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Surge-type and surge-modified 
glaciers in the Karakoram
R. Bhambri1, K. Hewitt2, P. Kawishwar3 & B. Pratap4

Glaciers in the Karakoram exhibit irregular behavior. Terminus fluctuations of individual glaciers lack 
consistency and, unlike other parts of the Himalaya, total ice mass remained stable or slightly increased 
since the 1970s. These seeming anomalies are addressed through a comprehensive mapping of surge-
type glaciers and surge-related impacts, based on satellite images (Landsat and ASTER), ground 
observations, and archival material since the 1840s. Some 221 surge-type and surge-like glaciers 
are identified in six main classes. Their basins cover 7,734 ± 271 km2 or ~43% of the total Karakoram 
glacierised area. Active phases range from some months to over 15 years. Surge intervals are identified 
for 27 glaciers with two or more surges, including 9 not previously reported. Mini-surges and kinematic 
waves are documented and surface diagnostic features indicative of surging. Surge cycle timing, 
intervals and mass transfers are unique to each glacier and largely out-of-phase with climate. A broad 
class of surge-modified ice introduces indirect and post-surge effects that further complicate tracking 
of climate responses. Mass balance in surge-type and surge-modified glaciers differs from conventional, 
climate-sensitive profiles. New approaches are required to account for such differing responses of 
individual glaciers, and effectively project the fate of Karakoram ice during a warming climate.

Karakoram glaciers exhibit varied and irregular ice movements1–3. There is little or no synchrony of expansion or 
retreat for apparently similar or neighboring ice masses. Early reports suggested they are out of phase with climate 
fluctuations and trends observed elsewhere3–6. In recent years, the Karakoram has not undergone the substantial 
ice mass reductions or pervasive glacier retreat observed elsewhere in the Himalaya6–12. The region does have one 
of the world’s highest concentrations of surge-type glaciers5,13–15 (Supplementary Table S1), the focus of this paper.

Surging refers to episodes with a sudden, large increase in ice velocities, by an order of magnitude or more 
in some well-documented cases16. The shift into and out of fast flow can occur in a matter of days or weeks and 
it may persist from a few months to several years. In a few cases surging continues for more than a decade16,17. 
During the active or surge phase, large volumes of ice are transported from an upper reservoir zone into a lower, 
receiving zone. A wave of rapid thickening and thinning moves down-glacier, typically causing intense crevass-
ing and over-riding of ice margin areas16. In many but not all cases, the terminus advances some kilometers in 
a few weeks or months16,18. Between active surging there is a quiescent phase lasting decades to centuries when 
the upper glacier rebuilds mass, the lower tongue thins and retreats, or becomes stagnant. In the Karakoram and 
some other regions up to six distinct phases have been reported5 based on terms used by Jiskoot (2011)16, they are:

	(1)	 A build-up phase: when the upper glacier is growing and the lower can be stagnant or seem to behave 
‘normally’.

	(2)	 A pre-surge phase: when the glacier gradually speeds up and advances, possibly over several years.
	(3)	 The surge or ‘active’ phase: the period of fast flow.
	(4)	 Post-surge deceleration and thinning: the glacier slows gradually, crevassing and ablation zone ice levels 

decline. A slow advance may continue.
	(5)	 Stagnation phase: a substantial section of the ablation zone may detach and stagnate for decades usually 

under heavy supraglacial debris.
	(6)	 Two or more active events: rather than a single acceleration, two may occur separated by a few months or 

years. A short as well as much longer quiescent phase has been observed at Bualtar Glacier (ID 21).

1Centre for Glaciology, Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, India. 2Department 
of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Canada. 3Chhattisgarh Council of 
Science and Technology, Vigyan Bhavan, Vidhan Sabha Road, Daldal Seoni, Raipur (CG), 492014, India. 4National 
Centre for Antarctic and Ocean Research, Vasco-da-Gama, Goa, 403 804, India. Correspondence and requests for 
materials should be addressed to R.B. (email: rakeshbhambri@gmail.com)

Received: 25 May 2016

Accepted: 27 October 2017

Published: xx xx xxxx

OPEN

mailto:rakeshbhambri@gmail.com


www.nature.com/scientificreports/

2Scientific Reports | 7: 15391  | DOI:10.1038/s41598-017-15473-8

Stages 1, 2, 4 and 5 can be treated as sub-phases of the whole ‘quiescent phase’. Surge events with the three 
stages 1, 3 and 4, and high velocities affecting much of the ice mass, are referred to as ‘classic’5. Most of the 
science of surging was developed in relation to them and, until recently, known Karakoram examples were 
restricted to such events4,5. However, some recent field surveys1,5 and remote sensing14,19,20 including our own, 
recognize a greater diversity of surge phases and behavior profiles as outlined above (Fig. 1a–c). Many surge 
events recently identified from satellite imagery are less dramatic than classic surges5,19. Accelerations are rela-
tively modest but with doubling of velocities at least5. Extreme crevassing or rapid terminus advances may not 
occur. If a three-phase profile can still be identified, a case can be made to include these less dramatic events as 
surge-type. Less well-defined cases are termed surge-like events5. These differing cycles reveal a wide range of 
dynamic instability (Table 1). The point to emphasize is that the movements observed in differing classes and 
sub-classes of surge events nevertheless alter and complicate the significance of evidence used to track glacier 
and climate change. Also, surge-type glaciers are among major causes of ice dams and glacier lake outburst floods 
(GLOFs). These complicate terminus behavior and create extreme dangers for populated areas and down-country 
infrastructure3,21,22.

Less than 1% of glaciers worldwide have been identified as surge-type23. Their global distribution is uneven 
but includes environments from polar to subtropical regions. They are found in continental interiors and extreme 
high mountains, such as the high Andes of Argentina, and in High Asia, notably the Karakoram and Pamir 
Ranges, or smaller concentrations in the north Caucasus and Kunlun Shan Ranges24,25. Others, as in Svalbard, 
Alaska, Greenland and southern Patagonia, involve tidewater glaciers16.

The concept of surging and surge mechanisms developed mainly since the 1960s, and through research largely 
outside the Karakoram16,18. Studies emphasize active surge dynamics and fast flow events. There is a consensus 
that surging is generated by conditions internal and intrinsic to the ice mass involved, not by external forcing16–18. 
Various models are proposed involving ice thermal instability, subglacial hydrological instability, failure in 
deformable subglacial sediments or some combination of these factors26–28. Two models linking proposed mech-
anisms to distinct surge cycle intervals, velocities and duration are the ‘Alaskan’ and ‘Svalbard’ types (ibid). Both 
appear to be present in the Karakoram5,14,19. An unresolved question is whether event differences, elsewhere and 
in our surveys (Fig. 1), reflect differing controls or a more or less continuous spectrum of the same instabilities5,19.

A few studies suggest that climate trends between surge events could affect their scale and duration, and 
that extreme weather may affect the timing of surge initiation29. Work in the Karakoram shows an absence of 
direct ties of surging to climate forcing5,14,20. Understanding has been limited by a lack of research and data for 
Karakoram glacier dynamics, especially the critical sub-glacial conditions.

The discovery of many surge-type tributary glaciers in the Karakoram adds further complications30. These 
glaciers tend to occur at higher elevations and in smaller, steeper ice masses compared to main glaciers (Fig. 1c,f). 
When surge ice reaches the main glacier it generally stalls, truncating surge length and further complicating long 
term mass transfers (Fig. 1d,e).

Reports of active surges in the Karakoram go back to the early 19th century31–33. At first they were regarded as 
“accidental” events due to earthquakes or avalanches, and involving absent or delayed correlations with climate 
trends33. The first comprehensive survey24 based on satellite imagery greatly expanded the number of confirmed 
and suspected surge-type glaciers. Copland et al.14 reported 90 surge-type glaciers in the Karakoram and neigh-
borhood areas (i.e. Aghil mountains and Chang Chenmo). More recently, Rankl et al.34 added 10 more. The 
diverse surface movement profiles and cycles include most types reported elsewhere5,14.

The active phase of a surging glacier can induce a variety of responses in adjacent, non-surging ice. These are 
not surge processes, but surge-related secondary disturbances or lag effects, here called surge-modified behavior30. 
Impacts may arise above, below or beside areas of active surging, and during or following after it. Velocities, 
surface morphologies and debris covers are modified to introduce a range of surface morphologies, redirections 
and lag times in ice not of surge-type or not actively surging at the time (Fig. 1d–f). As with other external forces, 
however, active surges in one ice mass are not known to, and probably cannot, trigger surges in others. They may 
lead to local accelerations or kinematic waves (Table 1). Tributary glacier surges identified here have not triggered 
surging in main glaciers, nor vice versa.

Surge-modified behavior can continue and evolve for years or decades after surging, as seen after each of the 
multiple, independent tributary surges at Panmah and Hispar5,13,30 (Fig. 1d,e). Because satellite coverage only 
applies to recent decades, and is constrained by the frequency and quality of overpasses, it can miss or underes-
timate the overall extent of surge-modified ice. A full sense of the scope of surge-modified phenomena requires 
long-term and repeated local observations, as has emerged at Panmah since 199030,35.

In the Karakoram, glacier dynamics are further modified by large rockslides that descend onto the glaciers, 
with an average of almost two events per year reported in recent decades36. The landslide debris affects glacier 
movement and mass balance for several decades at least5. Some of the glaciers are also surge-type, including 
Bualtar (ID 21), Lokpar-Aling (ID 120), and Chillinji (ID 3)36,37(Supplementary Table S1).

A major challenge concerning Karakoram glaciers is the apparent absence of the large losses of ice reported 
elsewhere in the Himalaya and attributed to global climate change6,7,38. Some studies detect a recent increase in 
surge activity itself and attribute that to climate warming5,20. Our findings lead us to propose an alternative view, 
that surge-type glaciers and surge-modified activity are critical, possibly decisive, factors in buffering and reconfigur-
ing responses to climate change. The implications of surge activity for mass balance are emphasized and addressed 
in following sections.

The aims of this study are, therefore, to extend the empirical basis for surge-type and surge-related phenom-
ena in the study area including Karakoram and some neighboring parts of the Wakhan Pamir, Aghil and Chang 
Chenmo Mountains (Fig. 2) and, more specifically:
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	(1)	 to provide an updated inventory of surge-type glaciers from remote sensing data, published papers and 
reports, ground-based observations and historical archives;

	(2)	 explore a sub-set in which active phase duration could be determined, mainly from data available since 
1990;

Figure 1.  (a-h) Field observations of Karakoram surge events and features discussed in the text, including 
examples of what are discussed as ‘classic’ surge phenomena (a,b), tributary surges (c), surge-modified effects 
on main and tributary glaciers (d,e) and variants on surge-related behavior (f,g): (a) Upper Chiring Glacier 
showing collapse and heavy crevassing of ‘reservoir zone’, viewed one year after the 1994–95 active surge. 
Highest crevasses are around 5,100 m asl, at or near the firn limits and climatic snow lines (Photo June 1996), 
(b) Rapidly advancing terminus (7–10 m/day) of Karumbar Glacier during the 1993 active surge of over 3 km. 
Vast amounts of dead ice and proglacial sediment were reactivated at the steep surge front (photo June 1993), (c) 
Tributary surge of Shingchukpi Glacier, Panmah Basin, 2005. After three years, pre-surge episode of moderately 
accelerated flow, the main surge was ‘classic’ in form, with highly crevassed ice, raised and truncated marginal 
ice and moraine from passage of main wave. Velocities 10 m per day or more. However, after the 3.5 km advance, 
ice was stalled in the foreground at the main glacier, shown as severely compressed and crevassed (photo July 
2005), (d) View over the main Nobande Sobande (N.S) Glacier showing complex distortion by ice lobes from 
the Chiring 1994 surge (C), in background and middle ground, and Maedan surge of 2002 (M).The main glacier 
is highly compressed towards its right flank, and continues to adjust as a surge-modified glacier (photo July 
2012), (e) Nobande Sobonde main glacier showing modifications following surges of Chiring (1994), Maedan 
(2002, near ground) and active Shingchukpi (2005 left middle ground). Each maintains actuate pressure ridges30 
(marked by orange arrows) at margins of surge ice. Photo with opposite line of sight to Fig. 1d (2005), (f) 
Maedan tributary of Panmah Glacier in 1993 that would gradually advance 3.5 km and thicken for nine years 
before the sudden active surge of 2002 (photo September 1992), (g) Unnamed tributary of Chiring Glacier 
showing its disturbed ice fall one year after passage of the active surge wave. Arrows show maximum surge 
height, and 80 m cliff of sheared-office (photo June 1996), (h) Gradual, apparently ‘normal’ terminus advance 
of Bualtar Glacier 15 years after active surges of 1987 and 2000 which did not reach the terminus. (Photos © 
Kenneth Hewitt).
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	(3)	 assemble evidence of surge cycle length or recurrence intervals for glaciers with two or more established 
surges;

	(4)	 describe the range of surge-modified glacier behavior as introduced above.

Results
In all, 223 surge related phenomena were identified and mapped in the study area (Fig. 2), comprising glacier basin 
areas of 8014 ± 280 km2. There are 163 surge-type glaciers (6269.7 ± 219 km2), 58 surge-like (1464.3 ± 51 km2), 
and 2 examples of surge-modified glaciers (280 ± 10 km2) (Supplementary Table S2). The evidence derives largely 
from ablation zone features, but will affect the stability and mass balance of the whole connected glacier system. 
In the Karakoram itself, the count was 210 in affected basin areas of 7836.0 ± 274 km2. In the immediate neigh-
borhood (i.e. Pamir Wakhan, Aghil mountains and Chang Chenmo) were 13 more examples, covering 177.7 ± 6.2 
km2. The inventory suggests these glaciers involve ~50% of the entire glacier area surveyed, or almost half the 
total perennial snow and ice cover of the Karakoram, variously estimated at between 18,000 and 20,000 km2 
within the Indus and Yarkand basins5,39.

Our study increases known numbers and diversity of surge events, and surge-related features. It includes 
some 100 surge-type glaciers not previously reported, and refines current knowledge of their distribution and 
movement characteristics (Supplementary Table S1). In the western part of the Karakoram 13 surge-type glaciers 
terminate below 3000 m, the lowest, Bualtar (ID 21), at 2280 m. Conversely, 10 surge-type glaciers in the Shyok 
and Shaksgam valleys terminate above 5000 m. There, the entire landscape is above 3600 m elevation and smaller 
precipitation may be a factor40. The count of surge-type and surge-like tributary glaciers was 69 or ~31% of the 
total (Supplementary Table S1). Individual large glaciers involve multiple surge-type tributaries. Sarpo Laggo pos-
sibly has seven; Panmah has at least six, while combining satellite and historical records gives Skamri and Hispar 
five each5. Each of the tributaries has a distinct and independent surge cycle. Tributary examples are more likely 
to be underestimated given their smaller size, and difficulties of observation in higher and steeper catchments. 
They are likely to generate surge-modified behavior in main glaciers where they connect.

More than half of the entire ice cover seems affected, which may seem an exaggeration. Other surveys estimate 
as many as total 13,757 glaciers in the whole Karakoram41. However, the vast majority are small ice masses, and 
in lesser offshoots of the highest, Mustagh Karakoram. In the latter, 11 glaciers are ‘large’ (40–75 km long) and 
almost 50 are intermediate (20–40 km), together comprising over two-thirds of the Karakoram glacier ice5. While 
the ten largest glaciers have no record of a surging main glacier most have surge-type tributaries (ibid). The results 
also show and reinforce evidence for even greater heterogeneity in surface displacement of Karakoram surge-type 
glaciers19 and implied dynamic instabilities.

Characteristics of Surge-type glaciers.  The survey adds to known three-phase classic surge cycles with 
high velocities and massive surface disturbances16 (Table 1). Many other cases are identified having more than 
three phases (Supplementary Table S2 and S3). In some the quiescent phase lacks a “stagnation phase”, and behav-
ior is not readily differentiated from ‘normal’ glaciers. There are cases with well-defined but modest terminus 
advances and retreats, and some without any. At Bualtar (ID 21), Momhil (ID 41) and Braldu (ID 69), the active 
phases did not reach the terminus. A delayed advance eventually affected the first, and may yet occur in the other 
two. As detached tributaries of Panmah Glacier, Maedan (ID 94) and Shingchukpi (ID 95) advanced ~3 km in the 
active phase before reaching and stalling at the main glacier (Fig. 1c and f; Supplementary Table S1). Other com-
plications arise with surge-type tributaries (Table 1 and Supplementary Table S2). At Panmah, despite the massive 

Main class Sub class Type Description Total number % to total number Total area (km2) % to total area

1 1a-c Surge-type
‘Classic’ with full, three-phase surge 
cycle in main glacier. Three sub-types 
include ‘Alaska-type’ and ‘Svalbard-type’.

69 31.2 2349 ± 82 30.4

2 2a-c Surge-type
Amended ‘classic’ where one of three 
phases is absent, or additional one (s) 
occur. Three sub-types recognized.

19 8.6 861.8 ± 30 11.1

3 3 a-b Surge-type Tributary surge-types, which include 
four sub- types. 43 19.5 1379.8 ± 48 17.8

4 4 a-c Surge-type
Surge- diagnostic features used to 
identify likely surge-type glaciers, 
including a sub-set of tributaries.

32 14.5 1679.1 ± 59 21.7

5 — Surge-like
Mini-surges: local, partial surges or 
progressive accelerations moving down 
glacier but lacking ‘classic’ surge cycle.

1 0.5 114.9 ± 4 1.5

6 — Surge-like

Locally accelerated ice or section, 
including kinematic waves. These may 
follow from external disturbances like 
heavy snowfalls and seasonal changes, or 
landslides onto the ice.

57 25.8 1349.4 ± 47 17.4

Total 221 7734 ± 271

Table 1.  Classification of surge-type and surge-like glaciers identified in the Karakoram. More details on sub 
classes and examples are presented in Supplementary Tables S2 and S3.
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inputs of surged ice into and thickening of the main glacier since 1994, the terminus (ID 91) continued to retreat 
through 2016. It has been out of phase with climate since the mid-19th century5.

In part, the classes identified are constrained by limited observations available and exploratory methodologies 
used. Most classic surge events are only known from ground observations, but going back to the mid-19th cen-
tury4. Unlike the Cross Correlation Feature Tracking (CCFT) satellite evidence, the exceptionally high velocities 
reported for active surges are based on terminus change and usually derived from total distances advanced, more 
rarely observed speeds. The maximum advance reported was for Kutiah Glacier (ID 29) 1953 surge, with 12 km 
in ~3 months42. The second largest was for the Hassanabad (ID 18) 1903 advance of 11.5 km in 2.5 months43, its 
speed said to exceed 150 m d−1. The fastest on record was at Yengutz Har Glacier (ID 24) in 1901 observed to 
advance 3.2 km in eight days44. These estimates have been questioned and are not well-constrained45. However, 
being based on terminus advances, they may well be less than the highest velocities up-valley in the main 
active surge. The maximum advance identified in our remote sensing analyses (1972–2016) was of ~3.5 km by 
west Chamshen Glacier (ID 179) in its surge of 2007–2013 (Supplementary Fig. S1). Obviously it was much less 
than the advance of Kutiah (ID 29)42 and Hassanabad glaciers (ID 18) and some other historical events43.

CCFT has extended awareness of the extent, numbers and range of episodic, accelerated movements. They 
include velocity profiles and maxima much slower than the classic cases, and instabilities called surge-like behav-
ior here. Velocities may be doubled or more, but not by one or two orders of magnitude14,19. There is a growing 
acceptance that such slower but sustained accelerations can be treated as surge-type or surge-like5,16,17. Thus, 
while markedly slower than classic surges, the events at Urdok (ID 157), Kyagar (ID 163) and Braldu (ID 69) were 
identified with an active surge front (Fig. 3 and Supplementary Figs S2 and S3), as earlier reports for the Kunyang 
(ID 38) tributary glacier20. Velocities in the movements of Little Chamshen (ID 181) and Dzingrulma (ID 204) 
were relatively low (0.1 km a−1), their active phases unusually long (~10 years) (Supplementary Fig. S4).

By comparison classic events now appear relatively infrequent, although they may be missed because surging 
is much faster and short-lived, especially where tributaries are involved. CCFT missed the highest velocities 
(10 m per day or more) observed on the ground during the Maedan, and Shingchukpi-Panmah tributary surges30. 
At Khurdopin the measured maximum CCFT velocities46 were significantly lower than short-term, main surge 
observations on the ground (K. Hewitt, unpublished field notes). This may arise through gaps without readily 
available imagery, or due to cloud and snow cover. The CCFT data may also be biased towards pre-, post-, and 

Figure 2.  Overview of the surge-type glaciers in the Karakoram. The map of the Karakoram along with 
neighbouring mountain ranges (Hindu Raj, Pamir Wakhan, Aghil mountains, Depsang Plains, Ladakh and 
Nanga Parbat Himalaya) is generated by the open-source datasets using ArcGIS version 10.0 (http://www.esri.
com/software/arcgis/arcgis-for-desktop). The hill-shaded background in this figure has been generated using 
the Shuttle Radar Topography Mission (SRTM) data set (90 × 90 m) provided by the CGIAR Consortium 
for Spatial Information (http://srtm.csi.cgiar.org/). The glacier outlines were modified (details given in 
‘Methods’ section) from the Randolph Glacier Inventory (RGI 5.0) (Pfeffer et al.)72 (http://www.glims.org/
RGI/00_rgi50_TechnicalNote.pdf). Details of surge-type glaciers are presented in Supplementary Table S1. The 
Karakoram boundary corresponds to the description given by Royal Geographical Society and Survey of India 
nomenclature62. Glacier IDs refer to glaciers shown in other figures and listed in Tables.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://srtm.csi.cgiar.org/
http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf
http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf
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non-surge conditions but provide a much-expanded awareness of movement heterogeneity in the longer ‘quies-
cent phase’, largely neglected in the past.

Elsewhere, especially in Alaska, reports suggest active surges tend to commence in the winter months47. There 
are few reliable reports for the Karakoram, but the 1987 Bualtar (ID 21) surge started in January, the most recent 
Kichik Kumdan (ID 174) surge between December and April 1998. Older studies identified a winter surge in the 
latter, including a ~2.5 km advance between November 1935 and June 193648.

The largest surge-type glaciers with total basin areas of 2349 ± 82 km2 are found in the classic surge class ‘1’, 
with a maximum in sub-class Svalbard-type ‘1b’ (1639.5 ± 57 km2) (Table 1; Fig. 4; Supplementary Table S2). 
Some studies have suggested surge-type glaciers in the Karakoram region, as in Alaska and Svalbard, tend to be 
the longer and less steep ice masses49. Our work reveals no such correlation with glacier length or slope. The areas 
of some 50 surge-type glaciers are less than 5 km2 (Fig. 4).

Previous work has emphasized the importance of supraglacial debris covers, typical of the region’s gla-
ciers1,14,34,35. Some 187 of the glaciers identified are heavily debris-covered, and 36 are relatively clean. In 94 cases, 
supraglacial debris is concentrated at medial, contorted and looped moraines. For all surge classes identified, 
the debris-covered area is 933 ± 30 km2 or ~11.6% of the total glacier area. Debris covers tend to be greatest in 
ablation zones of southerly oriented glaciers, or 19.5% of total glacier area. The least debris-covered (6.5%) are of 
northeast orientation (Fig. 4; Supplementary Fig. S5). In general, across the western Himalaya, debris-covered ice 
decreases from southwest to northeast50. Debris-cover also reflects the extent of ice-free and heavily avalanched 
headwalls, more common on south facing slopes. All surge-type glaciers, but also most others in the region, are 
predominantly avalanche-fed5. Among sub-regions of the Karakoram, the Hunza valley has extensive, heavy 
debris covers, the Shyok basin much smaller covers usually restricted to contorted and looped medial moraines. 
There are exceptions, however, like the largely clean Pasu and Mallangutti glaciers in Hunza and in the northeast, 
the heavily debris-covered Urdok in Shaksgam valley. Debris covers may be massively redistributed during and 
after an active surge. Otherwise, they seem mainly to reflect conditions affecting avalanche debris content.

Surge phase duration.  Active surge phases involve the largest, most concentrated transfers of ice mass, and 
are of special interest for fast flow dynamics. In line with other recent studies35 our data show they can last from 
months to over 15 years (Fig. 5). Older work based on ground observations only reported classic type surges with 
active phases of weeks to months. This suggests observers missed the slower and more drawn out cases evident 
from CCFT data31–33,42–44,51.

For 12 glaciers we generated 120 automatic surface displacement data sets at an annual scale and, for 13 
others, manually measured velocities. Active phase movements varied from 4 km a−1 to 0.1 km a−1 (Fig. 3 and 
Supplementary Figs S2, S3 and S4). Many showed relatively high displacements (>1.0 km a−1). ‘Classic’ active 
phases in main glaciers generally lasted ≤2 years. In all, eight glaciers had active phase durations of ≤2 years, 
including Kichik Kumdan (ID 174), Hassanabad (ID 18), Karumbar (ID 4), Kutiah (ID 29) and South Rimo 
(ID 169). There were 37 lasting ≥10 years (Fig. 5; Supplementary Table S1). Peak velocities, where they could 

Figure 3.  Surface displacement of four Karakoram surge glaciers (Braldu ID 69, N- Gasherbrum ID 155, 
Staghar ID 158 and Yazghil ID 42) based on Image correlation software (CIAS) (Kääb and Vollmer, 2000)66 and 
Heid and Kääb (2012)68 (http://www.mn.uio.no/geo/english/research/projects/icemass/cias/cias.sav). CIAS 
was originally written by M. Vollmer and A. Kääb (Kääb and Vollmer, 2000)66 and further developed by A. 
Kääb. Satellite image pairs used for automated feature tracking including the estimated uncertainty presented 
in Supplementary Table S8. Location of surface displacement of these glaciers in the Karakoram is presented in 
Fig. 2 (glacier ID).

http://www.mn.uio.no/geo/english/research/projects/icemass/cias/cias.sav
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be separated out, occurred mostly in summer months19. However, in contrast to a previous study19, the highest 
displacement of Staghar (ID 158) Glacier occurred during winter months of 1989 (Fig. 3).

Surge Cycle Recurrence Intervals.  Where two or more active phases can be determined for a given glacier 
they offer a basis to establish recurrence intervals. If consistent between events they could help predict the timing 
of future surges.

By comparing earlier literature and satellite data from 1972 to 2016, we identified two or more surges for 27 
glaciers, 9 not previously reported (Fig. 6; Supplementary Tables S4 and Fig. S6). The most extensive records 
of repeat cycles are for the Shyok and Ishkoman valleys, respectively in the far eastern and western parts of the 
Karakoram. The data suggest Aktash (ID 176) in Shyok valley, and Karumbar (ID 4) in Ishkoman valley have 
surged as much as five times in two centuries (Supplementary Table S4). Mason (1930)3 deduced what would 
now be termed surges and their recurrence for ten glaciers. We could confirm his dates for three cases but not 
the remainder (Fig. 6). During the 20th century Kichik Kumdan Glacier (ID 174) surged 4 times, in 1902–1903; 
1935–1936; 1970–1972 and 1998–2000. Three recurrence intervals cluster between 34 and 32 years, but the most 
recent was 26 years. Three surge peaks at Yazghil Glacier during 1990, 1998 and 2006 suggest a cycle or recurring 
instability threshold of 8 years (Fig. 3). However, an implied surge for 2014 has not occurred to the end of 2016.

Surge intervals established through earlier historical records are between 30 and 90 years3. Some newly dis-
covered ones are shorter. Borum Glacier (Dumordo valley) underwent marked accelerations to active phases 
during 1991–1996 and 2004–2009. It also began to surge in 1977–1979 but the full extent is unknown due to lack 
of imagery until 1988. One unnamed glacier (ID 212) near the North Terong Glacier (ID 211) has surged three 
times between 1976 and 2015 (Supplementary Fig. S6 and S7). Two active phases of First Singhi Glacier (ID 160) 
were found during 1991–1996 and 2009–2013. The observations also suggest quiescent phases of around 13 years.

Bualtar (ID 21) is unusual in having pairs of active surges, in 1922–23 and 1929–30, and in 1987 and 1990. It 
creates a curious case of alternating short and long quiescent phases5. The explanation is unclear but comprises 
another glacier-determined rhythm that complicates tracking of climate relations.

In all, great variability is evident in surge cycle intervals, from as little as a decade to over a century. Given the 
patchy nature of visits and reportage, especially prior to the 1970s, an even more varied picture seems likely. To 
date, with possible exceptions for some classic surge glaciers like Karumbar (ID 4) and Kichik Kumdan (ID 174), 
the evidence seems unreliable for predicting the exact timing of future events, and does not preclude complica-
tions that could reflect as yet undetermined effects of climate change.

Figure 4.  Surge-type glacier characteristics (a) Number and area of all glaciers assigned to  glacier classes, 
(b) fifteen surge glacier classes (see Supplementary Table S2) and distribution by numbers and area (km2),(c) 
orientation and numbers of clean and debris-covered surge glaciers and (d) orientation and area of clean and 
debris-covered surge glaciers (percent).
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It should be noted that the largest glaciers (e.g. Rimo52) are all smaller now than their Little Ice Age maxima, 
but individual thicknesses and terminus fluctuations were out-of- phase then, and since5. For almost a decade, 
between 1989 and 1998, surface velocities at 12 km above the terminus of the largest Karakoram glacier, Siachen 
(ID 207), fluctuated from 350 m a−1 (1995–1996) to 120 m a−1 (1998–1999) (Supplementary Fig. S3). The termi-
nus advanced by ~250 m. Possibly this was climate-driven53, but the passage of an active surge initiated before 
1989 cannot be ruled out, perhaps a mini-surge, or a tributary surge missed due to gaps in satellite coverage.

Surge Length and Peak Velocity.  Surge length, the distance covered by an active surge, is another meas-
ure that may reveal movement heterogeneity. In all, the results show great variety and no consistency in surge 
lengths (Supplementary Fig. S6), including repeated surges (Fig. 6). Of eight glaciers, in five (ID 42, 75, 96, 135, 
212) the most recent event had a shorter surge length (Supplementary Fig. S6). In three others recent surge length 
exceeded the earlier ones (ID 139, 158, 160). In seven cases (ID 4, 21, 47, 155, 171, 174, 176) latest surges were 
shown to be less than historical maxima5.

Where identified, peak flow velocities for given glaciers have varied between events. Those determined for 
Staghar Glacier (ID 158) in Yarkand basin were at least twice as large in the 1989–1990 surge, compared to 
2009–2011. A similar reduction occurred in active surges of the Khurdopin Glacier (ID 47)46. Velocities at Yazghil 
Glacier (ID 42) were greater in 1997–1998 than 1989–90 and 2005–2006 (Fig. 3). However, in available satellite 
imagery the onset and termination of active surges and their maximum velocities may well be missed.

Discussion
The evidence presented, although unlikely to identify all cases, adds considerably to the numbers of surge-type 
glaciers previously known5,14,15,34,35,52. What stands out is the diversity of surge-types, surge-like instabilities or 
surge-modified behavior (Supplementary Tables S2, S3 and S5). The latter also shows the need for greater atten-
tion to the quiescent phase, which the majority of surge-type glaciers are in at any given time. Uncertainties in 
parts of the data are acknowledged and further research will surely establish more precise estimates for surge 
dimensions. Nevertheless, the findings confirm that surging and related instabilities are pervasive, possibly dom-
inant factors in the behavior of Karakoram ice. We suggest this has a unique bearing on efforts to identify how 
global climate change affects the region. Terminus advances and retreats were formerly the only evidence from 
the Karakoram and are still a basis for many claims about negative or positive mass balance45,54 (Supplementary 
Fig. S8). The glacier surges inventory generated in the present study reveal complications that put such evidence 

Figure 5.  Duration of active phase (years) in the Karakoram and neighbourhood area. The map is generated by 
the open-source datasets using ArcGIS version 10.0 (http://www.esri.com/software/arcgis/arcgis-for-desktop). 
The hill-shaded background in this figure have been generated by using the Shuttle Radar Topography Mission 
(SRTM) data set (90 × 90 m) provided by the CGIAR Consortium for Spatial Information (http://srtm.csi.cgiar.
org/). The glacier outlines were modified (details as given in methods) from the Randolph Glacier Inventory 
(RGI 5.0) (Pfeffer et al.)72 (http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf). Karakoram boundary is 
based on classical work by Royal Geographical Society and Survey of India62. See for more details (e.g. Ids) for 
active phase in Supplementary Table S1.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf
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in doubt (Supplementary Table S1). Many of the Karakoram glaciers not identified with surging may well have 
greater and relatively direct responses to climate, but an unknown number of them may prove to be surge-type 
or affected by surges. Mainly we must stress how, and how far, the behavior of surge-type glaciers departs from 
climate-driven responses. Two main concerns arise; the range and classes of surge-related phenomena, and their 
implications for mass balance.

It seems useful to combine and compare our findings in a revised classification (Table 1). Some studies explain 
newly discovered surge events as results of climate warming5,20. That may yet prove to be so. However, our evi-
dence highlights how surges and surge-related behavior intervene in glacier responses, with a large and varying 
potential to block, over-ride, or reconfigure fluctuations in climate trends, especially through mass balance29,47. 
If each surge-type glacier is indeed out-of-phase with others, this could substantially explain movement hetero-
geneity19,20. The timing and recurrence of surge activities, velocity fluctuations (Fig. 3), surge duration55 (Figs 5 
and 7) and length (Supplementary Fig. S6) will be present in the observations used to track glacier change16. This 
emerges from examining how surging intervenes in glacier mass balance.

Mass balance is generally regarded as more reliable than terminus changes and more fundamental to 
glacier-climate relations56. Unfortunately, there are very few actual measurements of mass balance for Karakoram 
glaciers and none for surge-type5. Most of the studies in the Karakoram used multi-temporal DEMs to estimate 
geodetic mass balance8–11 along with point elevation changes derived from ICESat/GLAS data12. Yet, the basic 
principles on which mass balance studies rely make clear how surge-type and surge-modified (Supplementary 
Table S3, S5) behaviors depart significantly from conventional mass balance relations which have been established 
for non-surge glaciers57–59.

The ‘reservoir’ and ‘receiving’ zones that dominate the budgeting of inputs and outputs in surge-type glaciers 
are not synonymous with conventional accumulation and ablation zones56. The ‘reservoir’ as indicated by col-
lapsed, crevassed and break-out areas during surging, involves only part of the upper glacier area (Fig. 1a). In 
many known cases, surge sources involve the upper ablation zone, as at Chiring (ID 92) Glacier in 1994. Some lie 
entirely within the ablation zone, as at Bualtar (ID 21) in 198637. In these cases instabilities generated by the surge 
led to readjustments in the upper reservoir zones for years afterwards, a variety of post-surge, surge-modified 
effect on mass transfer in the early quiescent phase. Of course, the snowfall that feeds the build up, and ablation 
in the receiving zone, are driven by climate conditions. However, outcomes are not budgeted by the interplay 
between accumulation and ablation rates, but by internal glacier dynamics and the surge cycle.

Developments in the lower, receiving zone diverge from those in the reservoir zone. Most of the time they 
are of opposite sign. There is a relatively brief, catastrophic exchange, not a sequence of systematically budgeted 
adjustments. In the long quiescent phase, the reservoir and receiving zones are out-of-phase, hence the value of 
the three stage model introduced above. Except during and immediately after the active surge, the former grows, 
building towards the next surge while the receiving zone stagnates or retreats16. Surging carries large volumes of 

Figure 6.  Repeat cycles of surge-type Karakoram glaciers. Length of dark black lines represents surge duration. 
Database of repeat surge of glaciers are based on satellite images (1972 onwards) and from the previous 
historical archives since 1840s (Supplementary Table S4). Location of glaciers (ID) is presented in Fig. 2.
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ice mass through the system in just a few months or years16,18. In classic events and some others, it causes large 
terminus advances. However, rather than evidence for positive mass balance these prefigure decades of enhanced 
ablation losses, again regardless of climatic trends.

Surge rhythms depart from those conventionally defined by systematic, up-glacier adjustments and the ver-
tical mass balance profiles typical of mountain glaciers5,56. This extends the complications generally identified 
with non-steady flow in glaciers58. Important concepts such as balance velocity, mass balance gradients, and 
Equilibrium Line Altitudes (ELAs) are absent or unspecified56,58. Surge length and duration, or related glacier 
thickness, do not track climate influences. At any given time, and most of the time, these glaciers are in the ‘quies-
cent’ phase, typically neglected but also implying long term disconnects between climate influences, mass balance 
and terminus fluctuations. In the short and medium term–10 s to 100 s of years–the glaciers in quiescent phase 
will have quite limited sensitivity to climate fluctuations. Surge cycles remain out of phase with each other and 
climate trends. Longer term harmonization with secular climate fluctuations is conceivable, perhaps inevitable, 
but as a highly lagged, centuries-long statistical process. Then again, our data do not exclude the possibility that as 
much as half of the glacier covers may not comprise surge-types, and be responding normally to climate change59. 
However, the concentrations of surge-type glaciers are largely in the highest, Mustagh Karakoram, where advanc-
ing glaciers have been reported recently, and an apparent slight increase in total ice mass1,5–15,34,35,52. Research to 
assess such relations in the Karakoram remains to be done.

Finally, the presence of surge-type and surge-related phenomena depend in some way upon Karakoram cli-
mate and other conditions that appear exceptional within High Asia. The Mustagh Karakoram combines the 
greatest extent of extreme elevations and great relief, the greatest glacier cover and most of the largest valley 
glaciers outside higher latitudes5,15. Glacier basins have exceptional steepness and vertical range of rock walls, 
wind redistribution of snow and avalanche-nourished ice5,60. Unlike the rest of the Himalaya, or Hindu Kush 
and westwards, the Mustagh Karakoram has large and nearly equal inputs of snow in winter and summer, likely 
to complicate ice thermal regimes5. Avalanche nourishment indicates heavy debris loads within as well as on the 
surface of most glaciers, potentially a source of abundant deformable bed material.

The Karakoram glaciers are definitely not ‘disappearing’ at this time, which seems good news for the millions 
dependent on them. However, current developments are not without risks. None of this means the climate is not 
changing and in ways that can adversely affect the Karakoram cryosphere and those dependent upon it. Recent 
trends do not preclude future, perhaps catastrophic depletion of Karakoram ice in response to climate warming. 
Where they occur, surge events can adversely affect mountain communities. Surge-type glaciers are common 
causes of glaciers interfering with and damming of rivers3,21,22,33. Glacier lake outburst floods (GLOFs) create 
extreme dangers for downstream communities and infrastructure3,21. In all there is a need for innovative research 
and monitoring in the Karakoram to address the influences of so many surge-type glaciers and future roles of 
such diverse, surge-related behavior.

Figure 7.  Duration of surge activity in the Karakoram and neighboring areas from 1972 to 2015 based on 
Landsat and ASTER satellite data. Length of blue lines represents duration of active surges. More details are 
presented in Supplementary Table S1 and location of glaciers ID is presented in Fig. 2. No suitable Landsat 
satellite images were available between 1981 and 1988 (gap area) for study area and presented by gray colour.
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Methods
Satellite data.  Multi-year and continuous observations are required for adequate monitoring of active-phase 
and repeat cycles of surge-type glaciers. In some cases surging may last just a few months, in others several years. 
Major impediments such as seasonal snow cover preclude continuous observations at a monthly scale for this 
region. Satellite images during August to November and with limited cloud cover were mainly used for feature 
identification and we report the lengths of active phases on an annual scale.

The longest program series, such as Landsat (sensors MSS, TM, ETM+ and OLI), available since the early 
1970s, have proved suitable for mapping these glaciers14,15,19,20,34,35,52. We used Landsat MSS data from 1972 
to 1980 (61 scenes) and Landsat TM, ETM+, and OLI (329 scenes) data from 1989 to 2016 (Supplementary 
Table S6). The scenes were obtained from USGS (United States Geological Survey; http://earthexplorer.usgs.gov/). 
High resolution satellite images from Google Earth were also consulted to help identification of surge-type gla-
ciers and related features (e.g. potholes, intense crevasses). 3D visualisation of glaciers in Google Earth satellite 
images also helped to understand changes in reservoir and receiving zones when surrounding stable features 
carefully used as reference (e.g. lateral moraines, nunatak). The Landsat 7 ETM+ scenes are affected by scan line 
errors since 2003 except in middle portion of scenes (~22 km wide) due to permanent failure of the scan line 
corrector (SLC)61. Therefore, we used ASTER data (170 scenes) from 2000 to 2013 giving complete coverage at an 
annual scale (Supplementary Table S6). Many Landsat MSS scenes are affected by severe distortions like shifted 
lines in scenes. Therefore, MSS scenes were used mainly to compare surface morphology with 1990s TM scenes14 
(e.g. Khurdopin Glacier46). Identification of repeat glacier surges combines Landsat scenes and historical sources.

Various studies have also covered a limited number of surge-type glaciers and sub-regions of the 
Karakoram14,15,19,20,34,35,52. Some include surrounding areas like the Aghil, Chang Chenmo, Nanga Parbat and 
Ladakh mountains in the Karakoram6,14,34,52. We utilize the Karakoram boundary based on the Survey of India 
definition62 which excluded these adjoining areas (Fig. 2). However, we also mapped surge-related phenomena 
in the Karakoram and some neighboring parts of the Wakhan Pamir, Aghil and Chang Chenmo Mountains to 
compare previous studies. Our verified Karakoram area covers ~44,500 km2 with an elevation range from ~1250 
to the summit of K2 at 8611 m a.s.l.

Surge-type glaciers inventory.  We used glacier outlines from the Randolph Glacier Inventory (RGI 5.0) 
[www.glims.org/RGI/] as reference data for mapping surge-type glaciers9. The glacier outlines are in polygon 
shape file format and cover the whole Karakoram glacier region. The RGI global glacier inventory (RGI 5.0) 
has included glacier outlines with mapping uncertainty of < ± 3.5% for Shyok basin, eastern Karakoram52. We 
visually checked outlines of surge-type glaciers using recent Landsat OLI images (2013 to 2015). At many places 
glacier outlines were found to include seasonal snow cover and rocky outcrops. These were updated manually9,52. 
Outlines of debris-covered glacier fronts were also updated manually by visual interpretation of high resolution 
Google Earth satellite images63.

We mainly used four diagnostic criteria for identification of surge glaciers where no actual surge or only lim-
ited disturbances are recorded:

	(1)	 morphological and localised surface patterns such as moraine ‘loops’ and ‘tear-drop’ forms16; breach lobes, 
trim-lines and sheared-off tributaries30; heavy crevassing of formerly much smoother glacier; potholes and 
shear margins14;

	(2)	 Terminus advance64 and rapid retreat unrelated to surrounding glaciers18;
	(3)	 Terminus thickening with intense crevasses and bulbous terminus14 and
	(4)	 Acceleration of ice, confined here to at least a doubling pre-event velocities, affecting a given region of ice 

or moving progressively down-glacier5.

There may be evidence of local thickening and over-riding of ice-margins, or ‘surge bulge’16 (Fig. 1f).The 
criteria and features used depend partly on previous inventories but extend the numbers of surge-type glaciers 
recognized14,15,19,20,34,35,49,52 (Supplementary Table S7). We propose a three-part classification scheme and sev-
eral sub-classes of recognized surge-types. Surge -type includes typical ‘classic’ main glacier and tributary surge 
activity, including Alaska- and Svalbard types and sub-types of ‘amended ‘classic’, with reduced or increased cycle 
phases. A further set is recognised only from ‘surge-diagnostic’ features outlined above (Supplementary Table S3).

Surge-modified refers to disturbances triggered by surging in adjacent non-surge ice, post-surge impacts on 
adjacent ice areas, or adjustments between tributary surge ice and main glacier ice30. These are observed to con-
tinue for years or decades after the surge event itself. They can be identified in surface ice patterns and morphol-
ogy, debris cover, and a range of velocity disturbances. Such disturbances are initiated or driven by active surges, 
but occur in ice after or beyond actual surging.They became especially evident in recent recognition of surge-type 
tributaries, notably their impacts in large glaciers such as Panmah, and Hispar5. Adjustments of main glacier and/
or tributary glacier ice were observed for more than two decades after the active surges, indirect consequences of 
surging that also do not reflect climate. On the one hand, surge-modified behavior does not create such sudden, 
rapid or extreme developments as active surges, certainly not compared to ‘classic’ surges. On the other hand, they 
can continue to affect as much or more ice, or for much longer periods and in ice otherwise exempt from surging, 
or that did not surge in the main event. More details on surge related classification and examples can be found in 
Supplementary Tables S2, S3 and S5.

Active phase estimation.  Surge phase duration was estimated from displacement of surface features on suc-
cessive satellite images. Both manual and automatic surface feature tracking methods were used to compute surface 
flow velocity, and in several sequential images to counteract changes in snow extent, cloud cover and illumination65,66. 

http://earthexplorer.usgs.gov/
http://www.glims.org/RGI/
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A normalized cross-correlation (NCC) algorithm was used to drive multi-temporal surface flow velocity from two 
successive pairs of Landsat or ASTER images using Image correlation software (CIAS)66–68. USGS provided ortho-
rectified Landsat TM/ETM+/OLI scenes. The planimetric shift found in all Landsat images at an individual glacier 
scale, was visually checked and coregistered where required, using the projective transformation algorithm of Erdas 
Imagine52. We used multiple satellite images covering both active and quiescent phase surface flow velocities. For 
this, search window size ranged from 30 × 30 to 250 × 250 and a reference windows size of 10 × 10. Filtering and 
cleaning removed spurious surface displacements. We excluded ≤ 0.6 correlation coefficient from the glacier flow 
data set, as suggested by Redpath et al.67. Directional filtering was also used to eliminate spurious displacements. 
Finally, velocity vectors were visually evaluated on satellite images and any remaining false displacements removed. 
All the accepted surface displacements were then converted to an annual scale19,20. The following equation, suggested 
by Quincey et al.19 was used to estimate uncertainty in glacier displacements

σ =
+ ∆

∆t
365

(C C ) x
(1)

pix match

where Cpix is the uncertainty in co-registration in pixels (p), Cmatch is the uncertainty in the matching algorithm 
in pixels (p), Δx is the image resolution in meters, and Δt is the time interval between the image pair in days. We 
used 0.5 p values for Cpix and Cmatch as proposed by Quincey et al.19 (Supplementary Table S8).

Selection of surface features (e.g. looped and wave-like/folded moraines) was based on clarity in image pairs 
and distribution across ablation zones. A polyline was digitized using ESRI ArcGIS from the feature’s starting 
point on image 1 to the same point on image 2. The length of the polyline (i.e. feature displacement) was calcu-
lated for both active and quiescent phase velocities65.

Velocities could only be estimated for the snow-free ablation zone. Frequently snow-covered accumulation 
areas suffer a lack of distinctive or repeated surface features. Landsat Level 1T images have been reported to have 
one pixel accuracy and feature tracking mapping65. This was also carried out to an estimated accuracy of one pixel, 
thus resulting in a total maximum uncertainty of two pixels between image pairs65. However, in several satellite 
images seasonal snowfall and cloud cover hampered movement tracking of surface features even in ablation 
zones. Terminus advances, where present, were also used to help determine active phase duration34,52.

Glacier surge fronts are usually uneven and changes in terminus position irregular. Thus, glacier lengths were 
measured using a glacier length tool developed for the ArcGIS 10.0 software69. Since this tool only takes the fron-
tal part of glacier as input, we mapped these from the Landsat and ASTER satellite images, not the entire glacier 
outline69. The glacier length tool divides the front into points spaced e.g. 15 m apart and calculates the mean dis-
tance to a reference point placed up glacier (Supplementary Fig. S9). Using the same reference point for all years 
enables a direct comparison of changes in front position. Some other characteristics such as supraglacial ponds or 
creeks helped determine the most likely position of the termini52,70.

We estimated the errors in length change based on an equation for multi-temporal length measures of the 
glacier front position proposed by Hall et al.71.

= + +e (a1) (a2) E (2)
2 2

reg

where; e = error in length change, a1 = pixel resolution of imagery 1, a2 = pixel resolution of imagery 2, 
Ereg = horizontal shift

We employed at least half pixel as horizontal shift between pair of satellite images70. Consequently, the error 
was estimated for Landsat TM, ETM+ and OLI images as follows:

= √ + + =e [(30) (30) ] 15 57 m2 2

The uncertainty was 29 m for a pair of ASTER images, 57 m for pair of Landsat TM, ETM+ and OLI, 152 m for 
pair of Landsat MSS, and 124 m in the case of length estimation from Landsat MSS and TM images. These uncer-
tainties are within the range of previous estimates (Hall et al.)71. Glacier length change was computed for 111 
surge-type glaciers in the study area. Out of this, only seven were considered for length change from Landsat MSS 
images, mainly to study repeat cycle of surges.
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