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The application of accurate cancer predictive algorithms validated with experimental data is a field concerning both basic
researchers and clinicians, especially regarding a highly aggressive form of cancer, such as Glioblastoma. In an aim to enhance
prediction accuracy in realistic patient-specific environments, accounting for both inter- and intratumoral heterogeneity, we use
patient-derived Glioblastoma cells from different patients. We focus on cell proliferation using in vitro experiments to estimate cell
doubling times and sizes for established primaryGlioblastoma cell lines. Apreclinically drivenmathematicalmodel parametrization
is accomplished by taking into account the experimental measurements. As a control cell line we use the well-studied U87MG
cells. Both in vitro and in silico results presented support that the variance between tumor staging can be attributed to the
differential proliferative capacity of the different Glioblastoma cells. More specifically, the intratumoral heterogeneity together with
the overall proliferation reflected in both the proliferation rate and the mechanical cell contact inhibition can predict the in vitro
evolution of different Glioblastoma cell lines growing under the same conditions. Undoubtedly, additional imaging techniques
capable of providing spatial information of tumor cell physiology andmicroenvironment will enhance our understanding regarding
Glioblastoma nature and verify and further improve our predictability.

1. Introduction

Glioblastoma (GB), a grade IV glioma as categorized by the
World Health Organization (WHO) [1], is one of the most
aggressive brain cancer types [2] with a poor prognosis for
the patient [3], despite the rapid advances in technology and
novel therapeutics. One of the most characteristic features
of GB that limits therapeutic potential is heterogeneity
[4]; both different molecular GB subtypes [5, 6] and sub-
clonal cell populations coexist within the same tumor [7–
9]. Hence, the importance of individualized GB treatment

and understanding of patient-specific GB pathophysiology
is evident and research plans towards this aim are of great
interest.

The use of the widely scientifically studied common
GB cell lines passaged in lab conditions for decades [10] is
nowadays questionablewith respect to their clinical relevance
in therapeutic outcome prediction and to their ability of
representing the extensive heterogeneity observed among
patients [11]. To this front, a common GB trend is the use
of patient-derived GB cells to enable preclinical physio-
logic estimations and personalize therapeutic strategy. Basic
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researchers cooperate with clinicians in order to isolate GB
cells and promote the establishment of short-term primary
GB cell cultures [12–15], which provide additional results
back to the patient. Established methods for biological
research and early drug discovery utilize cell lines grown on
plastic culture flasks. Over the years, the ability of these in
vitro systems to provide biologically relevant answers and
describe drug effects is limited due to the fact that they
are too simplistic and do not include key players of the
phenomenon. Hence, researchers seem to mobilize more
realistic experimental approaches such as 3-dimensional (3D)
cell cultures [16–20] and/or ex/in vivo implantations [14, 21–
23] to better imitate cancer in a mechanistic and conditional
way. Biological 3D models comprise an important step to
describe the early phases of tumor progression before going
to the complexity of in vivo systems.

Biological experiments are strongly linked with compu-
tational and mathematical (in silico) models. In silicomodels
offer a systematic framework of understanding the under-
lying biological processes integrating knowledge and infor-
mation from multiple biological experiments and/or clinical
examinations [24]. By predicting the behavior of the system,
new targeted experiments can be designed. In that way, the
process of mathematical modeling validation is an iterative
refinement procedure [25], which terminates when a valid
and biologically plausible and concrete description of the
system that reproduces the observed cellular behaviors and
growth patterns is found. Several mathematical approaches
have been proposed to describe the complex, multiscale
spatiotemporal tumor evolution. According to their mathe-
matical perspective, these approaches can be classified into
continuum and discrete models. Continuous mathematical
models are commonly used to describe tumors at tissue
level focusing more on the collective, averaged behavior of
tumor cells [26–28]. On the other hand, individual-cell-
based models using discrete and hybrid discrete-continuous
(HDC)mathematics can describe the behavior of each cancer
cell individually as it interacts with its microenvironment.
Individual-cell-based models are in general more suitable to
describe in vitro experiments, animalmodels, and small-sized
tumors [29–34].

In general, suchmathematicalmodels attempt to translate
tumor physiology hallmarks [35] into computational param-
eters and the predicted output is subsequently validated using
as ground truth either the experimental [36, 37] or the clinical
results [38, 39]. As it is well-understood, both cell division
and local spreading are responsible for cancer expansion
[40, 41] comprising the most important aspects for cancer
progress [30, 42]. Doubling time is defined as the average
duration of cell growth and division as reflected by the cell
cycle “clock” [43]. GB tumors have a remarkable rapid growth
that has a critical role regarding the space-occupation and
the development of intracranial pressure, usually the main
reason of the GB symptomatology [44]. In previous studies,
the significance of the proliferative rate has been shown.More
specifically, in [45], the proliferation rates of different breast
cancer patients are estimated from subsequent Magnetic
Resonance (MR) images in conjunction with a simple logistic
tumor growth model and show that the proliferation rate

estimates could discriminate patient’s survival and response
to therapy. In another study [46], the role of experimental
and simulated diffusion gradients in 3D tumors affecting
nutrient, oxygen, and drug availability within the tumor
and subsequently controlling cell proliferative rate is exam-
ined. A mathematical model parameterized from monolayer
experiments is used to quantify the diffusion barrier in
3D experiments. In the recent study [40], acquisition of
physiologic parameters from multicellular tumor spheroids
including proliferation and death spatial profiles is used
to constrain and parametrize a mathematical agent-based
model that addresses several cell growth mechanisms neces-
sary to explain the experimental observations and reductively
translates them to tumor progress over time.

This work utilizes primary tumor cells collected from GB
patients and subsequently cultivated in vitro as 3D tumor
spheroids. As an initial step towards understanding the GB
heterogeneity among patients, we focus on proliferation.
The aim of this work is first to mathematically study the
important components affecting the growth dynamics of
tumor spheroids whenmotility is inhibited, mainly including
the inter- and intratumoral heterogeneity with respect to cell
proliferation and, second, to parametrize the mathematical
model based on experimentally estimated parameter val-
ues of primary GB cell lines in order to increase clinical
relevance. Doubling times and the average cell sizes of in-
house-established primary GB cell lines from three different
patients are used. The well-known U87MG GB cell line is
also used as control in the experiments. All the biological
experiments are performed simultaneously under the same
initial and growth conditions. A hybrid, individual, cell-
based mathematical model is used to predict the growth
curves of the tumor spheroids and parametrized based on the
experimental data. Variations in several mathematical model
parameters are explored in order to quantify their effect on
tumor growth expansion.The simulated results are compared
to the experimental data from the relevant 3D cell cultures
and show that, in combination with the proliferation rate,
additional factors like the mechanical cell contact inhibition
are necessary to predict the in vitro evolution of the different
GB cell lines under study.

2. Methods

2.1. Sampling Procedure. Brain tissue sample is collected from
the lesions during biopsy or gross resection of patients with
indications of GB based on symptoms and MR images, while
still näıve from treatment and later histologically proved to
be GB cases. For the purposes of this study, we used the
primary cells of three different patients. The first is a 70-
year-old male patient with de novo GB close to the left
brain motor area, also called GBP03 cells. The second, called
GBP06 cell line, was collected from a 47-years-old female
patient with a tumor in the medulla proven to be a secondary
GB, which was gradually evolved to grade IV from lower
grades within a time period of approximately 20 years. The
third sample, called GBP08, was provided by a 53-year-old
male patient with also primary GB in the temporal-occipital
left hemisphere. All samples are anonymously provided with
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the informed patients’ consent by the Neurosurgical Clinic of
the General University Hospital of Heraklion, Crete, Greece,
while the protocol has been approved by the Institutional
Ethical Committees. Because of the relatively low success rate
of the primary cell culture establishment, we are limited to
these three GB cases for this work.

2.2. Primary Cell Cultures. Later to tissue sampling in saline
solution, the specimens are immediately transferred to the
lab where they are mechanically dissociated into smaller
parts and supplemented culturemedium is added (Dulbecco’s
modified Eagle medium (DMEM) with 10% fetal bovine
serum (FBS) and 1% gentamycin). After gradually removing
all cell debris and dead tissue parts, cancer GB cells are
cultured as monolayers in standard lab conditions.

As explained before, there is much heterogeneity between
GB cases and the protocol of tissue handling is slightly
modified per case. An ectopic, subcutaneous implantation to
immunodeficient mice is a procedural step that takes place
whether the conditional stability cannot be preserved in vitro
so that it cannot be assured that the isolated GB cells will
survive and proliferate in flask. Therefore, lab animals serve
as “living incubators” and usually, after the first implantation,
the cells are collected and recultured until the cell culture
is successfully established. In this work, GBP03 cells are
passaged once, while GBP06 and GBP08 cells are directly
used. All possible steps are taken to avoid animal suffering
at each stage of the experiments.

2.3. Doubling Time Assay. We use the GBP03, GBP06, and
GBP08 primary cell lines as well as the U87MG cells (ATCC�
HTB-14�, USA) as control line. In order to measure the
doubling time intervals of the different cell types used we
apply a simple protocol in adherent cultures. In a 24-well
plate, 20000 cells/ml of supplemented DMEM are seeded per
cell type at day zero. The plate is incubated in standard lab
conditions for approximately a week. Whenever needed, cell
culture medium is carefully renewed avoiding the adherent
(active) cell population to be disturbed.

Every 24 hours after seeding, the culture medium of one
well per cell type is removed and trypsin-EDTA (Sigma-
Aldrich, Germany) 1x solution is added for 1-2 minutes.
After another 1 minute of trituration in order to produce
a single cell solution, all the context is removed from the
well and is transferred to a 2ml Eppendorf tube. As a final
step, 4% formaldehyde is added to permanently fix the cells
within the tube which is stored to the refrigerator for further
use. The procedure is repeated up to the point that 100%
cell confluence is achieved. The cell concentration for each
cell type is measured with a 24-hour interval by using a
hemocytometer.

2.4. Cell Size Estimation. A divided Petri dish is plated with
a single cell solution of ∼2000 cells/ml and is incubated in
standard lab conditions overnight to let the cells adhere
in the surface of the dish. Accordingly, brightfield images
of attached single cells are captured in 40x magnification
and known acquisition parameters to an inverted light
microscope (Leica, Germany). To check size and shape

homogeneity between each cell population so that to assure
that the estimated average cell size will be representative, we
capture a photograph of a single cell solution within the fixed
grid dimensions of the hemocytometer.

2.5. D Spheroid Generation. We use the hanging-drop tech-
nique in order to produce spheroids from each cell type,
as recommended in [16, 17, 47]. A single cell solution of
625 cells/50 ul of supplemented double-filtered DMEM is
initially seeded per well in a 96-well hanging-drop plate
(3D Biomatrix, USA). Two rows of wells per cell type are
plated so that approximately 24 spheroids are produced.
Agarose solution of 1% w/v is added to plate’s reservoirs to
prevent evaporation of the droplets. After 2–4 days of cells
aggregating at the bottom of each droplet, we can consider
that the spheroids are finally formed. The growth progress
of the spheroids is monitored over time via photographs
taken under set acquisition parameters to an inverted light
microscope (Leica, Germany) for predecided critical time
points (2-day interval).

2.6. Data Analysis. The average doubling time of each cell
line is estimated using exponential linear regression on the
doubling time data. The average cell size of each cell line is
estimated by segmenting the area of approximately 10 ran-
domly selected cells in brightfield images to ImageJ [48] and
averaging. The tumor expansion of the 3D spheroids is again
estimated based on the area shown in their brightfield images.
The growth curve is estimated by the mean area value ±
standard deviation over time. All the abovemeasurements are
evaluated per cell type and many experiments are performed
for each cell type.

2.7. Computational Model Implementation of Tumor Sphe-
roids. A simplistic HDC mathematical model is used to
describe the observed tumor growth of the 3D in vitro experi-
ments. In the context of the HDCmodel, each individual cell
is described by a discrete cellular automaton, while the local
microenvironment is approximated by partial differential
equations (PDE). In the following, a concise description of
the HDC model is provided, while more thorough descrip-
tion can be found in [49].

2.7.1. Computational Domain. To simulate a central slice of
the 3D in vitro tumor spheroids, we set up a 2D regular lattice
of size 𝐿 = 5mm. We assume that each ℎ × ℎ square lattice
site fits a single cell; thus the lattice site defines the cell size
as well. The same lattice is used by both the discrete and the
continuous compartments.

2.7.2. Continuous Compartment. For simplicity, we assume
that oxygen is the only limiting molecule required by the
cells in order to proliferate. The spatiotemporal evolution
of oxygen is described by the partial differential equation
(PDE) shown in (1). Oxygen is assumed to diffuse through
the domain with diffusion coefficient 𝐷𝑜, decays naturally at
a rate 𝑎𝑜, and is consumed by the tumor cells at a rate 𝛾𝑜. The
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Figure 1: Example of a cell (shown in black) attempting to proliferate. Firstly, the cell searches the 1-Moore neighborhood highlighted by the
gray squares in (a). Being unable to find an empty space, it searches the 2-Moore neighborhood indicated by the gray squares in (b) and (c).
As an empty space is found, the orange cell is pushed towards the empty space as shown in (b). The latter movement frees the empty space
on the 1-Moore neighborhood and allows the proliferating cell to place an identical cell (also shown in black) to the adjacent empty space (c).

term 𝑐(𝑖, 𝑗) is 1 if there is a tumor cell at the location 𝑖, 𝑗 or 0
otherwise.

𝜕𝑜 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝐷𝑜∇

2𝑜 (𝑥, 𝑦, 𝑡) − 𝑐𝑖,𝑗𝛾𝑜 − 𝛼𝑜𝑜 (𝑥, 𝑦, 𝑡) . (1)

2.7.3. Discrete Compartment. Each tumor cell is an individual
entity with its own traits. Sets of these traits are assumed to
represent a cellular phenotype. A more detailed description
of the cell life cycle can be found in [49, 50].

In this work, two mechanisms of tumor cells are mainly
considered: proliferation and death. Cellular movement has
been neglected considering that the protocol of the in vitro
experiments does not conditionally allow cell motility. Cells
die if the local oxygen concentration drops below a defined
threshold 𝑜deadly. When a cell dies, its location is immediately
treated as empty space. On the other hand, the live cells
incrementally prepare for proliferation at every time step,
until the cell age reaches their doubling time. At thatmoment,
the cell searches for a nearby empty space at the 1-Moore
neighborhood. If no empty space is available, the search is
expanded to the 2-Moore neighborhood (see Figure 1) and
the process is repeated up to 𝑟-Moore neighborhood, where 𝑟
is defined as the proliferation depth and determines the max-
imum neighborhood size. Examples of Moore neighborhood
can be seen in Figure 1. If more than one empty space is found
in the same neighborhood, one of them is randomly chosen.

As shown in Figure 1, when an empty space is found
on a neighborhood other than the 1-Moore, cells are pushed
away from the location of the proliferating cell towards the
empty space in order to create an empty space to the 1-
Moore neighborhood. Then the cell resets its cell age and
places a copy of itself at the adjacent empty space. If no
empty space has been found, the cell enters a quiescent state
at which it constantly searches for empty space, without
further increasing its age. The extended proliferating rim
describes the maximum distance over which a cell is capable
of pushing other cells away in order to create space for its
proliferation and reflects the mechanical growth inhibition
processes observed in growing cell populations [40].

3. Results

In this work, the in vitro estimated doubling times and cell
sizes of three in-house-established primary GB cell lines,
as long as of the U87MG cells, are used to initialize the
individual-cell-based mathematical model in an attempt to
predict their different growth patterns. A sensitivity study is
performed where the effects of important factors affecting
tumor spheroid expansion such as the doubling time, the
cell size, and the depth of the proliferative rim and the
coexistence of multiple clones with different proliferative
capacities within the tumor are computationally explored.
We argue that, as expected, proliferation is one of the most
defining characteristics regarding tumor expansion and that
tumor predictive computational models should prioritize
these remarkable variances between individuals and not just
based on theoretically defined values.

3.1. In Vitro 2D Cultures

3.1.1. Cell Size Estimation. A usual answer of what a com-
mon human (cancer) cell diameter could be is about 10
to 100 microns [51, 52], and actually, most computational
approaches assume cell size within 10–30 microns [29]. In
2D cultures of low confluence, the cell size and shape are
in resting state and not crucially influenced by neighboring
cells. As depicted in Figure 2, there is much homogene-
ity in U87MG culture with the cells conforming a rather
prolonged typically observed shape, with a soma cell size
varying between 19 and 24 microns in diameter (see also
Table 1). On the contrast, all primary cells used in our
study are smaller and typically round with not many cellular
protrusions compared to U87MG cells, yet cells of the same
cell line appear to differ within the same population. In case
of U87MG cells, it is expected that after all these years in lab
conditions there is not much morphological diversity within
the cell population and that the cell soma size adequately
represents the cell line. On the other hand, regarding primary
cells, the cell size is only an average of all possible phenotypes
within each cell line. More specifically as denoted in Table 1,
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Figure 2: U87MG cells along with primary GB cells growing as monolayers ((a) 40x magnification) and as hanging-drop spheroids (initial
day in (b) and final day in (c), 4x magnification). Scale bars are 50 and 100 microns, respectively. The initial day is set to be the first day of cell
aggregation in spheroidal shape after seeding, meaning Days 2–4. Accordingly, the final day is the time point where spheroids start to deform
and decompose, usually approaching well’s borders. This day is Day 14 for most primary spheroids.

Table 1: Mean cell sizes and doubling times (±standard deviation) as estimated from the in vitro experiments for the respective cell lines (first
column). The in silico values used to initialize the HDC model regarding the doubling time are also shown.

Cell type In vitro estimations In silico values
Cell diameter (𝜇m) Doubling time (h) Doubling time (h)

U87MG 21.5 30.8 ± 2.5 33
GBP03 19 25.4 ± 0.5 25
GBP06 16 23.5 ± 0.7 23
GBP08 15 23.0 ± 1.5 22

GBP03 cells have an average cell diameter of 19 microns,
while GBP06 are approximately 16 microns and GBP08 are
close to 15 microns in diameter. Also, U87MG cells, when
growing in adherent cultures, intrinsically form aggregates
when much confluent. On the contrary, the primary cells
studied here seem to continue as monolayers no matter the
level of confluence.Obviously, the average cell size of a certain
cell population, no matter how well represented in 2D, it is
not maintained when growing in 3D culturing since other
physiological parameters that will be discussed next also
affect the cell surface-to-volume ratio altering both size and
shape.

3.1.2. Doubling Time Estimation. Based on literature, glioma
cells usual doubling time ranges from 24 h to a couple
of days [53], but more often established primary GB cell
lines are recorded to vary few days [12, 54, 55]. Particularly
for U87MG cells, they are supposed to have a population
doubling time approximating 34 hours, according to their
product sheet (ATCC HTB-14, USA). Our measurements
presented in Table 1 are in line with the bibliographic records.
Specifically, U87MG cells have a mean doubling time of 30.8
± 2.5 h, which is the slowest division between the cell types
we use. Among the primary cell lines, GBP03 cells divide
approximately every 25.4 ± 0.5 h, while GBP06 and GBP08
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Figure 3: Growth of the tumor spheroid area over time for the in vitro experiments of each cell line.

have similar doubling times estimated at 23.5 ± 0.7 h and 23.0
± 1.5 h, respectively.

3.2. In Vitro GB Spheroids. Thehanging-drop technique used
here to generate the 3D spheroids is a method conditionally
approaching the real avascular tumoral state in vivo [17].
The spheroid size is determined with optical microscopy and
monitored over time. It should be noted that, the imaging
approach used here cannot give any quantitative estimate of
the compactness of the cells or any other spatial information
including the number of the cells, the cell size, shape, and
polarity, which are definitely different between 2D and 3D
structures.

In general, we observe that both primary and U87MG
cells need approximately 4 days from single cell solutions
to aggregate into spheroidal structures, while during this
starting period, they seem to suppress proliferation capacity.
However, most often, primary cells aggregate sooner than
U87MG ones after seeding.

Figure 2 illustrates the growth area of the in vitro
spheroidal domains as imaged in 2D brightfield images at the
initial and final day. The growth curves of each cell line are
shown in Figure 3. An apparent difference between patients,
but also between primary and conventional cell lines, can
be observed. To be more specific, all primary spheroids
grow larger than the U87MG cells. GBP06 and GBP08
primary spheroids follow an initial fast growing, exponential
phase that slows down after approximately 6 days. U87MG
spheroids have an almost linear growth pattern. It has to be
clarified that the spheroids reach the well’s borders before the
plateau and decay phases are observed. The patients GBP06
and GBP08 adopt a high growth pattern, while the patient
GBP03 follows an intermediate growth rate closer to the
U87MG cell line. As already mentioned, especially for the
primary cell lines, the initial distribution of the subclones,
when plating the cells (Day zero), is random.This eventually

leads to amultifactorial subclonal spheroid growth integrated
to average estimations.

3.3. Computational Parameter Study. Prior to parametriz-
ing and predicting the growth pattern of the multicellular
spheroids, a simple parameter study is performed to deter-
mine the extent at which the doubling time and cell size
affect the 3D growth simulation, as well as explore the effect
of additional parameters that could play a significant role in
tumor expansion including the depth of the proliferative rim
and intratumoral heterogeneity.

Thediscrete and the continuous part of the computational
model are parametrized accordingly to meet the experimen-
tal setup as shown in Table 2. The length 𝐿 of the com-
putational domain equals 5mm to resemble approximately
the size of the hanging-drop plate. Both the oxygen decay
rate and the cell’s oxygen consumption rate were adopted
from [29]. To numerically solve the PDE (1), its parameters
have been nondimensionalized by using 𝑜max, 𝜏, and 𝐿,
which correspond to the maximum oxygen concentration,
the computational iteration time, and the domain length,
respectively. Dirichlet boundary conditions are used to lock
the boundaries to the maximum oxygen concentration to
simulate the so-assumed adequate and stable nutrients’ avail-
ability, since the culture medium during the experiment
is periodically refreshed. Also, the alternating directions
implicitmethod is used to numerically solve the PDE [56, 57].

At first, we explore the effect of doubling time on tumor
expansion keeping the rest modeling parameters constant.
Specifically, we assume a tumor cell of size equal to 18𝜇m
and consider a depth of proliferative rim equal to 2 cells,
while varying the doubling time from 15.5 h to 35.5 h. Fig-
ure 4(a) shows the growth curves of the tumors with different
doubling times. As expected, increased proliferative capacity
results in increased tumor expansion. If a reference time
point is picked at 10 days, we can calculate the absolute
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Table 2: The computational parameters used to initialize the HDC model.

Parameter Value
Domain length, 𝐿 5mm (methods-computational domain)
Cell (& lattice) size, ℎ 14–20 𝜇m (methods-computational domain)
Iteration time, 𝜏 8 h (methods-computational domain [49])
Oxygen consumption, 𝛾0 6.25 10−17Mcell−1 s−1 (methods-computational domain [29])
Maximum oxygen, 𝑜max 6.7 10−6MO2 cm

−3 (methods-continuous compartment [29])
Oxygen decay rate, 𝛼0 0.0125 (ND) (methods-continuous compartment [29, 30, 58])
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Figure 4: Growth of the tumor spheroid area over time as predicted from the computational model related to altering doubling time from
15.5 h to 35.5 h (a), the cell size from 14 to 20 microns (b), and the proliferation depth from 1 to 5 (c).

increase of area yielded by the decrease of the doubling time.
When the doubling time is reduced from 35.5 h to 30.5 h,
the area increases by approximately 24.46%; while comparing
the respective areas between the doubling times 20.5 h and
15.5 h, the area is increased by 54.87%. We can thus conclude
that the expansion area is affected more, when the doubling
times are lower. As expected, the effect is accumulative; thus
if a later/earlier time point was picked the differences would
increase/decrease, respectively.

We also explore the effect of cell size on the observable
tumor expansion. It should be noted that if counting of the
tumor cell population was possible on the in vitro experi-
ments, then this parameter would make no difference. We
vary the cell size from 14 to 20𝜇m,while keeping the doubling
time constant and equal to 25.5 h and the proliferation depth
equal to 2 cells. Figure 4(b) shows that, by increasing the
cell size, the tumor expansion increases as well, as expected.
Indicatively, by comparing the values at simulation time 10
days, the area relatively increases by 21.5%, 29.8%, and 31.1% as
the cell size increases from 14 𝜇m, 16 𝜇m, and 18 𝜇m to 16 𝜇m,
18 𝜇m, and 20 𝜇m, respectively.

The depth of the proliferative rim significantly affects
the tumor expansion as it increases the number of prolif-
erative cells. Figure 4(c) illustrates the effect that different

proliferation depths have on the tumor area over time. The
proliferation time was set to 25.5 h and the cell size to 18 𝜇m.
At the reference point of 10 days, as the proliferation depth
increases from 1 to 5 cells with a step of 1 cell, the area
increases relatively to its previous value by 94.7%, 58.4%,
38.9%, and 31.3%. In other words, a considerable higher
expansion of the tumor area (94.7%) is observed when the
proliferation depth is increased from 1 to 2, as compared to a
change fromdepth 4 to 5.As the proliferation depth increases,
less cells enter the quiescent state and proliferate instead; this
is why the growth area is increased.

To further investigate the role of heterogeneity between
our cases, we proceed by performing simulations which
contain multiple phenotypes identical in all traits except for
their respective doubling time. All phenotypes have their
cell size set to 18 𝜇m and proliferation depth (𝑟) equal to 2
cells. The proliferation time is randomly selected for each
phenotype at the beginning of the simulation from a uniform
distribution in the interval (15.5, 35.5) hours. As shown in
Figure 5, to illustrate the impact of the phenotypic multitude,
two scenarios are considered inspired by [29]: one at which
the number of phenotypes is 100 (shown in green line)
and another where 10 phenotypes are randomly selected
(shown in purple line). Additionally, given the randomness
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Figure 5: Monoclonal and polyclonal tumor area expansion. For the polyclonal case two scenarios are considered: one at which the number
of phenotypes is 100 (green line) and another where 10 phenotypes are randomly selected (purple line). Each experiment is repeated 50 times
and the corresponding standard deviation is also shown.Themean area of three monoclonal examples with doubling times 15.5 h (red dashed
line), 25.5 h (blue dashed line), and 35.5 h (yellow dashed line) is also illustrated.
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Figure 6: Doubling time of the populations that survive over time in a polyclonal tumor. Two scenarios are considered: one at which the
number of phenotypes is 100 and another where 10 phenotypes are randomly selected. Each experiment is repeated 50 times. The minimum,
maximum, and average doubling times for both scenarios are shown, as well as their corresponding standard deviations.

of the phenotypic initialization, each experimental scenario
is repeated 50 times. Figure 5 also shows the area expansion
over time for three monoclonal examples with doubling
times 15.5 h (red dashed line), 25.5 h (blue dashed line), and
35.5 h (yellow dashed line). Figure 6 illustrates the doubling
time of the populations that survive over time. As it can be
seen, the mean minimum and the mean maximum values

of the doubling time are constant for a long period of time
indicating the presence of both the fastest and the slowest
populations within the tumor, yet the frequency of these
populations becomes progressively unequal with the fastest
population to actually overpopulate within the tumor. Thus,
a decline to minimum values of the mean doubling time is
observed.
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Figure 7: In vitro spheroidal growth as opposed to in silico for all four cell types with the final chosen sets of doubling times as shown in
Table 1 and fixed proliferation depth equal to 2. Two additional simulated growth curves are depicted with different proliferation depth values
for the GBP06 (𝑟 = 4, yellow dash dotted line) and the GBP08 (𝑟 = 3, purple dash dotted line) spheroids.

3.4. Comparison of Biological and Computational Results. In
the following, we assume monoclonal populations and para-
metrize the mathematical model based on the estimated
experimental values for the doubling time and cell size for
the different GB cell lines. We also parameterize the model
without taking into account the in vitro estimates of cell sizes
and keep the cell size and all the other parameters constant
in all the experiments. Parameters within the range of the
experimental biological observations are chosen to achieve
the best-fitting growth curves. It has to be noted that both
the simulated and the biological experiments have an initial
seeding population of approximately 625 cells per spheroid
per cell type. The simulations show that the in vitro estimates
of cell sizes do not improve the model predictability and that
accounting only for differences in doubling time among GB
lines results in very similar growth curves.

Table 1 shows the parameters used by the in silico model
regarding the doubling time. Figure 7 shows the in vitro
growth curves and the in silico predicted ones for all the GB
cell lines. Based on the selected doubling time values and
keeping the proliferation depth equal to 2, the growth curves
of U87MG and GBP03 cell lines are closely approximated by
the in silicomodel. However, the GBP06 and GBP08 cell lines
diverge significantly from the in vitro results indicating that
proliferation alone is necessary, but not sufficient to explain
the tumor expansion of different GB cell lines growing under
the same initial conditions. Hence, additional phenomena
should be taken into account. For example, increasing the
proliferative depth and/or consider the possibility that mul-
tiple phenotypes with various proliferative capacities coexist
within such tumors, then the in vitro and in silico growth
curves would come in line as our parameter study analysis

previously revealed. Alternatively one could advocate that
GBP06 and GBP08 contain phenotypes with higher prolif-
eration depth than U87MG (and GBP03) which are expected
to thrive in compact environments such as a solid spheroid.
It should be noted that the proliferative depth could also be
affected by the development of extracellular matrix (ECM)
substrate in 3D cultures, even in the conditional absence of
a relevant substrate [17], as in our biological experiments.
This, along with antagonistic and synergetic relationships
of subclones within the growing spheroid, could alter the
mechanical responses of dividing cells, reflected in terms of
proliferation depth to ourmathematicalmodel. However, our
biological approach did not take into account a priori this
parameter, but it was the computational approach that indi-
cates such possible behavior suggesting that ECMproduction
and distribution might also be different in different cell lines.

Figure 7 also shows the simulated growth curves for the
GBP06 and GBP08 after changing their proliferation depth
values from 2 to 4 and 3, respectively. The in vitro data
better correlate the relevant in silico data. Also notice that
setting the proliferation depth of GBP06 higher than the
GBP08 is important to achieve their corresponding growth
patterns, where GBP06 grows faster than GBP08, given that
the doubling time of the former is higher than the latter and
that small differences in their cell sizes are not adequate to
reverse their growth patterns. Another point that should be
marked is that the subsequent decline observed after Day 8
in the in vitro growth curves of these two cell types cannot
be predicted by the computational model. This is because the
computational model we use does not account for inhibitory
stimuli that are probably developed in real growing tumors,
since this was beyond the scope of this study.
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4. Discussion

This work utilizes primary tumor cells collected from GB
patients and subsequently cultivated in vitro as 3D tumor
spheroids and computational approaches to study, exper-
imentally parametrize, and predict the growth dynamics
of tumor spheroids focusing on proliferation. At first, a
parameter study is performed in order to evaluate the extent
to which important factors such as the doubling time, the
cell size, and the depth of the proliferative rim, as well as
the coexistence of multiple clones with different proliferative
capacities within the tumor, affect tumor spheroid expansion
when motility is inhibited. The experimentally estimated
doubling times and cell sizes of three in-house-established
primary GB cell lines, as long as of the U87MG cells, are then
used to parametrize the computational individual-cell-based
model.

Overall the parameter study verifies the significant effect
of proliferation (depicted in both the cellular doubling time
and the depth of the proliferative rim) on tumor expan-
sion [40] and underlines additional factors that could play
an important role on tumor growth curves including the
intratumoral heterogeneity that has been widely observed in
GB. We also observe that a multiclonal population with the
same mean proliferation exhibits a greater tumor expansion
than the correspondingmonoclonal population because fitter
clones survive over time driving tumor expansion at higher
rates. Furthermore, the clonal heterogeneitywithin the tumor
mass allows different clones to be selected every time an
experiment is performed. Thus, a variation is observed in
the growth curves.The variance is cumulative, increases over
time, and can reach a difference of 100𝜇m in radius after
14 days of growth (Figure 5). Furthermore, the simulations
also show that although the mean growth curves are quite
similar, the variance highly depends on the initial number
of different clones coexisting within the tumor mass such
that fewer initial clones in the population produce higher
variability (Figure 6).

Comparing the in vitro experiments with the in silico
predictions, we observe that although the proliferation rate
is necessary, yet it is not sufficient, to describe the growth
curves we observe experimentally.The simulations show that
additional factors including the intratumoral heterogeneity
together with the overall proliferative capacity reflected in
both the proliferation rate and the mechanical cell contact
inhibition can predict the evolution of different GB cell
lines. Nevertheless, further investigation of the underlying
mechanisms is critical.

In general, compactness of the spheroids can be assigned
to two factors in mesoscopic terms: (a) the cellularity, in
means of cells’ size and shape given the space, and (b) the
levels of stress tolerance, reflecting their response against
internal forces within the spheroid which vary between
division and entering quiescence state, also known as “contact
inhibition.” As smaller in size and quicker regarding divisions,
GBP06 and GBP08 cells appear to grow larger in 3D over
time than the other two cell types mainly because of their
promoted proliferative capacity reflected by the higher prolif-
eration depth in the respective simulated growth curves (see

Figure 7). However, this is only an assumption for our in silico
trials since there is no indication of spheroids cell density and
proliferation depth to our experimental protocol and this is a
limitation of our method needed to be taken into account in
future work.

The migratory capability of our cells is conditionally
blocked to our experiments so that it can be assumed to play
a minor role in the proliferative characteristics studied here.
However, when the different cell populations grow in 3D,
both ECM can be produced, and the cell shape and polarity
could also be affected, such that cell-to-cell and cell-to-matrix
adhesion properties could be further explain the divergence
observed over time in growth patterns between the in vitro
and in silico experiments.

We suggest that, instead of using bibliographic values
usually referenced by common GB cell lines, cell doubling
timewas found to critically enhance the in silico predictability
but is insufficient to holistically describe differences in tumor
growth over time among the different GB cell lines. The
mechanical cell responses to internal forces obtained during
the growth of a compact tumor should be further investigated
experimentally, as well as the important role of intratumoral
heterogeneity. The importance of quantitative methods to
provide spatial information of proliferative, quiescent, and
necrotic cells as well as additional features including the
remodeling of ECM and phenotypic distribution regard-
ing intratumoral heterogeneity affecting tumor expansion
becomes evident.

5. Conclusions

The massive proliferation is a defining characteristic of the
tumor nature, essential for its progress. When focusing on
such a greed form of cancer, such as GB, constantly growing
intra-axially and aggressively disturbing brain functionality,
proliferation underlying processes become incompatible in
cancer progress. In GB, heterogeneity is another typical
hallmark, not only among patients with differences between
GB molecular subtypes, but more unexpectedly, between
different regions of the same tumor with the presence of
intratumoral subclonal dormancies. We claim that future
research should be based on primary cells directly collected
from patients and that common cell lines should only serve
as landmarks to unite studies of different groups. For every
primary established cell line, not only molecular but also
physiological parameters should be estimated to enable a
more precise future clustering of different GB cases. Estima-
tions starting with the typical doubling time as shown here
and evolving to more delicate features such as delineation of
necrotic and hypoxic regions or invasive capability or others
are highly important. To this front, computational models
may serve as predictor tools not only for estimating cancer
progress [59], but also for designing targeted biological
experiments. Simulations of cancer progress, either in vitro or
in silico, should not anymore be based on theoretical values,
especially if clinical translation is of interest. If we target the
holistic description of tumor evolution, we should follow a
stepwise approach, where computational tools can definitely
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help in identifying the most important parameters affecting
the final outcome.
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