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ABSTRACT

Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years,

quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added

value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be

difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review,

we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative

imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and

image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly

crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features

based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-

source and commercial software packages to perform feature extraction are currently available, all with slightly different

functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically

larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction

model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before

quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the

integration of image-derived information to personalize treatment in the future.

INTRODUCTION
The use of quantitative imaging has been an attractive field
of research to overcome the subjectivity of visual in-
terpretation. However, in all imaging divisions from radi-
ology to nuclear medicine, the amount of quantification is
still limited and the majority of clinical decision-making is
based on visual assessment. A common quantification is
performed by the response evaluation criteria in solid
tumours1 that is based on the measurement of tumour size
and frequently used for response assessment in oncology,
whereas PET Response Criteria in Solid Tumours2 is making
its introduction in the nuclear medicine arena to allow
simple quantification of maximum uptake of a tracer [e.g.
maximum standardized uptake value (SUV) or SUV peak].

Besides these simple quantification methods, diagnosis is
also complemented visually by the appearance of lesions

having different properties or patterns that are used to
differentiate between benign and malignant lesions. These
appearances (i.e. imaging features) are typically described
visually and the radiologist interprets and selects suspected
lesions for future clinical investigations (e.g. biopsy). For
many years, researchers have investigated computer-aided
diagnosis techniques to automatize the workflow and im-
prove accuracy.3–5

Nowadays, there is renewed interest in the combination of
both quantification and visual assessment to provide
a comprehensive quantification of imaging data sets. In-
stead of reporting only a single quantitative measure or
a visual subjective report, image-processing techniques are
available to describe many different properties that could
be quantified from imaging such as the shape and size of
tumours and intensity-based and textural properties with

https://doi.org/10.1259/bjr.20160665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:ruben.larue@maastro.nl


or without additional filtering in a quantitative way. To over-
come the wealth of parameters and information, these derived
values are combined with statistical modelling techniques to
predict a certain clinical end point (e.g. survival, local relapse);
this field of research is now commonly called radiomics.6

The radiomics workflow starts with image acquisition. After
image reconstruction, a region of interest is selected that defines
the volume for feature extraction. Calculation of these features is
performed by image-processing software sometimes including
different pre- and post-processing steps. Next, a statistical model
is built that allows the selection of features that are able to
predict the outcome parameter (e.g. survival). Finally, a valida-
tion of the model needs to be performed, preferably external
validation. An example of the workflow is shown in Figure 1.
With this review, we aim to give an overview of the various
technical routines and protocols that are involved in quantitative
imaging studies such as radiomics. The influence and technical
aspects of the above steps will be described in detail in the next
sections.

IMAGE ACQUISITION
Medical images acquired for standard clinical diagnostics, (ra-
diotherapy) treatment planning and follow-up purposes are
a source of information for radiomics analyses. In the field of
oncology, the most widely used modalities include ultrasound,
CT, positron emission tomography (PET) and MRI. Many
radiomics studies are relying on retrospective data sets, in which
individual image acquisition parameters can be different. These
different settings can have an influence on the quality and re-
liability of the extracted radiomic features, as will be discussed
below in detail for the commonly used imaging modalities.

CT
Several groups investigated the repeatability and robustness of
radiomic features in CT scans, showing that the features can
have a high test–retest stability7 with an acceptable dynamic
range.8 Mackin et al9 scanned a phantom with different
parameters on CT scanners of four different manufacturers.
They found that variability in textural features calculated on

CT scans from different scanners can be in the same order of
magnitude as the variability observed in CT scans from
patients with non-small-cell lung cancer (NSCLC). Zhao
et al10 used the publically available Reference Image Database
to Evaluate Therapy Response data set,11 consisting of
31 patients with NSCLC with same-day repeated CT scans, to
assess the impact of slice thickness and reconstruction algo-
rithm on the stability of 89 radiomic features. They concluded
that repeatability of features derived from scans with the same
imaging settings was good; however, only 19% of the features
were repeatable when different settings were used. In cone-
beam CT scans, Fave et al12 found that radiomic features may
be reliable as long as the imaging protocol is consistent and
relative differences are used. In addition to all imaging
parameters that should be taken into account before per-
forming radiomics analyses, the influence of respiratory mo-
tion on radiomic features should not be underestimated. It was
shown that up to almost 75% of the CT radiomic features can
be susceptible to respiration, making breath-hold or four-
dimensional CT acquisition necessary for moving lesions.13

Positron emission tomography
PET scans were used to show a good test–retest stability in up to
71% of the radiomic features in a cohort of patients with
NSCLC.14 In oesophageal cancer, heterogeneity parameters such
as entropy, homogeneity, dissimilarity (local characterization)
and variability in the size and intensity of homogeneous tumour
areas (regional characterization) also had a good re-
producibility.15 However, various studies found that PET
radiomic features can be susceptible to reconstruction parame-
ters. For instance, Galavis et al16 showed that in a cohort of
20 patients with different types of solid tumours, 40 (80%) of
the 50 features tested presented large variations (range .30%)
when the number of iterations, grid size, reconstruction algo-
rithm and/or post-reconstruction filter was changed. This was
also confirmed by van Velden et al17 and Yan et al,18 who tested
the impact of the same reconstruction parameters on feature
robustness. Respiratory motion causing blurring is another
matter of concern. Yip et al19 demonstrated that textural features
can vary up to 19% when comparing their values derived from

Figure 1. An overview of the radiomics workflow and corresponding topics addressed in this review. PET, positron emission

tomography.
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three-dimensional (3D)-PET with those from four-dimensional
PET scans. Also, the studies by Oliver et al13 and Grootjans
et al20 showed that respiratory motion has a significant effect on
the quantification of tumour heterogeneity with PET. In addi-
tion to this, it is shown that the specific way of SUV dis-
cretization has a crucial effect on the resulting textural features,
and obviously their interpretation, in both oesophageal21 and
lung carcinomas.22 This effect turned out to be comparable in
both carbon-11 choline and fluorine-18 fludeoxyglucose (FDG)-
PET imaging.23 Similar to the current European Association of
Nuclear Medicine/EANM Research Ltd harmonization protocol
for FDG-PET imaging,24 a thorough comparison of imaging and
reconstruction parameters is warranted before two independent
data sets can be compared with each other in a radiomics
analysis.

MRI
Radiomics on MRI has not been investigated as extensively as on
CT and PET scans. Its potential value is shown by, for instance,
Wibmer et al25 and Gnep et al,26 both showing that textural
features of prostate MRI may differentiate non-cancerous and
cancerous prostate tissues and may correlate with biochemical
recurrence and Gleason score. However, to our knowledge, to
date, no studies investigating the repeatability and stability of
radiomic features in MRI have been published. Given the fact
that geometrical distortions are quite common in MRI,27 further
research investigating its effect on radiomic feature extraction
is needed.

Ultrasound
Quantitative features retrieved from ultrasound images have
been mainly shown to be useful to discriminate among normal,
malignant and benign tissues.28 Andrėkutė et al29 evaluated
whether acoustical, textural and shape features were able to
differentiate malignant melanoma from benign melanocytic
tumours. They identified a combination of seven relevant fea-
tures, yielding an accuracy of 82.4%. Similar accuracies were
observed when using quantitative (textural) features to identify
malignant thyroid nodules30,31 or breast tumours.32,33 Although
a study by Nadeau et al34 revealed a high interobserver vari-
ability in quantitative ultrasound features of the Achilles ten-
dons, to date no integrated analysis testing the repeatability and
stability of ultrasound radiomic features for applications in
oncology has been published.

Standardization or calibration
Currently, many radiomics studies in different cancer types
have used data acquired in a single institute, sometimes com-
bined with an internal validation step.26,35–40 These studies
showed the great potential for radiomics. However, the lack
of standardization/harmonization or at least a correlation
between radiomic features acquired in different settings
(e.g. scanner type, hospital, radiomics software) makes it dif-
ficult to directly compare different studies and extracted fea-
ture values. This makes blindly interchanging data sets for
validation without taking the different acquisition settings into
account difficult. Specific radiomic correction and calibration
algorithms could potentially solve this issue and are currently
being investigated.

For future prospective studies, it could therefore be beneficial to
adopt acquisition and reconstruction standards, as proposed by,
for instance, the Quantitative Imaging Biomarker Alliance,
Quantitative Imaging Network, American Association of Phys-
icists in Medicine and European Association of Nuclear
Medicine.24,41,42 Nonetheless, standardization can be challenging
with the introduction of new, state-of-the-art imaging equip-
ment in different institutes and cannot be applied to the enor-
mous amount of retrospective data available.

TARGET VOLUME DEFINITION
Manual segmentation
Accurate segmentation is an important step of the radiomics
workflow, as radiomic features are derived from segmented
volumes of interest. Manual delineation of the gross tumour
volume is a standard clinical routine in the treatment-planning
process for patients receiving radiotherapy, but for other inter-
ventions, this is not frequently performed. Manual delineation is
a straightforward solution, but can also be very time consuming
and is susceptible to interobserver variability. For instance, in-
terobserver delineation in cervical cancer can lead to significant
differences and are reported to differ up to 4 cm.43 These dif-
ferences can influence radiomic features extracted from the
delineated volumes. Van Velden et al17 investigated the influence
of reconstruction and delineation on the repeatability of radio-
mic features in patients with NSCLC and concluded that 24% of
the features were susceptible to the delineation method. Also,
Leijenaar et al14 found in a cohort of 23 patients with NSCLC
that radiomic features are susceptible to differences in de-
lineation; however, they observed that 91% of the PET features
still had a high interobserver stability.

(Semi-)automatic segmentation
Automatic or semi-automatic segmentation methods are cur-
rently investigated extensively to minimize manual input and
increase consistency in delineating the regions of interest. In
a cohort of patients with hepatocellular cancer, Echegaray et al44

compared manual delineations with core samples that were
obtained by automatically tracing the maximal circle inscribed
in the outlines. They showed that the same set of stable features
can be retrieved from the core sample, providing as much in-
formation as a detailed segmentation. Balagurunathan et al45

showed that most of the radiomic features have a high re-
producibility using an automated, seed-based image analysis
program with segmentation performed by a single reader. Par-
mar et al46 compared manual slice-by-slice delineations of five
physicians with semi-automatic segmentation using the 3D
Slicer platform. They showed that radiomic features extracted
from 3D Slicer volumes had a significantly higher re-
producibility and were more robust than those extracted from
manual segmentation. Other groups also reported that semi-
automatic segmentation methods have a good correlation with
pathology.47,48

Depending on the application, more advanced methods such as
the fuzzy c-means,49 fuzzy hidden Markov chains50 or fuzzy
locally adaptive Bayesian (FLAB)51 segmentation algorithms
might be preferred over the discussed methods. Especially for
smaller lesions, the FLAB algorithm showed a superior
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performance when compared with fuzzy c-means or fuzzy
hidden Markov chains.51,52 Two other studies demonstrated that
the FLAB algorithm had a good correlation with pathology53 and
that measures derived from FLAB-segmented volumes had
a significantly higher predictive value in oesophageal cancer than
the same measures derived from volumes segmented with a fixed
threshold segmentation.54

Although semi-automatic segmentation methods will out-
perform manual segmentations in terms of repeatability,
radiomic features will still be depending on the segmentation
method used, as shown in Figure 2. Using fixed thresholds or the
FLAB algorithm results in volumes that can differ up to 51%.
This obviously influences volume-related features (e.g. energy),
but also textural features such as grey-level co-occurrence matrix
dissimilarity.

Normal tissue segmentation
The majority of the radiomics studies published to date mainly
focused on analyses on malignant lesions for use in prognostic or
predictive models. However, radiomics analysis of imaging data
might also have other applications. For example, it was shown
that a texture-based measure of pulmonary CT scans had a su-
perior performance in discriminating patients with and without
Chronic Obstructive Pulmonary Disease when compared with the
commonly used densitometric measures.55 Using screening CTs of
the National Lung Screening Trial,56 Hawkins et al57 developed
a radiomics model consisting of 23 stable features to predict
nodules that will become cancerous at 1 and 2 years with accu-
racies of 80% [area under the curve (AUC 0.83)] and 79% (AUC

0.75), respectively. Also, in patients with early-stage NSCLC who
received stereotactic body radiation therapy, a combination of
high-risk features on post-stereotactic body radiation therapy CT
scans was identified to accurately distinguish between local
recurrences and fibrosis.58 These features were also validated in an
independent patient cohort.59 Similarly, Cunliffe et al60 analyzed
the relationship between radiation dose and development of ra-
diation pneumonitis, with changes in CT radiomic features before
and after chemoradiation of patients with oesophageal cancer.
They observed a significant change in radiomic features with
increasing dose for all features, while for a selection of features
this change was significantly related to radiation pneumonitis
development. Although not all correlations discussed above are
confirmed in independent data sets yet, the first results demon-
strate the potential ability of quantitative imaging features to as-
sess the risk for the development of cancer in healthy subjects,
local recurrences after initial treatment or radiation-induced side
effects in normal tissues.

FEATURE EXTRACTION
Radiomic feature description
Radiomic features are derived from the information contained
in the voxels of the segmented structure. The features can be
grouped into different categories and some typical examples are
discussed below. For the full mathematical description, we refer
to the respective publications.

First-order statistics are derived from the histogram of voxel
intensities (i.e. Hounsfield units for CT imaging or SUV values
for PET imaging). These histogram characteristics reflect the

Figure 2. Positron emission tomography (PET) radiomic features14 and their dependency on the delineation method in oesophageal

cancer: the 50% maximum standardized uptake value (SUVmax) delineation is used as reference. Fuzzy locally adaptive Bayesian

(FLAB) delineation was implemented as described previously.51

BJR Larue et al

4 of 10 birpublications.org/bjr Br J Radiol;90:20160665

http://birpublications.org/bjr


mean value, dispersion (standard deviation, mean absolute de-
viation), central moments (skewness and kurtosis describing
asymmetry and sharpness, respectively) and randomness (en-
tropy, uniformity).61 The area under the cumulative SUV his-
togram has been used as a heterogeneity measure in FDG-PET
scans.62

Texture or greyscale variation features, widely used in pattern
recognition, refer to higher order statistical measures and
summarize the local spatial arrangement of intensities. The
textural features are based on different parent matrices capturing
this spatial intensity distribution. The grey-level co-occurrence
matrix,63 counting voxel pairs with certain grey values at a pre-
defined direction and distance from each other, generates the
features homogeneity, contrast and sum variance. The neigh-
bourhood grey-tone difference matrix64 is based on the differ-
ences between each voxel and the neighbouring voxels, resulting
in features said to resemble the human perception of the image:
coarseness, complexity and texture strength. Similarly, the
neighbouring grey-level dependence matrix65 considers all
neighbouring voxels eliminating angular dependency. Small
number emphasis (image fineness) and large number emphasis
(image smoothness) are computed from this matrix. Grey-level
run length66 features such as short and long run emphases focus
on collinear voxels with the same grey level value. Finally, grey-
level size zone-based features67 target groups of connected pixels
with the same grey value.

Wavelet decomposition of the original image has been employed
to extract intensity and textural features from different fre-
quency bands61 and to obtain fused texture characteristics from
two imaging modalities.68 All intensity-based and textural fea-
tures were mostly calculated in a volumetric way (i.e. all voxels
within the region of interest were taken into account), with
some studies considering only one image slice in the calculation
(mostly the slice with the largest cross-sectional area).69 For the
volumetric features, slice thickness clearly impacts on feature
extraction results. The nature of matrix-based textural features
makes them highly sensitive to the present voxel size anisotropy.
Some studies therefore performed a resampling to an isotropic
voxel size as a pre-processing step before feature extraction.68

Others compared the volumetric and in-slice approaches and
concluded that the largest cross-sectional area analysis was an
acceptable substitute for volumetric analysis for many features.
However, in order to avoid potential erroneous conclusions by
overlooking parts of the tumour this way, the use of volumetric
features incorporating information of the whole tumour was
recommended.70,71

Shape-based features describe the 3D geometrical composition
of the segmented structure. Size (volume and maximal di-
ameter) and shape measures (sphericity, compactness and
surface-to-volume ratio) have been described in radiomics
research.37,61 Finally, features relating to tumour location (e.g.
lung lobe, distance to the organ at risk) have been used.72

Image pre-processing and filtering
Most radiomics studies have used the reconstructed CT data
available in the digital imaging and communications in medicine

files, without any pre-processing or normalization.61 Possible
image pre-processing includes image smoothing by average or
Gaussian filters reducing image noise and image enhancement
techniques such as histogram equalization, deblurring and
resampling.68,73 Image filtering has been performed, e.g. using
a Gaussian filter followed by a Laplacian on the image, resulting
in so-called Laplacian of Gaussian features.37,74

Computation of textural features requires discretization of the
intensity values. Aerts et al61 used equally spaced 25-HU bins for
CT data. In FDG-PET data, Tixier et al15 described the sensitivity
of several textural features to varying discretization values, while
Leijenaar et al22 have shown that a fixed bin resolution enhances
the interpatient and intrapatient reproducibility of feature values.

Software implementation
Several open-source software packages are available to conduct
radiomics analyses. The “imaging biomarker explorer” was
specifically designed to facilitate collaborations in radiomics
research, offering standardized settings for image pre-processing
and feature extraction.73 This addresses the important need for
benchmarking in the rapidly growing radiomics field.75 The
“Chang Gung Image Texture Analysis”76 offers FDG-PET image
analysis, while the MaZda package was originally designed for
MR images.77 The commercial packages RADIOMICS™
(OncoRadiomics, Maastricht, Netherlands) and TexRAD™
(Feedback plc, Cambridge, UK) have been developed. An
overview of the main functionalities of these packages is pre-
sented in Table 1. Several in-house implementations exist as
well, e.g. coded in MATLAB® (The Mathworks®, Natick, MA)
within the Computational Environment for Radiotherapy
Research environment.37,78

VALIDATION AND MODEL BUILDING
Feature selection methods
Typically, the number of calculated image features is much larger
than the sample size of patients studied. Dimensionality reduction
is therefore crucial to reduce the risk of overfitting by focusing the
attention of subsequent classification efforts on a subset of rele-
vant features. As most of the features, being based on the same
matrix or quantities, will exhibit some correlation with each other,
intelligent feature selection strategies are required.

Filter-based selection techniques of the univariate type (e.g.
Relief,79,80 Fisher score and Wilcoxon) select informative fea-
tures, while multivariate filter techniques (e.g. minimum re-
dundancy maximum relevance37 and mutual information) take
redundancy into account as well. In a study comparing 14 filter-
based feature selection techniques in combination with 18
machine-learning (ML) classification procedures in radiomics
cohorts, Wilcoxon test-based feature selection showed the
highest stability against data perturbation in combination with
most classifiers.81 Wrapper selection techniques are tailored to
a specific classification algorithm with the algorithm being part
of the subset evaluation.80,82

Principal component analysis performs a transformation
for dimensionality reduction and can highlight outliers.72,83

Aerts et al61 have used the single most informative of the four
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studied feature categories to reduce redundancy. The false dis-
covery rate37,84 has been used to increase testing power com-
pared with the conservative Bonferroni correction. The dynamic
range of feature values can also be an important selection
criterion.72

Model training and validation
Ultimately, the goal of most radiomics analyses is to obtain
a prognostic or predictive model with a high accuracy and ef-
ficiency. Ideally, enough data are available to train and validate
a classification model while holding out part of the data for the
assessment of accuracy (external validation).

Unsupervised ML analyses using heat maps or clustering sum-
marize feature data without involving an outcome variable.85

Supervised ML classifiers such as generalized linear models,
random forests,86 support vector machines87 and neural net-
works separate the data with respect to an outcome variable.
Among the 18 supervised ML classification procedures studied
by Parmar et al,81 random forests had the highest performance
in combination with most feature selection techniques. More-
over, the choice of classification method was found to be the
dominant source of performance variation. The number of
features selected as input to the classification models had
a negligible impact, explaining ,2% of the total variance.

Regularization methods control the complexity of a pre-
diction model to prevent overfitting. The Lasso technique,

using L1 regularization, was applied in combination with
logistic regression and Cox regression (optimizing time to
outcome).88,89 It presents a weak dependence on irrelevant
features, in contrast with L2 regularized logistic regression
(and also with support vector machines and neural net-
works), which shows in worst case a linear relation between
the number of irrelevant features and the required sam-
ple size.90

Cross-validation has frequently been used as internal validation
with the AUC of the receiver-operating characteristic curve (or
its generalization, concordance index) evaluating the perfor-
mance accuracy.7,37,91

Finally, the understandability of classification models varies
significantly and should be considered,72 together with qualita-
tive reporting.92

Integration of non-imaging variables
Conventional image-derived features such as tumour volume
or diameter and maximum SUV have been used as reference
models in radiomics studies.61 Incorporating the most in-
formative radiomic features into these reference models pro-
vides an indication of the gain in model performance. Patient
and clinical characteristics might be added to the input vari-
able list, as they potentially influence not only the outcome
variable, but also the extracted radiomic features
themselves.72,89

Table 1. Overview of currently available software packages for radiomics analysis (August 2016)

Software package
Imaging
modality

and format

ROI
definition

Features and
image

pre-processing

Model
building

Website

IBEX (free
open source)

CT, PET, MR
DICOM, Pinnacle
native format

DICOM-RT
Editing and free
drawing

109: intensity, texture,
shape
Smoothing,
resampling,
enhancement

Validation of
existing models

http://bit.ly/
IBEX_MDAnderson

CGITA (free
open source)

Designed for PET; CT,
MR tested-DICOM

DICOM-RT,
PMOD
Region growing
and FCM

72: intensity, texture
No pre-processing

None
http://code.google.
com/p/cgita

MaZda (free
open source)

Designed for MR
DICOM

Thresholding,
deformable
surface

279: intensity, texture,
shape, wavelet
Resampling,
discretization,
normalization

ANN, clustering
Fisher, MI, PCA

http://www.eletel.p.
lodz.pl/
programy/mazda/

RADIOMICS™
(OncoRadiomics,
Maastricht,
Netherlands)
(commercial)

CT, PET, MR
DICOM

DICOM-RT
Plug-in for
several TPS

543: intensity, texture,
shape, wavelet
Laplacian of Gaussian
Resampling,
discretization

None
http://www.
oncoradiomics.com

TexRAD™ (Feedback
plc, Cambridge, UK)
(commercial)

CT, PET, MR
DICOM

DICOM-RT
Editing,
thresholding

230: texture and
filtering (Laplacian of
Gaussian)

Data-mining tool http://www.texrad.com

ANN, Artificial Neural Network; CGITA, Chang Gung Image Texture Analysis; DICOM, digital imaging and communications in medicine; DICOM-RT, Digital
Imaging and Communications in Medicine-Radiation Therapy; FCM, fuzzy c-means; IBEX, imaging biomarker explorer; MI, Mutual Information; PCA, Principal
Component Analysis; PET, positron emission tomography; PMOD, PMOD Technologies LLC; ROI, region of interest; TPS, Treatment Planning System.
Their characteristics and functionalities for the four main steps of the radiomics workflow are summarized.
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FUTURE OUTLOOK
Although the concept of using quantitative parameters de-
scribing imaging data is not new, the combined application in
the radiomics workflow is currently under investigation by
many research groups and has shown to be of added value.
This renewed interest is mainly driven by the increased
digitalization in the hospital, introduction of electronic
medical records and easier access to large amounts of infor-
mation through the hospital picture archiving and commu-
nication systems combined with the increased computational
power. In this era of Big Data, in medical research fields also,
a new field of clinical data science is emerging that allows
the integration of multiple data sources to personalize treat-
ment.93 Radiomics is expected to be a critical component
for the integration of image-derived information in this
framework. Currently, imaging research is typically performed
retrospectively on data stored in the picture archiving and
communication systems. As described in this review, an
investigation on the quality of the input imaging data is nec-
essary to assess the potential influence on outcome prediction
accuracy.

There is, however, a concern related to the use of image-derived
features as such in the individualization of patient care. Treat-
ment interventions need to be optimized and frequently (not
always) this is performed on a biological or methodological basis
where two treatments are compared with each other. Radiomics
quantifies the phenotype of the underlying biology; however,
this link is not straightforward.94,95 More research is needed into
the correlation between the underlying biological processes and
the perceived image data sets. If this link is established, treat-
ment can be tailored to the individual patient based on the
imaged properties of tumours. This integration with biology
might then also allow for hypothesis-driven research that is still
necessary to improve the methodological understanding of the
biological processes. Furthermore, a reliable predictive or
prognostic power is necessary if implemented in clinical routine
for individual decision-making.
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