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Abstract

Traumatic brain injury (TBI) can disrupt the white matter (WM) integrity in the brain, leading to 

functional and cognitive disruptions that may persist for years. There is considerable heterogeneity 

within the patient group, which complicates group analyses. Here we present improvements to a 

tract identification workflow, automated multi-atlas tract extraction (autoMATE), evaluating the 

effects of improved registration. Use of study-specific template improved group classification 

accuracy over the standard workflow. The addition of a multi-modal registration that includes 

information from diffusion weighted imaging (DWI), T1-weighted, and Fluid-Attenuated Inversion 

Recovery (FLAIR) further improved classification accuracy. We also examined whether particular 

tracts contribute more to group classification than others. Parts of the corpus callosum contributed 

most, and there were unexpected asymmetries between bilateral tracts.

1 Introduction

Traumatic brain injury (TBI) is the leading cause of death and disability in children and 

adolescents. TBI can cause extensive white matter (WM) damage, which can still be 

detectable years post-injury. Diffusion weighted imaging (DWI) is useful in studying WM 

disruptions caused by brain injury, offering a non-invasive means to assess possible diffuse 
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axonal injury (DAI). DAI is frequently associated with poor outcome, but can only be 

definitively diagnosed post mortem 1. The structural damage and considerable heterogeneity 

within the TBI patient population can complicate brain imaging studies, especially inter-

subject registration. Here we evaluated improvements in a DWI analytical workflow, 

automated multi-atlas tract extraction (autoMATE). We use study specific templates, and 

register images using information from three modalities (DWI, T1, and FLAIR) instead of 

one.

Fluid-Attenuated Inversion Recovery (FLAIR) is often collected in TBI research due to its 

sensitivity to lesions. The long inversion time (T1) of FLAIR suppresses the signal from CSF 

leading to improved differentiation of lesions relative to some T2-weighted sequences 2. 

DWI has been applied in TBI research fairly recently, offering better anatomical resolution 

than conventional CT for detecting and localizing ischemia, DAI, and other TBI-associated 

neuropathologies 3, 4. T1-weighted imaging provides a high-resolution anatomical scan that 

offers a standard target for registration. By combining information from all three modalities, 

we hoped to leverage the benefits of each, resulting in a more accurate registration.

AutoMATE has been used to analyze WM integrity following TBI, and performs well even 

in injured tissue 5, 6. Here we sought to improve the workflow further. We tested the initial 

workflow and compared it with an intermediate workflow with one alteration, and the final 

process with two alterations on the same dataset of 31 moderate-to-severe TBI (msTBI) 

patients and well-matched healthy controls.

2 Methods

2.1 Subjects and Image Acquisition

TBI participants were recruited from 4 Pediatric Intensive Care Units (PICUs) at Level 1 

Trauma Centers in Los Angeles County. Healthy controls, matched for age, sex, and 

educational level, were recruited from the community through flyers, magazines, and school 

postings. Participants were studied in the post-acute phase (2–6 months post-injury). We 

included 31 TBI participants (7 female, 14.3 average age) and 40 controls. Inclusion criteria: 

non-penetrating moderate-severe TBI (intake or post-resuscitation Glasgow Coma Scale 

(GCS) score between 3 and 12, or higher GCS with positive imaging findings), 8–18 years 

old at injury, right handed, normal vision, English proficiency. Exclusion criteria: history of 

neurological illness or injury, motor deficits or metal implant preventing safe MRI scanning, 

history of psychosis, ADHD, Tourette’s, learning disability, mental retardation, or autism.

Participants were scanned with 3T MRI (Siemens Trio) with whole-brain anatomical and 66-

gradient diffusion imaging. Diffusion-weighted images (DWI) were acquired with the 

following acquisition parameters: GRAPPA mode; acceleration factor PE=2; TR/

TE=9500/87 ms; FOV=256×256mm; isotropic voxel size=2 mm. 72 images were collected 

per subject: 8 b0 and 64 diffusion-weighted images (b=1000 s/mm2).

2.2 Tractography

AutoMATE (automated multi-atlas tract extraction) is described fully in prior papers 7–9. 

Briefly, autoMATE labels tracts of interest from the whole brain tractography based on 
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template atlases. While many tract labeling tools use only a single template, the strength of 

autoMATE is that it uses 5 templates, increasing the robustness and generalizability of 

results. Raw DWI images were visually checked for artifacts, resulting in 2 participants 

being excluded from all analyses due to extensive slice dropout (not included in above 

participant count). DWI images were corrected for eddy-current induced distortions using 

the FSL tool “eddy_correct” (http://fsl.fmrib.ox.ac.uk/fsl/). DWI scans were skull-stripped 

using FSL tool “BET” (default parameters). Eddy correct deformations were applied to the 

gradient vectors. Fractional anisotropy (FA) measures the degree to which water is diffusing 

preferentially in one direction (along axons). MD (mean diffusivity) is a measure of the 

average diffusivity across all 3 primary eigenvectors. RD (radial diffusivity) is the average of 

the eigenvalues corresponding to the 2 non-primary eigenvectors, and AD (axial diffusivity) 

is the eigenvalue corresponding to the primary eigenvector. FA, MD, RD, and AD maps 

were computed using FSL tool “dtifit”. Whole-brain DWI tractography was performed with 

Camino (http://cmic.cs.ucl.ac.uk/camino/). The maximum fiber turning angle was set to 35°/

voxel to limit biologically implausible results, and tracing stopped when FA dropped below 

0.2, a threshold that is somewhat standard in the field.

2.3 Fiber Clustering and Label Fusion

The standard autoMATE templates are 5 WM tract atlases constructed from healthy 20–30 

year olds, as detailed previously 7–9. These templates will be referred to as the standard 
template. For this project, we also constructed 5 new WM atlases from 5 adolescents in the 

study (2F/3M, 14–18 years old, all healthy controls). These templates will be referred to as 

the study specific template. The atlas used to identify tracts in the templates was based on 

the “Eve” brain atlas 10, and includes 19 major WM tracts: the bilateral corticospinal tract, 

bilateral cingulum, bilateral inferior fronto-occipital fasciculus, bilateral inferior longitudinal 

fasciculus, bilateral uncinate, bilateral parahippocampal cingulum, left arcuate fasciculus 

(the right arcuate is too asymmetric for population studies to be practical 11), and corpus 

callosal tracts divided into 6 segments – frontal, precentral gyrus, postcentral gyrus, parietal, 

temporal, and occipital. The Eve atlas was registered, linearly and then non-linearly, to each 

subject’s FA map using ANTs (Advanced Normalization Tools 12) and its ROIs were 

correspondingly warped to extract 18 tracts of interest for each subject based on a look-up 

table 10. ROI registration was visually checked for all subjects, and all passed quality 

control. While registration is difficult in injured brains, the registration tools in the ANTs 

library have been shown to work well 13.

Basic registration: Each subject’s FA map was further registered non-linearly using ANTs 

SyN to each of the 5 standard templates. Intermediate registration: Each subject’s FA map 

was further registered non-linearly to each of the 5 study specific templates. Multi-modal 
registration: Each subject’s averaged b0, FLAIR, and T1-weighted image (T1w) were 

registered linearly then non-linearly to each of the 5 study specific template’s b0, FLAIR, 

and T1w images respectively. Since each modality provides an improved resolution and is 

sensitive to different aspects of brain structure, they are expected to contribute different 

information during the registration process. First, each subject’s FLAIR and T1w images 

were linearly registered to their averaged b0 image using the FSL tool “flirt” bringing all 

three modalities to a common space. ANTs SyN was then used to perform a multi-channel 
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registration to simultaneously warp three images from each subject to the corresponding 

template images. The T1w images were registered using a cross-correlation coefficient (CC) 

similarity metric and was also weighted the highest as it provided the best resolution, 

followed by FLAIR images registered using mutual information (MI) and weighted 2nd 

highest, and lastly the b0 images were registered using MI and weighted the least. The 

transformations were then applied to each subject’s FA map, resulting in finely registered FA 

images to each of the 5 study specific templates. This is shown in Figure 1. All registrations 

were visually inspected for quality, and all passed quality control. At this point there are 3 

separate processing streams. For each processing stream, the 18 tracts from each atlas were 

then warped to the subject space based on the deformation field from the above-referenced 

registration steps 14. We refined fiber extractions of each tract based on the distance between 

the warped corresponding tract of each atlas and the subject’s fiber candidates from ROI 

extraction. Individual results from the 5 atlases were fused. We visually inspected the 

resulting fiber bundles. For each of the 18 WM tracts, we selected one example subject to 

display group analysis results (this step was consistent across processing streams). We 

extracted FA, MD, RD, and AD along the tracts at this point, output as 8155×15 matrices, 

with each point in the matrix corresponding to tract coordinates.

2.4 Support Vector Machine

Support vector machines (SVMs) 15 are one popular form of supervised learning model that 

we used to classify our connectivity features, to differentiate connectivity patterns in TBI 

and normal development. Clearly other machine learning models are possible, but here we 

chose SVMs as their properties are well understood. SVMs classify 2-class data by training 

a model, or classification function, to find the optimal hyperplane between the 2 classes in 

the data. Let xi ∈ ℝd represent the connectivity feature vectors, where d is the dimension of 

the feature set of interest and Yi = ± 1 be their label with −1 and 1 representing TBI and 

control. Our target hyperplane is:

w, x + b = 0,

where w∈ ℝd should separate as many data points as possible. We find this hyperplane by 

solving the L2-norm problem:

arg min
w, b, v

1
2 w, w + D∑i vi

2 ,

such that

yi( w, xi + b) ≥ 1 − vi, vi ≥ 0

where vi are slack variables and D is a penalty parameter. In many instances, a hyperplane 

cannot be found that completely separates the 2 classes of data, and slack variables are 

added to create soft margins to separate most of the points.
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Our classification design was to test the information provided by the point-wise WM 

integrity estimates with repeated stratified 10-fold cross-validation 16. We repeated the 

cross-validation 10 times. Each repeat represents a different random grouping of dataset for 

10-fold cross-validation. For cross-validation (CV), our performance metrics were balanced 

accuracy (average of sensitivity and specificity), accuracy (number of correctly identified 

subjects divided by the total number of subjects), sensitivity (true positives [TP] divided by 

total positives), specificity (true negatives [TN] divided by total negatives), and F1 (2 * 

((precision * sensitivity)/(precision + sensitivity)), where precision is TP divided by total 

positive calls). We used the linear SVM implementation in scikit-learn 0.16.1 (http://scikit-

learn.org/) with the default parameters. The input for the SVM was the point-wise estimates 

of FA, MD, RD, and AD across all tract indices, input as 8155×15 matrices for each subject.

3 Results

We calculated the average displacement across all subjects, across all 5 template atlases, 

across the whole brain, for each of the 3 registrations tested. For the single channel 

registration with the standard templates, the average displacement magnitude across all 

subjects was 3.0%. For the single-channel registration with the study specific templates, the 

average displacement magnitude across all subjects was 3.1%. For the multi-channel 

registration with the study specific templates, the average displacement magnitude across all 

subjects was 3.7%. As another check of registration, we extracted the volume of the 

thalamus in native space and compared it to the volumes extracted after each transformation. 

This was done across 10 healthy controls. The average difference in thalamic volume 

between native space and each of our 3 registrations was: basic – 4.2%, intermediate – 2.3%, 

multi-modal – 3.1%. The average difference in thalamic volume between each registration 

step was: basic vs. intermediate – 2.1%, intermediate vs. multi-modal – 5.6%.

3.1 Study specific template – intermediate registration

The creation of a study specific template was the first improvement to the workflow. The 

standard autoMATE templates are taken from 20–30 year old healthy controls, while the 

study specific templates include 5 14–18 year olds (2F/3M, all healthy controls). Use of a 

more age-appropriate template, taken from the sample, improved nearly all measures of 

group discrimination across FA, MD, and RD. SVM based on AD gave mixed results. The 

classification outputs can be seen in Table 1. T-tests of the 10 CV repeats showed these 

improvements were largely significant.

3.2 Multi-modal registration

The second improvement to the workflow involved the inclusion of multiple image 

modalities for the template registration, as well as the same study specific templates used in 

the intermediate registration. This step brought further improvement to the classification 

outputs for all measures. These results can be seen in Table 1. T-tests of the 10 CV repeats 

showed the improvements over single channel were only significant for one measure 

(indicated in bold in the table), but over the original registration they were highly significant 

(indicated in italics in the table).
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3.3 Most robust tracts

The analysis to this point was completed using all tract data, but we were interested to see 

whether specific tracts aided in classification more than others. We ran a separate 

classification examining each tract alone. For this, we ran SVM as above, but with data from 

each tract separately input into the SVM. The balanced accuracy across all 19 tracts is 

depicted in Figure 2, averaged across the tract. We computed this on FA, MD, RD, and AD, 

but we display results here only for RD. The CC frontal, CC postcentral, and right inferior 

longitudinal fasciculus (ILF) had the highest BAC. There appeared to be an asymmetry as 

well, with right hemisphere tracts having higher average BAC than left hemisphere tracts 

(0.664 vs. 0.615).

4 Discussion

TBI can cause widespread damage to the brain, but the pattern of injury can differ based on 

severity, location, type, and any number of unknown premorbid patient characteristics. This 

heterogeneity can complicate inter-subject registration, which is critical for accurate and 

generalizable results. Here we aimed to improve this step, by including templates generated 

from subjects in the study, and by using a multi-modal registration.

Using study-specific templates improved the classification accuracy from resulting tract-

wise WM integrity measures. This is an expected outcome, as templates matched for age and 

scan protocol should be more similar to the patient images to be registered. The images we 

selected for the multi-modal registration were chosen for their particular sensitivity to 

detecting pathology caused by brain injury. Conventional MRI (T1w) identifies lesions more 

accurately than computed tomography (CT) does. DWI can indicate possible DAI, ischemia, 

and demyelination post-injury. FLAIR, one of the sequences most commonly used by 

neuroradiologists for clinical purposes, can detect contusions, edema, and subarachnoid and 

intraventricular hemorrhage 17. Other researchers have used multi-modal approaches for 

segmentation and registration 18–20. Creating study-specific templates and choosing disease-

specific sequences tailors this workflow to the study of TBI and improves our ability to 

study its effects on the brain.

We also examined how tracts differed in their individual contributions to the classification, 

finding considerable variation in classification accuracy across the tracts. The tracts with the 

highest balanced accuracy were the CC frontal segment, CC postcentral gyrus, and right ILF. 

The corpus callosum is one of the most well-documented areas of disruption following a 

brain injury, so it is not surprising that callosal segments had high BAC 21. Of our 31 TBI 

patients, 3 had large space occupying lesions on the left hemisphere 1 had a large lesion on 

the right hemisphere, 10 had small lesions on either the right or left hemisphere, and the 

remainder had no visible lesions. These large left hemisphere lesions likely increased the 

within-group variance, affecting the accuracy classification based on information from left 

hemisphere tracts.
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5 Conclusion

We present step-wise changes to the DWI processing workflow, including use of study-

specific templates and incorporating information from multiple modalities when registering 

images. Each step improved on the previous method in our ability to accurately classify 

subjects, ending with accuracy around 0.81 for FA, MD, and RD. Additionally, we show that 

certain tracts aid more in this classification than others, with the CC frontal segment, CC 

postcentral gyrus segment, and right ILF emerging as providing the most discriminative 

information. This improved workflow will aid us in further multi-modal investigations of 

recovery following pediatric TBI.
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Figure 1. 
(a) Each subject’s b0, FLAIR, and T1-weighted image are first linearly then non-linearly 

registered to its respective atlas image. (b) This step is repeated for each of the five atlases. 

(c) The resulting transformations are then applied to each subject’s FA image, resulting in an 

FA image finely registered to each of the five atlas FAs.
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Figure 2. 
Balanced accuracy (BAC) across the 19 tracts computed from MD along tract. Colors 

correspond to BAC, according to the legend.
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