PRKN/GPR15 ratios; x-axis: DNA samples analyzed. 

Affected individuals showed no copy of Parkin exon 5 (ratio = 0.0), whereas unaffected 

individuals showed either two copies (Unaff 1; ratio = 1.0–1.2) or one copy (Unaff 2; ratio = 

0.4–0.6). Unaff unaffected family member, Ctrl control DNA sample (color figure online)
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Fig. 2. 
SYNJ1 p.Arg839Cys and VAC14 p.Ala562Val mutations. a Pedigree structure of the family 

carrying the SYNJ1 p.R839C mutation is shown on the left side. Affected family members 

are represented with black circle (female) or square (male). Wt/m heterozygous mutation 

carriers; m/m homozygous mutation carriers; wt/wt non-carriers. Sanger chromatogram 

sequences belonging to the SYNJ1 p.R839C mutation (red arrow) are shown on the right 
side. b Conservation of the SYNJ1 p.R839C mutation across different orthologs. c Diagram 

of the Synaptojanin 1 protein structure. The three SYNJ1 mutations identified to date in 

patients with parkinsonism are represented in red, whereas the SYNJ1 mutations identified 

in patients with seizures and severe neurodegeneration are shown in blue. The mutation 

identified in the current study is highlighted in bold. d Pedigree structure of the family 

carrying the VAC14 p.A562V mutation is shown on the left side. Affected family members 

are represented with black squares (males). Wt/m heterozygous mutation carriers; m/m 
homozygous mutation carriers; wt/wt non-carriers. Sanger chromatogram sequences for the 

VAC14 p.A562V mutation (red arrow) are shown on the right side. e Conservation of the 

VAC14 p.A562V mutation across different species. f Diagram of the Vac14 protein structure 

showing the mutation identified in patients with dystonic tremor and disabling dystonia at 

the top (bold) and the mutations identified in patients with striatonigral neurodegeneration at 

the bottom
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Table 1

Distribution of patients according to the age of onset and recurrence in the family

Age of onset Familial (%) Sporadic (%) Total (%)

AD AR

Early onset 22 (2.2) 215 (22.2) 736 (75.6) 973 (100)

Late onset 272 (9) 160 (5.3) 2595 (85.7) 3027 (100)

Total 294 (7.3) 375 (9.4) 3331 (83.3) 4000 (100)

AD autosomal dominant, AR autosomal recessive
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