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Abstract In this comment, an enhancement of issue
published in the paper “Coexistence of hidden chaotic
attractors in a novel no-equilibrium system” (Nonlinear
Dyn, doi:10.1007/s11071-016-3170-x) is addressed.
We have shown that the proposed novel autonomous
chaotic system can be extended to its fractional-order
versionwhere hidden attractors aswell as other dynam-
ical properties of the new no-equilibrium system can
be observed. A created MATLAB function for the
new fractional-order no-equilibrium system is also pre-
sented.

Keywords Fractional calculus · Fractional-order
chaotic system · Grünwald–Letnikov derivative

1 Introduction and motivation

Investigation of chaotic systems has a long tradition.
Basically, there are two kinds of attractors observed
in chaotic systems: self-excited attractor and hidden
attractor. It is well-known that hidden attractors cannot
be localized byusing the standard computational proce-
dure and therefore it is difficult to predict the existence
of them in system. However, hidden attractors appear
in numerous dynamical systems [6,9–11]. Moreover,
there is a significant interest in studying hidden attrac-
tors because they play an important role in both theo-
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retical problems and practical engineering applications
[10]. For more details see also survey paper [5].

On the other hand, the subject of fractional calcu-
lus has gained considerable popularity and importance
mainly during the past three decades [8,13].

Fractional (order) calculus, also non-integer order
calculus, is known since the classical calculus with the
first written reference dated September 1695 in the cor-
respondence between Leibniz and L’Hospital. Nowa-
days, the fractional calculus has a wide area of applica-
tions in various fields [4,8,13] as well as in the chaotic
systems theory and applications [12].

Based on above consideration, it is possible to com-
bine the fractional calculus into description of the novel
chaotic systems where the hidden attractors appeared.

This comment is organized as follows. In Sect. 1, the
introduction to the problem and motivation is briefly
discussed. Section 2 is focused on fractional calcu-
lus fundamentals. Section 3 brings a new fractional-
order chaotic system. In Sect. 4, the simulation results
and discussion are described. Section 5 concludes this
note with some additional remarks for further research
investigation.

2 Preliminaries

2.1 Definition of fractional-order operator

Fractional calculus is a generalization of integra-
tion and differentiation to non-integer (fractional)
order fundamental operator aDα

b , where a and b are
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the bounds of the operation. The standard notation
for denoting the left-sided fractional-order integro-
differential operator of a function f (t) defined in the
interval [a, b] is aDα

t f (t), with α ∈ R.
There exist many definitions for fractional operator

(fractional order integrals and derivatives), but in this
article we will focus only on the Grünwald–Letnikov
definition (GLD), which is given as follows [8,13]:

aD
α
t f (t) = lim

h→0

1

hα

� t−a
h �∑

j=0

(−1) j
(

α

j

)
f (t − jh), (1)

where �z� is the floor function, i.e., the greatest integer
smaller than z, and
(

α

j

)
= α!

j !(α − j)! = Γ (α + 1)

Γ ( j + 1) Γ (α − j + 1)
(2)

are the binomial coefficients for
(
α
0

) = 1. This form
of definition is very helpful for obtaining numerical
solutions of fractional differential equations. However,
we must be careful with the initial conditions setting
because it could be a complex problem in some sys-
tems.

2.2 Numerical solution of fractional differential
equations

For numerical calculation of fractional-order deriva-
tives, we can use the relation (3) derived from the GLD
(1). This approach is based on the fact that for a wide
class of functions, the most of definitions are equiva-
lent. The relation for the explicit numerical approxima-
tion of q-th derivative at the points kh, (k = 1, 2, . . . )
has the following form [13]:

(k−Lm/h)D
q
tk f (t) ≈ h−q

k∑

j=0

c(q)
j f (tk− j ), (3)

where Lm is the “memory length”, tk = kh, h is the
time step of calculation (definition (3) is valid only as h
tends toward 0 and that the accuracy of the simulation
depends on the value of h) and c(q)

j ( j = 0, 1, . . . ) are
binomial coefficients. For their calculation we can use
the following expression:

c(q)
0 = 1, c(q)

j =
(
1 − 1 + q

j

)
c(q)
j−1. (4)

Then, general numerical solution of the fractional dif-
ferential equation

0D
q
t y(t) = f (y(t), t),

can be expressed as

y(tk) = f (y(tk), tk) h
q −

k∑

j=0

c(q)
j y(tk− j ). (5)

For the memory term expressed by the sum, a “short
memory” principle can be used for various Lm.

An evaluation of the short memory effect and con-
vergence relation of the error between short and long
memorywere clearly described and also proved in [13].

3 Model of the new fractional-order system

In paper [11], the simple case of the new chaotic sys-
temwithout equilibriumwas described in the following
form:

ẋ(t) = y(t),

ẏ(t) = −x(t) − y(t)z(t),

ż(t) = |x(t)| + x(t)y(t) − a, (6)

in which a is the positive parameter (a > 0). The
dynamical properties of the new system (6) as for
instance equilibrium points (there is no equilibrium in
(6)), dissipativity, chaotic behavior for various values of
parameter a as for example Poincaré map, bifurcation
diagram, Lyapunov exponents, and chaotic attractors
have been investigated in paper [11].Moreover, an elec-
tronic circuit implementation of the system (6), which
included 15 resistors (10 kΩ), 3 capacitors (10 nF), 7
operational amplifiers, 2 diodes, 2 analog multipliers
and the power supplies (±15 VDC) was built. In the
circuit are three integrators, which are created by the
operational amplifiers together with the capacitors in
feed-back.

Generally, real electrical elements as resistor, capac-
itor, coil and memristor are nonlinear and fractional
order; however, their models are very often simplified
[12]. This notion is based on fact that there is not
ideal electrical element. Now, we already know that all
real elements lie in between two. For instance, resistor
created by wire has property of resistor and coil too.
Moreover, we know element fractor (between resistor
and capacitor) as well as fractductor (between resistor
and coil).

Westerlund andEkstam [14] in 1994 proposed a new
linear capacitor model. It is based on Curie’s empiri-
cal law of 1889 which states that the current through
a capacitor is
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I (t) = V0
h1tα

,

where h1 and α are constant, V0 is the DC voltage
applied at t = 0, and 0 < α < 1, (α ∈ R).

For a general input voltage V (t), the current is

I (t) = C
dαV (t)

dtα
≡ C 0D

α
t V (t), (7)

whereC is the capacitance of the capacitor. It is related
to the kind of dielectric. Another constant α (order)
is related to the losses of the capacitor. Westerlund
and Ekstam provided in their work the table of various
capacitor dielectrics with appropriate constant α which
has been obtained experimentally by measurements.

For a current in the capacitor the voltage is

V (t) = 1

C

∫ t

0
I (t)dtα ≡ 1

C
0D

−α
t I (t). (8)

Taking into account above consideration on capac-
itor, the new mathematical model of the real cir-
cuit implementation of the chaotic system (6) can be
derived. Similarly to method provided in book [12],
we can apply Kirchhoff’s circuit laws into the cir-
cuit depicted in Fig. 9 in paper [11] and derive a new
fractional-order model of the chaotic system (6) in the
following dimensionless form:

0D
q1
t x(t) = y(t),

0D
q2
t y(t) = −x(t) − y(t)z(t),

0D
q3
t z(t) = |x(t)| + x(t)y(t) − a, (9)

where q1, q2, q3 are the real orders of used capacitors.
For simulation purposes, we will use a numerical

solution of equations (9) obtained by using the rela-
tionship (3), derived from the GLD (1), which leads to
equations in the form:

x(tk) = [y(tk−1)]hq1 −
k∑

j=0

c(q1)
j x(tk− j ),

y(tk) = [−x(tk−1) − y(tk−1)z(tk−1)]hq2

−
k∑

j=0

c(q2)
j y(tk− j ),

z(tk) = [|x(tk−1)| + x(tk−1)y(tk−1) − a]hq3

−
k∑

j=0

c(q3)
j z(tk− j ), (10)

where Tsim is the simulation time, k = 1, 2, 3 . . . , N ,
for N = [Tsim/h], and (x(0), y(0), z(0)) is the start

Fig. 1 x–y–z state space of system (6) for a = 1.35

point (initial conditions). The binomial coefficients
c(qi )
j , ∀i , are calculated according to relation (4). Pro-

posed numerical solution (10) was implemented as the
MATLAB function,which syntax is listed inAppendix.

4 Simulation results and comments

First, let us use proposed numerical solution (10) to
simulate chaotic system (6) for the parameter a = 1.35,
simulation time Tsim = 300 s, time step h = 0.005, and
initial conditions (x(0) = 0, y(0) = 0.1, z(0) = 0).
Using created MATLAB function, we can call it as
follows:

[T, Y]=FOCNew(1.35, [1 1 1], 300,
[0 0.1 0]);

plot3(Y(:,1),Y(:,2),Y(:,3));
grid on;
xlabel(’x(t)’);ylabel(’y(t)’);
zlabel(’z(t)’);

In Fig. 1 is depicted chaotic behavior of the sys-
tem (6) for a = 1.35 and the initial conditions
(x(0), y(0), z(0)) = (0, 0.1, 0) in state space.

Due to the fact that parameter a should be within
intervals 1.305 < a < 1.381 or 1.224 < a < 1.303 in
order to observe chaotic behavior of the system, let us
move from first interval to the second one and consider
a = 1.3. Using createdMATLAB function, we can call
it as follows:

[T, Y]=FOCNew(1.3, [1 1 1], 300,
[0 0.1 0]);

In Fig. 2 is depicted chaotic behavior of the sys-
tem (6) for a = 1.3 and the initial conditions
(x(0), y(0), z(0)) = (0, 0.1, 0) in state space.
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Fig. 2 x–y–z state space of system (6) for a = 1.3

Now, let us consider the fractional-order system (9),
where we assume real order of the identical capacitors
q1 = q2 = q3 = 0.98, for the parameter a = 1.3,
simulation time Tsim = 300 s, time step h = 0.005, and
initial conditions (x(0) = 0, y(0) = 0.1, z(0) = 0).
Using created MATLAB function, we can call it as
follows:

q=0.98;
[T, Y]=FOCNew(1.3, [q q q], 300,
[0 0.1 0]);

In Figs. 4–6 are depicted chaotic behavior of the
system (9) for a = 1.3, real orders q1 = q2 = q3 =
0.98, and the initial conditions (x(0), y(0), z(0)) =
(0, 0.1, 0) in state planes (blue color), respectively. We
can observe chaotic behavior when the total system
order is 2.94.

In order to have more details, in Fig. 3 is presented
the bifurcation diagram of the variable x versus the
parameter q within interval [0.93; 1].

The Lyapunov exponents of system (9) for a = 1.3
and orders q̄ = 0.98, computed by method described
in [15], are: 0.1947, 0,−4.5101, which confirm chaos.

In addition, let us investigate existence of the coex-
isting attractors. We will consider the same orders and
parameter as in previous example of the fractional-
order system (9), but for different initial conditions
(x(0) = 0, y(0) = −0.1, z(0) = 0). Using created
MATLAB function, we can call it as follows:

q=0.98;
[T, Y]=FOCNew(1.3, [q q q], 300,
[0 -0.1 0]);

Fig. 3 Bifurcation diagram of system (9) when changing
the bifurcation parameter q for the selected initial conditions
(x(0), y(0), z(0)) = (0, 0.1, 0) and fixed parameter a = 1.3

Fig. 4 x–y state plane of system (9) for a = 1.3

In Figs. 4, 5 and 6 are depicted chaotic behavior,
coexisting attractors, of the system (9) for a = 1.3,
real orders q1 = q2 = q3 = 0.98, and the initial condi-
tions (x(0), y(0), z(0)) = (0, 0.1, 0) (blue color) and
the initial conditions (x(0), y(0), z(0)) = (0,−0.1, 0)
(red) in state planes (red color), respectively.

5 Conclusions

In this comment paper, we pointed out that the results
presented in paper [11] can be enhanced. In spite of the
fact that theory of fractional-order nonlinear (chaotic)
systems is known and it was described in many papers
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Coexistence of hidden chaotic attractors 753

Fig. 5 y–z state plane of system (9) for a = 1.3

Fig. 6 x–z state plane of system (9) for a = 1.3

and books [4,7,12], it was just for the system with
known equilibrium, except fewof them, see, e.g., [1–3].

In this note, a contribution to new phenomenon and
almost unexplored area of a fractional-order chaotic
no-equilibrium system was described together with the
tool (MATLAB function) for its further investigation,
even the coexisting attractors. Such nonlinear system
without equilibrium is appropriate for practical appli-
cations. We have more degree of freedom due to the
orders.
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Appendix

Implementation of the proposed numerical solution
(10) as theMATLAB functionFOCNew(). See its syn-
tax below.
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