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ABSTRACT

The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in

interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis,

consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an

important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of

texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the

prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the

robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an

overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with

particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an

influence on features estimation are discussed, highlighting the need of more standardized image acquisition and

reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations,

texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and

the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete

picture of the full potential of this technique.

INTRODUCTION
In the past decade, there has been an increasing interest
in the high-throughput extraction of quantitative in-
formation from medical images [in particular, CT, MR
and positron emission tomography (PET) images],
known as radiomics.1,2

Radiomic features allow the description of structural het-
erogeneity of tissues, especially referred to tumours, using
quantitative indices derived from statistical and mathe-
matical models applied to the images. The interest in this
kind of analysis derives from the need to characterize tu-
mour heterogeneity, known to be a relevant factor in tu-
mour prognosis, using non-invasive tools. It has been
already reported in several studies that the heterogeneity
highlighted by medical images is well correlated to that
observed at histopathological, proteomic and genetic levels,
and it is linked to intratumoural properties related to cel-
lularity, angiogenesis and the presence of necrosis.2,3 In this
sense, the combination of radiomic analysis with genomic
data, the so-called radiogenomics, is increasingly growing
in interest in the research community. The main purpose
of radiogenomics is to exploit the ability of image-based

features in characterizing the whole tumour region, over-
coming the problem of sampling errors introduced by
genomic analysis. In this context, radiomic features can be
used for cross-validation of genomic data, helping to un-
derstand possible gene expression or mutation status.
Moreover, being not completely related to the genomic
profile, radiomics can add new independent information
about tissue response to radiation treatment. The combi-
nation of these two kinds of information can provide new
and more robust diagnostic or prognostic models,1 as
reported in Aerts et al.4

Texture analysis plays an important role in assessing the
spatial organization of different tissues and organs, over-
coming the limits of the classical global measures. In fact,
global indices such as the mean CT number or the stan-
dardized uptake value (SUV) in PET images describe a re-
gion of interest (ROI) as a homogeneous structure, thus
neglecting its spatial organization.

Therefore, texture analysis has been widely explored in the
radiotherapic context, especially for the characterization of
tumour in the planning phase and for the prediction of
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response to treatment.3,5–9 Despite the fact that it seems
a promising technique, it has not been completely exploited,
since some possible limitations, especially regarding factors that
can reduce its repeatability and robustness, need to be explored
in more detail.

This review focuses on the use of texture analysis in radiotherapy
(RT). Initially, we will discuss textural feature definitions and
factors affecting their calculation. Subsequently, we review re-
cent applications of texture analysis within RT.

OVERVIEWON TEXTURE ANALYSIS APPROACHES
Texture analysis is related to a variety of mathematical techni-
ques that can evaluate the grey-level intensity distribution and
spatial organization in an image.3 Textural features can be
computed by different methods, which can be divided into three
main groups:

(1) Statistical methods: they describe the distribution and
relationships of grey-level values in the image, by the
computation of histogram and second- and higher-order
texture matrices;10–14

(2) Model-based methods: they are based on the most
sophisticated and complex mathematical models, including
fractals, computed using different algorithms;15–23

(3) Transform-based methods: they analyse texture in a fre-
quency or scale domain, including Fourier transform,
wavelet and Gabor filters and Laplacian transform of
Gaussian filter.3 This last class allows transformation of
the whole image, on which it is possible to extract statistical
features on a multiscale approach.

Among these indices, second-order features calculated from the
grey-level co-occurrence matrix (GLCM) are the most used due
to their simple computation and interpretation. The GLCM
represents the joint probability density function of the co-
occurrence of pixels with an intensity level i and an intensity
level j in a certain direction at a specified distance.10 A typical
example of texture analysis workflow is reported in Figure 1,
where after the identification of the ROI on the image, features

calculated using the three methods (statistical, model based and
transform based) are estimated for further statistical analysis to
infer physiopathological descriptors. The complete list of the
main features and their texture interpretation is reported in
Table 1. A more detailed description about their computation
can be found in previous reviews.3,5,24

Textural features can be estimated by calculating a single value
for the whole ROI or by building a texture map. In the first case,
the ROI-based approach provides a unique index for the de-
scription of the texture in the whole structure. This is generally
performed when there is the need to extract synthetic parame-
ters that can be used for further statistical analysis. In Figure 2
(left), the GLCM is built considering the whole ROI, and it
provides a single value for each feature, for example, the entropy,
indicating the general organization of the structure. In the second
case, the pixel-wise approach allows the estimation of textural
features in each pixel, by computing their values considering
a square mask (e.g. 53 5 pixels) sliding over the image. This is
particularly useful in segmentation problems, or for pixel-based
statistical analysis, such as correlations with dose maps. Figure 2
(right) shows the map of entropy calculated from a GLCM built
on a 53 5 mask sliding on the ROI. Here, it is evident that
entropy within the region is not uniform and subregions with
high heterogeneity can be easily individuated.

FACTORS INFLUENCING TEXTURAL
FEATURES ESTIMATION
The computation of textural features can be influenced by
general variables, such as the ROI identification, or by artefacts
specific for the considered imaging modality. A schematic
overview of these factors and the works that have studied their
impact on features estimation is reported in Table 2.

Features computation
There is no acknowledged standardization for textural features
computation, which can be affected by different factors:

• Grey-level discretization: One of the first choices about
features computation is the number of bins used for the

Figure 1. Texture analysis procedure from tissue identification on medical images to features extraction (here in terms of first-,

second- and higher-order statistical features, fractal dimension and wavelet filters) and analysis (such as cross-correlations matrix,

receiver operating characteristic curves).
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discretization of the image. In fact, images are generally
acquired with a high number of intensity values (of about
10–12 bits), which should be reduced to a more practical

level for computational reasons. For instance in PET
images, it is common practice to discretize the intensity
range to 2N values, where N ranges from 3 to 8.25 Recently,

Table 1. List of the main texture analysis methods

Class Type Method Texture interpretation
Main estimated

features

Statistical method

First order Grey-level histogram

Global distribution of intensity
values in terms of spread,
symmetry, flatness, uniformity
and randomness

Mean

Variance

Skewness

Kurtosis

Energy

Entropy

Second order GLCM10

Spatial relationship between pixel
in a specific direction, highlighting
the properties of uniformity,
homogeneity, randomness and
linear dependency of the image

Energy

Homogeneity

Contrast

Entropy

Dissimilarity

Correlation

Higher order NGTDM11

Spatial relationship among three
or more pixels, closely
approaching the human
perception of the image

Complexity

Busyness

Contrast

Coarseness

Texture strength

Higher order GLRLM12

Texture in a specific direction,
where fine texture has more short
runs whilst coarse texture presents
more long runs with different
intensity values

Short-run emphasis

Long-run emphasis

Grey-level
non-uniformity

Run length
non-uniformity

Run percentage

Higher order GLSZM13
Regional intensity variations or
the distribution of homogeneous
regions

Zone size emphasis

Grey-level zone
emphasis

Zone size
non-uniformity

Grey-level
non-uniformity

Model-based
method

Fractal models
Box counting,15–20 fractional
Brownian motion method21,22 and
power spectral method21,23

Complexity of the image. For 2D
images, FD ranges from 2 to 3,
where more complex pattern
presents higher values

FD

Fractal abundance

Lacunarity

Transform-based
method

Fourier transform Analysis of the frequency content without spatial localization

Wavelet and
Gabor filters

Frequency and spatial localization

LoG Extraction of areas with increasingly coarse texture patterns

2D, two-dimensional; FD, fractal dimension; GLCM, grey-level co-occurrence matrix; GLRLM, grey-level run-length matrix; GLSZM, grey-level size zone
matrix; LoG, Laplacian transform of Gaussian filter; NGTDM, neighbourhood grey-tone difference matrix.
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it has been recommended to have at least 32 discrete
values26 but not .64, since it was proven that a higher
number of bins do not provide additional prognostic
information.27

• Isotropic resampling of the image: for the three-dimensional
(3D) computation of textural features, in particular, the
second- and higher-order features, an isotropic resampling of
the image is recommended. This was explained by the fact that

Figure 2. Estimation of entropy from grey-level co-occurrence matrix in a cervical lymph node (in red) using a region of interest-

based approach (left) and a pixel-wise approach (right). Colours appear only in the online version.

Table 2. List of factors influencing textural features estimation

Factor type Factor details References (first author, year)

General factors

Features computation

Grey-level discretization Orlhac et al, 201426; Hatt et al, 201527

Isotropic resampling of the image Vallières et al, 201528

Non-standardized nomenclature Hatt et al, 20169

Directionality in texture matrices Hatt et al, 201527

Specific parameters for texture matrix formulation Hatt et al, 20169

Use of already available packages Nyflot et al, 201534; Hatt et al, 20169

ROI identification

Manual vs automatic contouring Orlhac et al, 201426; Parmar et al, 201436

Image registration and contour propagation
Yip and Aerts, 201625; Cunliffe et al, 201238; Cunliffe
et al, 201339

Image-specific factors

CT images

Presence of metal artefacts Leijenaar et al, 201541

Noise and blurring Veenland et al, 199623; Veenland et al, 199843

Image reconstruction algorithms and contrast injection
on CECT

Kim et al, 201644; Yang et al, 201645; He et al, 201646

PET images

Image acquisition and reconstruction protocols
Galavis et al, 201047; Nyflot et al, 201534; Yan et al,
201548; Lasnon et al, 201649; van Velden et al, 201650

Patient and lesion size Hatt et al, 201527; Nyflot et al, 201534

Image smoothing and quantization
Doumou et al, 201551; Lu et al, 201652; Desseroit
et al, 201653

SUV discretization Leijenaar et al, 201554

Pre-processing step Hatt et al, 201355

Choice of respiration-averaged CT for attenuation
correction

Cheng et al, 201656; Grootjans et al, 201657

MR images
Image acquisition protocols Mayerhoefer et al, 200959

Robustness of parametric maps Song et al, 201464

CECT, contrast-enhanced CT; PET, positron emission tomography; ROI, region of interest; SUV, standardized uptake value.
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the first-order features are computed from the histogram,
which counts the number of grey levels in 3D space, and that
all higher-order texture measurements explicitly or implicitly
involve a distance parameter in the matrix computation.28

• Non-standardized nomenclature: there is no standard no-
menclature for these indices and thus it is possible that the
same parameter in different works referred to different
methods. It is the case, for example, for the names “entropy”
and “energy” which can refer both to the histogram- or
matrix-based parameters. Therefore, Hatt et al9 proposed to
indicate the name of the matrix in the feature nomenclature
(“entropyHIST” and “entropyGLCM”).

• Directionality in texture matrices: regarding GLCM and grey-
level run-length matrix (GLRLM) features, which are based
on the computation of directional matrices, the choice of
directions and whether or not to average them can have an
impact on the final result.25,27 For example, some works have
treated the GLCMs as separated in each direction,29–31

whereas others have preferred to average the matrices to
reduce the number of parameters used in the subsequent
statistical analysis.28,32

• Specific parameters for texture matrix formulation: the choice
of the distance between pixels for the computation of GLCM
is another factor that can affect the value and number of
the features. However, in this case, it is general practice to
consider a distance of 1 pixel,9 even if some works preferred to
take into account more than one distance.31,33

• Use of already available packages: the availability of different
software for the computation of textural features makes
texture analysis more appealing and easy to use. However, this
leads to doubting if all the considered features were correctly
computed. These software, being closed or open source, lack
standardization of features selection and computation.
Moreover, commercial or freely available tools, such as Mazda
(available from: https://www.eletel.p.lodz.pl/mazda/) or the
FracLac plugin (Bethesda 2.5, Release 1e; developed by A
Karperien, Charles Sturt University, Australia) for ImageJ
software (NIH, Bethesda, MD), have the limitation of being
“black-box”; thus, it is difficult to know how the features are
estimated. This different features calculation can lead to very
different results, which can make the comparison of published
works unreliable.34 An excellent evaluation and comparison of
different available codes for textural features computation can
be found in Hatt et al.9

Region of interest identification
One of the main factors influencing textural indices estimation
is the identification of the ROI,1,26,35,36 since features depend on
the segmented volumes. Moreover, many structures, especially
tumours, have indistinct borders and there is no widely and
universally acknowledged ground truth. In this context, Parmar
et al36 tested the reproducibility of several textural features
(shape, histogram, GLCM and GLRLM based) by considering
manual and semiautomatic segmentations of the primary tu-
mour in non-small-cell lung cancer (NSCLC) on CT images.
They reported a general higher robustness of features extracted
from the semi-automatic segmentation, and in fact, it had
a higher reproducibility and stability with respect to manual
segmentations performed by different observers. In particular,

they found that only shape-based features were not significantly
different between the two segmentations, whereas histogram and
GLCM- and GLRLM-based indices depended on the accuracy of
the definition of tumour borders and irregularities, more easily
delineated in the automatic way. Similar results were found by
Orlhac et al26 in fluorine-18 fludeoxyglucose PET images of
patients with colorectal cancer. They compared two different
widely clinically accepted tumour segmentation methods and
analysed the dependence of textural features from these meth-
ods. They found that the more affected indices were histogram-
based and GLRLM-based features, whereas the more robust
were homogeneity and entropy estimated from GLCM.

Another relevant role in the ROI identification is played by
image registration and contour propagation, as highlighted in
Figure 3. In fact, deformable image registration is required to
recover growth or shrinkage of structures due to disease pro-
gression or radiation effects during treatment, and thus, it is the
first step for an accurate contour propagation. If the chosen
deformable image registration method is unreliable, texture
analysis performed in the automatically propagated volumes can
introduce several errors.37 In thoracic CT images, it seems that
demons algorithm was more stable with respect to rigid, affine
and B-spline deformable registration, leading to more re-
producible and robust textural features.38,39 In PET images of
patients with oesophageal cancer, Yip et al37 tested a rigid reg-
istration and ten different deformable image registration
methods for the estimation of textural features in the auto-
matically deformed tumour volumes. They found that the power
of features in predicting the final tumour response to treatment
was not significantly different for the most part of the de-
formable image registration methods, except for the fast demons
and fast free-form. They concluded that as long as contour
propagation accuracy was reasonably good, the predictive power
of textural features was robust with respect to image registration.

Not only the choice of the image registration method has an
impact on the contour propagation but also the algorithm used
to apply the estimated vector field on the delineated contours. In
fact, the deformation field can be applied directly on the binary
mask or on a 3D surface generated from the contour. This
second choice has the advantage of obtaining a more regular
deformed surface due to the intrinsic 3D properties of the mesh.
Different algorithms for the 3D surface generation are available,
even in commercial and clinical software, giving different per-
formance that can affect the final deformed volumes.40

CT images
Some specific artefacts and source of errors are typical of the
imaging modality. In CT images, especially in the head and neck
region, textural features can be affected by the presence of metal
streaks due to dental fillings.41 There is the possibility to reduce
metal artefacts using some promising techniques,42 but as tex-
ture analysis relies on extracting meaningful information from
medical images, they could introduce artificial texture by
modifying image information.

The presence of noise and blurring due to acquisition parame-
ters can also affect texture analysis.23,43 As expected, the more
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noisy and blurred the image is, the less robust are the features.
Therefore, a homogeneous image acquisition protocol is sug-
gested in order to reduce possible errors due to these limitations.

The impact of reconstruction algorithms in contrast-enhanced
CT (CECT) was assessed by Kim et al44 in 42 patients with lung
tumours. Shape, histogram and GLCM-based features were
calculated, and they found that the most robust indices were
shape-based metrics and homogeneity and entropy from GLCM,
being not significantly different and showing low variability
between the two image-reconstruction algorithms.

Regarding CECT images, the dependency on the time after
contrast injection and the feature reproducibility between scans
were assessed again on quantitative imaging features extracted
from patients with lung cancer, finding little relationship be-
tween these variables.45 However, the authors claimed that their
study was limited in the number of estimated features and in not
considering the amount of contrast and therefore their results
can be considered only representative. A larger data set (240
subjects) of patients with solitary pulmonary nodule was
assessed by He et al46 for the evaluation of the diagnostic per-
formance of textural features in differentiating benign and ma-
lignant solitary pulmonary nodule. About 150 features (from
histogram and GLCM) were calculated at different scales, using
a Laplacian of Gaussian spatial band-pass filter. The effects of
contrast enhancement, reconstruction slice thickness and con-
volution kernel were evaluated, and it was found that non-
contrast, thin-slice and standard convolution kernel-based CT
images were more informative.

Positron emission tomography images
Texture analysis in PET images has reached great interest in the
past few years. However, these images present different factors
that can strongly affect textural features estimation, more than

other imaging modalities. The impact of these factors, especially
image acquisition and reconstruction, has been addressed in
several recent studies.

One of the first studies that assessed the effect of PET image
acquisition and reconstruction on textural features found that
among 50 different features, only entropy (estimated from his-
togram), energy and maximal correlation coefficient (estimated
from GLCM), and low grey-level run emphasis (estimated from
GLRLM) presented variations ,5%.47 Next, Nyflot et al found
that skewness of the intensity histogram, autocorrelation and
cluster prominence of the GLCM, contrast, complexity, strength
of the neighbourhood grey-tone difference matrix (NGTDM),
and the grey-zone emphasis subset of the GLRLM showed large
variation despite no change in the underlying ground truth
image.34 Yan et al48 analysed the effect of reconstruction settings,
especially relating to time-of-flight and point-spread function
modelling, finding that the iteration number and full width at
half maximum of the Gaussian filter have a similar impact on
the image features, whereas grid size has a larger impact. The
features that exhibited large variations such as skewness, cluster
shade and zone percentage should be used with caution, whereas
the most robust features were similar to those found in other
works.47,49 Finally, a very recent work of van Velden et al50 in-
vestigated the impact of reconstruction and delineation on fea-
tures reproducibility in 11 NSCLC fluorine-18 fludeoxyglucose
PET/CT studies. 105 radiomic features were calculated on 19
ROIs, delineated twice—once on CT and once on PET images—
and considering two different image reconstruction methods. 63
features showed high values of reproducibility. Moreover, it
seems that changes in delineation had a higher impact than
changes in reconstruction.

Other factors were also assessed, such as image-acquisition
parameters,34,47 patient and lesion size,27,34 image smoothing and

Figure 3. Effect of image registration and contour propagation on region of interest identification. Pelvic T2 weighted (T2w)-MR

images acquired before and after radiotherapy were co-registered and bladder contour was automatically propagated using four

different algorithms, resulting in four different bladder contours, represented by different colours (on the right). Colours appear only

in the online version.
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quantization,51–53 SUV discretization,54 pre-processing steps55

and the choice of respiration-averaged CT for attenuation
correction.56,57 The impact of tumour delineation on textural
features computation was also assessed in PET images.50–52,55

Finally, an attempt of interpreting PET textural indices was
carried out in a very recent work, where heterogeneity quan-
tified by texture analysis was investigated on simulated patient
data.58 Here, the authors found that homogeneity, entropy,
short-run emphasis and long-run emphasis were sensitive to
the presence of uptake heterogeneity, whereas high grey-level
zone emphasis and low grey-level zone emphasis were mostly
sensitive to the average uptake. All these indices were sensitive
to the pixel size and edge effects.

MR images
Texture analysis on MR images has not been completely
exploited,25 and in fact, the repeatability of MR-based textural
features has been investigated in very few studies. The effect of
image acquisition parameters was assessed by Mayerhoefer
et al59 on phantom images considering different textural fea-
tures, and their results showed that all features were increasingly
sensitive to acquisition parameter variations with increasing
spatial resolution. Nevertheless, as long as the spatial resolution
was sufficiently high, these variations had little effect on pattern
discrimination. In addition, GLCM-based features were dem-
onstrated to be superior to other indices.

The limitation of the non-quantitative value of pixel intensities
in MR images can be reduced by the application of some pre-
processing steps, as for example, the correction of magnetic field
inhomogeneities60,61 and the intensity normalization across
intersubject or intrasubject acquisitions.62

MR images can be used for the estimation of quantitative
parameters that describe functional properties. In particular
from diffusion-weighted MRI (DW-MRI) and dynamic
contrast-enhanced MRI (DCE-MRI), parametric maps can be
derived by the estimation of these indices pixel-by-pixel, using

model-fitting algorithms. Texture analysis of these maps has
been introduced in some recent works to assess tissue hetero-
geneity from the diffusion and perfusion point of view.63–65

However, the reliability of textural features calculated on these
maps depends on the robustness of fitting. This is a research area
which is just starting to be explored; only few works assessed the
relationship between the reproducibility of parametric maps
estimated from DW-MRI and DCE-MRI and the reliability of
textural indices. In particular, Song et al64 studied the re-
producibility of histogram and texture parameters derived from
intravoxel incoherent motion66 DW-MRI. In this model, from
DW-MR images acquired at different b-values, it is possible to
derive maps of apparent diffusion coefficient (ADC), true dif-
fusion coefficients (Dt), pseudodiffusion coefficient (Dp) and
perfusion fraction (Pf). It has been reported that ADC and Dt
maps are more robust than Dp and Pf maps67 (Figure 4), and
consequently, histogram and texture parameters derived from
ADC and Dt maps were confirmed to be more reproducible than
those from Dp and Pf maps. Understanding the stability of
textural features derived from parametric maps deserves more
attention and further investigations.

From all these studies, it can be highlighted that there is a strong
heterogeneity in the computation of textural features and that
the results are mostly dependent on different factors. In some
works, some features resulted to be more stable and robust with
respect to others, but the same features can show an opposite
behaviour in other studies. Therefore, it is difficult to obtain
a clear message due to the difference in parameter settings and in
the metrics used for variability estimation. Nevertheless, it is
important to pursue this trend and this kind of analysis to better
understand the reliability of texture analysis, which is becoming
more and more appealing in this context.

APPLICATION OF TEXTURE ANALYSIS
IN RADIOTHERAPY
In the context of RT, one of the first problems addressed by
texture analysis was the characterization and identification of

Figure 4. Perfusion maps derived from intravoxel incoherent motion images. From left to right: apparent diffusion coefficient (ADC),

true diffusion coefficient (Dt), pseudodiffusion coefficient (Dp) and perfusion fraction (Pf). The ADC and Dt maps are more robust

and less noisy than Dp and Pf maps.
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tumoural lesions. This issue, which was extensively explored
within the oncological context,30,68–71 had the primary aim
to improve radiation targeting in the planning phase. The
automatic organs outline for RT planning of prostate cancer
using texture analysis on CT images was primarily faced by
Nailon et al.29 Next, Yu et al72,73 combined the analysis of
PET and CT images in patients with head and neck cancer for
the estimation of textural features, demonstrating its potential
in improving the accuracy of gross tumour volume identifi-
cation. CT coarseness, CT business and PET coarseness cal-
culated from NGTDM have shown better results in the
discrimination of normal and abnormal tissues compared
with those of an expert observation and with mean CT in-
tensity and mean SUV. Moreover, using the maps generated
with these textural features, an automatic classifier performed
a pixelwise radiation targeting, with an accuracy similar to
manual contours.

Currently, the main application of texture analysis is focused on
the assessment of the response of tumour and organs at risk to
treatment to identify possible biomarkers, which could predict
how the tissues will respond to radiations. This was highlighted
in some recent reviews,5,7,74,75 and some of the latest results in
the field are schematically summarized in Table 3 and discussed
in the following sections.

Tumour response to treatment
Effects of radiations in lung region in NSCLC is one of the most
studied subject in this context, as reported in a very recent re-
view.75 In fact, the evaluation of treatment response is compli-
cated by the possible presence of radiation-induced lung injuries
(RILIs), such as radiation pneumonitis and fibrosis, which ap-
pear as an increase in lung density on CT, similar to tumour
recurrence.6 Although most parts of the works in this context
faced the detection of RILI by the evaluation of simple CT

Table 3. Studies who have applied texture analysis in the context of radiotherapy

Radiotherapic aim District
Imaging
modalities

Treatment
type

References (first author, year)

Radiation targeting in RT planning
Head and neck PET/CT IMRT Yu et al, 200972,73

Prostate CT IMRT Nailon et al, 200829

Tumour response to treatment

Lung

PET SABR Pyka et al, 201582

PET CRT Cook et al, 201383

CT SABR
Huynh et al, 201685; Mattonen et al,
201479; Mattonen et al, 201580;
Mattonen et al, 201681;

CT CRT Coroller et al, 201684

Oesophagus
PET CRT

Tixier et al, 201186; Nakajo et al,
201687; Yip, et al 201637

CT CRT Yip et al, 201488

Head and neck

PET CRT El Naqa et al, 200989

mp-MRI CRT Liu et al, 201690; Scalco et al, 201691

DCE-MRI IMRT Jansen et al, 201663

Prostate T2w-MRI EBRT Gnep et al, 201694

Rectum

PET CRT Bundschuh et al, 201495

T2w-MRI CRT De Cecco et al, 201596

mp-MRI CRT Nie et al, 201697

Brain MRI SRT Nardone et al, 201699

Soft-tissue
sarcoma

CT CRT Tian et al, 201598

Radiation-induced effects on
normal tissue

Lung
CT SBRT

Mattonen et al, 201479; Mattonen
et al, 201580;

CT Oesophageal RT Cunliffe et al, 2015100

Parotid glands

Ultrasound Head–neck RT Yang et al, 2012101

CT IMRT
Scalco et al, 2013102; Scalco et al,
2015104; Pota et al, 2015103

CRT, chemoradiotherapy; DCE-MRI, dynamic contrast-enhanced MRI; EBRT, external beam radiotherapy; IMRT, intensity-modulated radiotherapy;
mp-MRI, multiparametric MRI; PET, positron emission tomography; RT, radiotherapy; SABR, stereotactic ablative radiation therapy; SRT, stereotactic
radiotherapy; T2w, T2 weighted.
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density,76–78 Mattonen et al79–81 proposed texture analysis for an
automatic classification of tumour recurrence and lung injuries.
They found a radiomic signature consisting of five textural
features (minimum grey level, grey-level uniformity, GLCM
homogeneity, GLCM correlation and GLCM energy) after ste-
reotactic ablative radiation therapy (SABR) in consolidative and
periconsolidative regions. With this combination of features,
they could predict recurrence within 6 months post-SABR with
an error of 24%, a false-positive rate of 24.0% and a false-
negative rate of 23.1% on a data set of 45 patients. They
compared these results with performance of three radiation
oncologists and three radiologists (mean error of 35%, false-
positive rate of 1% and false-negative rate of 99%), suggesting
that texture analysis can detect early changes associated
with local recurrence that are not typically considered by
physicians.81 Other works focused on prediction of lung
recurrence. For example, from PET images, it was found that
heterogeneity measures, such as entropy, can predict disease-
specific survival,82,83 whereas CT images were used for
the assessment of pathologic response,84 overall survival
and distant metastases,85 finding that texture analysis can
outperform conventional indices (as tumour volume and
diameter).

The response of oesophageal cancer to chemo-RT (CRT), clas-
sified as complete responder, partial responder and non-
responder, was assessed on PET images using textural features
from histogram, GLCM, NGTDM and GLRLM,86 improving the
stratification performance obtained by simple SUV measures.
Other more recent works explored the potential of texture
analysis on PET images for the prediction of tumour response to
CRT on patients with oesophageal cancer. Nakajo et al87 found
that intensity variability and size-zone variability were higher in
patients who were non-responders than responders. Yip et al37

studied the impact of different image registration methods for
the definition of tumour volume after CRT on the estimation of
several textural features. The variation of these features after the
treatment was then used to predict tumour response. They
found that variations in short run emphasis remained predictive
of pathologic response for all image registration algorithms used
for contour propagation. In a previous study,88 the same group
considered a combination of textural and morphological prop-
erties, finding that lower post-treatment intratumoural hetero-
geneity on CECT images was associated with improved overall
survival time in patients who completed definitive CRT for
primary oesophageal cancer. Moreover, they observed that the
combination of pre-treatment entropy, uniformity and pro-
portional difference in entropy with maximal wall thickness
changes performed better than morphological indices alone in
predicting overall survival.

For the prediction of response of head and neck tumours,
histogram-based features, and entropy and homogeneity from
GLCM estimated on PET images were able to capture tissue
heterogeneity and to predict the overall survival. However,
the necessity for a standardized image acquisition and re-
construction protocol and accurate target delineation was
pointed out.89 Focusing on multiparametric models, two recent
works tried to predict tumour and lymph node response of

nasopharyngeal cancer to CRT. In particular, Liu et al proposed
a model, composed of second- and higher-order features and
Gabor filters extracted from T1 weighted MRI, T2 weighted
(T2w) MRI and DW-MRI, which could reach an accuracy
.90%.90 Scalco et al91 evaluated the combination of first- and
second-order features and fractal dimension extracted from
T2w-MRI with ADC estimated from DW-MRI, for the charac-
terization of cervical lymph nodes. In this case, pre-treatment
ADC combined with pre-treatment fractal dimension classified
responder and non-responder lymph nodes with an accuracy of
82%, highlighting higher values of ADC and lower values of
fractal dimension in non-responders. Quantitative maps derived
from dynamic contrast-enhanced images and acquired during
treatment were instead considered for the calculation of het-
erogeneity features, which demonstrated their ability in pre-
dicting the response of head and neck squamous-cell carcinoma,
highlighting a reduction in heterogeneity during CRT.63 In this
work, they did not find any correlation between pre-treatment
features and the final outcome, contrary to the results reported
by other groups about the use of textural features from para-
metric perfusion maps. In fact, in these studies, it was found that
heterogeneity measures at baseline, such as coherence and fractal
dimension, can be predictive of the final response for limb92 and
colorectal cancer.93

The application of texture analysis on MRI images was also
proposed in the pelvic region for the prediction of prostate
recurrence after external beam RT, based on T2w-MRI and ADC
maps.94 74 patients were analysed and textural features, shape
and volume indices were estimated within the prostate tumour.
They found significant correlations between tumour recurrences
and some GLCM parameters (as contrast and difference vari-
ance) calculated on T2w-MRI, whereas ADC features were
poorly associated with biochemical recurrence. This was
explained by the different spatial resolution of the two images:
T2w-MRI offers a higher resolution, and thus, it is richer in
texture information.

Regarding rectal cancer, tumour response to CRT was firstly
evaluated using PET/CT images acquired before, during and
after the treatment in 27 patients. It was reported that tumour
heterogeneity assessed by the coefficient of variation was supe-
rior to the conventional parameters and was an important
predictive factor of the pathologic response.95 Two more recent
studies evaluated the performance of texture analysis on MR
images; in particular, De Cecco et al96 considered textural fea-
tures estimated on T2w-MRI acquired before and at mid-
treatment, whereas Nie et al97 evaluated multiparametric MRI
(T1 weighted-MRI, T2w-MRI, DW-MRI and DCE-MRI) ac-
quired before CRT. They both concluded that radiomic analysis
performed on MRI images may improve the prediction of the
pathologic response of rectal cancer to treatment. The patho-
logic response prediction, assessed on CECT images using
texture analysis, was also improved in patients affected by soft-
tissue sarcoma, with respect to classical indices, such as tumour
size, density and perfusion.98

Finally, the assessment of prognostic value of MRI texture
analysis in brain NSCLC oligometastases undergoing stereotactic

Review article: Texture analysis of medical image in radiotherapy BJR

9 of 15 birpublications.org/bjr Br J Radiol;90:20160642

http://birpublications.org/bjr


irradiation was explored by Nardone et al99 to help drive the best
treatment in these patients.

Radiation-induced effects on normal tissues
A less explored application of texture analysis concerns the
prediction of radiation-induced effects on organs at risk. In this
context, two organs were mostly considered: lungs in the
treatment of oesophageal cancer and NSCLC and parotid glands
in the treatment of head and neck squamous-cell carcinoma.

Radiation pneumonitis is one of the drawbacks of lung irradi-
ation, and it was investigated by Cunliffe et al100 on patients
affected by oesophageal cancer, considering CT images acquired
before and after RT. A relationship between dose and texture
variations was observed, and in particular, these changes were
significantly related to radiation pneumonitis development in 12
features, consisting of the first and second order, fractal and
Law’s filter parameters. As previously described, Mattonen
et al79,80 developed a method based on texture analysis on the
consolidative and ground-glass opacity regions to automatically
differentiate tumour recurrence and RILI. At 2–5 months after
SABR, they found an increase in energyGLCM and a decrease in
entropyGLCM in lung injuries with respect to local recurrence.

A side effect of the irradiation of head and neck tumours is
represented by the shrinkage of parotid glands and the de-
velopment of toxicity, such as xerostomia. The early prediction
of these events can be of interest both to better plan radiation
treatment, by considering anatomical variations of the glands
and to identify those patients who can benefit from personalized
care. In this case, echographic101 and CT1022104 images of the
parotid tissue were examined and GLCM features and fractal
dimension were calculated. On echographic images, an increased
entropy was observed with respect to normal glands, whereas on
CT images, a decrease in mean CT density, entropy and fractal
dimension was found in the first half of RT. These results, ap-
parently discordant, were concordant in highlighting a less-
complex tissue organization of the glands due to the loss of
acinar cells after irradiation. Moreover, the addition of textural
features to the prediction models has improved the accuracy
with respect to the simple volume measure.

LIMITATIONS OF TEXTURE ANALYSIS
Although texture analysis is increasingly adopted in the context
of RT, it remains quite a novel technique, not completely ex-
plored and still having a lot of open challenges. One of the
main limitations is associated with the study design. In fact,
texture analysis has been used in most part in retrospective
studies, needed in this first phase to provide proof of concept
for further investigations.25 Retrospective analyses lack com-
plete control on data acquisition and management, which can
negatively affect reproducibility and robustness of results. A
rigorous study design should foresee a prospective analysis in
which an optimal protocol can be planned in terms of data
acquisition and management and a further model validation
can be provided.

Regarding data acquisition, image acquisition and reconstruction
protocols should be clearly defined and standardized along the

study, as previously discussed. Moreover, in this phase, the
sample size should be defined by considering the high number
of image-based features that can be estimated from the ac-
quired images. In general, this issue has not been correctly
faced, since the number of features is often greater than the
number of considered patients, and consequently, a high risk
of false-positive discovery rate can be easily found, as recently
highlighted by Yip and Aerts25 and deeply discussed in
Chalkidou et al.105

Regarding the statistical data analysis, it is evident that texture
analysis can provide a very complex and large set of data, which
can present high correlations among them. It is thus necessary
to reduce the number of features to avoid the risk of overfitting
analysis and to build a classifier or prediction model. There is no
consensus about the unsupervised approach to obtain the best
results.1 In a recent work of Parmar et al,106 a large panel of
machine-learning approaches for radiomics-based survival pre-
diction was investigated, considering both features selection and
classification methods. Their variability analysis pointed out that
the choice of the classification method has a higher impact on
performance variation in predicting the overall survival (.30%
of the total variation) with respect to the choice of features
selection method (only 6% of variation). Another factor that can
impact on the classification performance is the choice of the
optimal cut-off to stratify patients into a binary model.105 This
choice is highly dependent on the studied data set, and thus it is
difficult to be applied in external populations.25

Another issue that should be faced during the study design
phase is how to generalize and validate the radiomic signa-
ture found in the assessed patients population. Validation on
an external cohort of patients should be considered as the
gold standard, as recently reported in some works. In fact,
these studies reported high values of accuracy, considering
the radiomic signature estimated in a selected population
and applied on an independent one from another institute,
or from another body region, reporting high values
of accuracy.4,41,107 If this kind of validation is not feasible,
some other evaluations should be performed, for example,
using test and training sets, which should be taken from
a separated cohort or at least considering leave-one-out
cross-validation.9

Even if texture analysis was carried out in the most rigorous way
and if significant models that could predict tissue response to
radiation or provide a characterization of tumour heterogeneity
were found, the biological interpretation of these parameters
remains one of the major questions about texture analysis. In
fact, up to now, the biological origin of the features is still not
completely understood, as reported in the review of Alobaidli
et al.5 In this context, some studies try to assess possible cor-
relations between texture analysis and genetic or proteomic
data4,108,109 or between texture and histological image analysis.30

In particular, it was found that pathophysiological properties
determined by genomic analysis were significantly related to
texture analysis on CT,4 PET109 and DCE-MRI images,108 sug-
gesting that heterogeneity features were strongly correlated with
cell cycling pathways.
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CONCLUSION
As highlighted in this review, despite its drawbacks and limi-
tations, there is growing interest in texture analysis, even in the
context of RT. What is emerging from the high number of
studies in this field is that the major limitation of this approach
resides in the quite discordant results, the non-standardization
of their protocols and the lack of prospective studies. In this
sense, future developments should be addressed towards a gen-
eral uniformity in the image-processing workflow, with partic-
ular attention to image acquisition and reconstruction protocols
and textural features computation. The use of different software
(commercial, open-source or “in-house”) also requires careful
attention as they may vary in the manner in which the features
are calculated, and thus they could lead to different results.

Future directions about texture analysis should be addressed
towards prospective studies and clinical trials to validate the
radiomic signature found in previous works and to prove the true
potential of texture analysis in clinical RT practice. At the same

time, the knowledge of texture interpretation would be essential
to improve the quality of this kind of analysis. In this way, texture
analysis can better demonstrate its ability to improve the
characterization of intratumoural heterogeneity and the pre-
diction of clinical outcome to obtain robust and reliable image-
based biomarkers for a real patient-specific treatment care.
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