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Abstract

Given concerns about the reproducibility of scientific findings, neuroimaging must define best 

practices for data analysis, results reporting, and algorithm and data sharing to promote 

transparency, reliability and collaboration. We describe insights from developing a set of 

recommendations on behalf of the Organization for Human Brain Mapping and identify barriers 

that impede these practices, including how the discipline must change to fully exploit the potential 

of the world’s neuroimaging data.

The advancement of science requires continuous examination of the principles and practices 

by which the research community operates. In recent years, this ongoing evaluative process 

has flagged concerns about the reproducibility of published research. From the early claim 

by John Ioannidis in 2005 that “most published research findings are false”1 to the recent 

work by the Open Science Collaboration, which attempted to replicate 100 psychology 
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studies and succeeded in only 39 cases2, there is mounting evidence that scientific results are 

less reliable than widely assumed.

Efforts promoting open science principles across fields (for example3) as a means of 

fostering transparency and reproducibility are valuable, but we also need efforts focusing 

specifically on human neuroimaging. To address this need, the Organization for Human 

Brain Mapping (OHBM) created the Committee on Best Practices in Data Analysis and 

Sharing (COBIDAS; http://www.humanbrainmapping.org/cobidas)4. This group was 

charged with creating a report that would compile the best practices for open science in 

neuroimaging and distill these principles into specific research practices. The report was 

developed in collaboration with the OHBM community, which provided feedback on a draft 

and ratified the final version.

In this Commentary, we review the challenging issues that arose in the formation of the 

report and identify both initial successes and key remaining shortcomings in current 

practice.

What is reproducibility?

Open science comprises a number of different goals and principles. The COBIDAS was 

specifically concerned with ‘open data’ and ‘open methodology’, both of which are in 

service of ‘open reproducible research.’ An immediate challenge was to obtain a working 

definition of reproducibility. We considered a hierarchy of reproducibility concepts ranging 

from measurement and analytical stability to broader notions of generalizability (Table 1). A 

very narrow notion of generalizability would be test–retest reliability on the same scanner, 

same subject, within 30 min, while a more extended notion would be using different 

scanners on the same subject with reimaging occurring within 7 d. Generalization over 

analyses corresponds to reanalysis of the same data using identical or similar tools. One 

variant of this is ‘computational reproducibility’5, where independent researchers reanalyze 

the data and compare their results. We also considered versions of generalizability 

corresponding to traditional scientific notions of ‘replication’, such as whether a result is 

stable over different samples of subjects or populations of subjects. The most challenging 

and arguably most important form of generalizability is whether a finding additionally holds 

under variation in the stimuli and experimental methods. Underlying all of these concerns 

about reproducibility is how theory-building requires reproducible empirical phenomena, 

and thus a theory will only be as accurate and generalizable as the data that are used to 

inspire and/or test it.

Regardless of the precise scope of generalization, operationalizing any of these versions of 

reproducibility requires explicit definitions of the outcome of interest, which in itself is a 

challenge. Previous efforts have found generally good measures of test–retest reliability of 

MRI for both voxelwise and region of interest measures (for example6–8), but this is the 

most narrow notion of reproducibility. A large scale project to measure the generalizability 

of MRI findings across studies, akin to the Open Science Collaboration’s efforts in 

psychology2, has not been undertaken in neuroimaging; however, the one effort that set out 

to reproduce brain structure–behavior correlations found only 1 of 17 findings were 

Nichols et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.humanbrainmapping.org/cobidas


replicated9, though this work is limited by small replication sample sizes. More work is 

needed in this area to better quantify the generalizability of MRI findings.

In short, quantifying ‘reproducibility’ requires precisely defining the scope of variation 

being considered, the exact outcome that is being measured and a metric of the stability of 

that outcome. The COBIDAS did not set out to estimate reproducibility but was motivated to 

identify practices that can maximize analytical stability and generalizability of individual 

studies.

Prescribing best practice

Neuroimaging is a broad field, encompassing a range of approaches across a growing 

number of modalities. We restricted the scope of the COBIDAS report to include the range 

of all human neuroimaging using MRI, though most of the principles discussed can be 

applied to other modalities. We established seven domains of practice, from experimental 

design and acquisition through results reporting and data sharing. We quickly realized that it 

is neither feasible nor desirable to prescribe exactly how any one type of experiment should 

be conducted. For example, when looking at task functional MRI (fMRI), the optimal 

experimental design to use will depend on whether one is just trying to detect the presence 

of an effect or rather estimate the shape of the hemodynamic response function.

The one ‘practice’ that can be universally commended is the transparent and complete 

reporting of all facets of a study, allowing a critical reader to evaluate the work and fully 

understand its strengths and limitations. This also facilitates subsequent research efforts by 

other investigators, who can exactly follow (or carefully manipulate) each aspect of a study. 

This includes conveying the ‘researcher degrees of freedom’, by reporting other analytical 

paths applied unsuccessfully on the present data before arriving at the published results. 

Although formidable, the reporting checklists provided in the COBIDAS MRI report reflects 

the breadth and depth of information needed to ensure another researcher could replicate the 

work.

To further facilitate reproducibility, the COBIDAS report includes specific recommendations 

for statistical modeling, where specific (and common) bad practices have been 

identified10,11. We have also made concrete recommendations for data sharing, where 

practice is still evolving.

From solicited community input, we were struck by the emphatic and diverse views on the 

types of data to share. Some strongly felt it was essential to share the rawest form of the data 

from the scanner (DICOM format), while others felt that preprocessed, ready-to-analyze 

data should be shared; still others emphasized the utility of sharing extensively processed 

data linked to published figures. We evaluated the pros and cons of each form of data 

sharing; for example, while sharing preprocessed data can minimize the effort needed for 

reanalysis and speed advances based on new uses of the data, it may preclude alternate 

preprocessing options that facilitate new findings (for example, more sophisticated image 

registration schemes or changing the degree of spatial smoothing used). In the end, we 

endorsed the sharing of data in as many forms as is feasible.
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Are we ready for open science in neuroimaging?

Brain imaging research is complicated, not only at the level of the conducting a study but 

also at the level of sharing its results and data. We are encouraged that thorough reporting of 

results is uncontroversial, practices are improving and the sharing of data to facilitate 

replication is increasingly viewed as essential. However, data sharing poses new challenges. 

Here we consider a number of concerns that investigators have with data sharing that impede 

adoption of open practices.

First, some individual researchers may assert ownership of their data and thus may not feel 

compelled to share. Counter to this is the drive for publically funded research to produce 

widely accessible data that can be reused and integrated into further research. Researchers 

may feel that sharing their data will result in a loss of competitive advantage, with other 

researchers swooping in to publish their planned studies based on the same data. The actual 

risk of this will depend on the data and hypotheses, but it should be weighed against the 

opportunity of new collaborations resulting from the sharing. These concerns can be 

alleviated by delaying the sharing or using a data-sharing repository with an embargo period.

Another fear is that, upon sharing data, other researchers will discover errors in an analysis 

or previously undiscovered problems with the data. As scientists, we are supposed to be 

objective arbiters of evidence and theory, but we are not infallible and must be ready to 

accept criticism and revise our claims when errors are discovered. Even when no errors are 

found, a reanalysis may support conclusions inconsistent with the original study. For 

controversial topics, there may also be adversarial reanalyzes. We see no better way to 

advance understanding on a contested finding than to have as many researchers as possible 

puzzling over the data at hand. However, we need to develop a culture of constructive 

criticism, which recognizes that errors are an inevitable part of scientific progress and 

protects individual researchers from inappropriately harsh consequences when honest 

mistakes are discovered.

A very practical concern, especially for junior investigators, is what is perceived as an 

unjustifiable cost of data sharing. Current incentives do not justify spending large amounts 

of time preparing data for sharing, as institutional promotion panels or grant reviewers 

currently do not adequately reward such efforts. Counter to this is the greater potential 

impact of a work when it may be cited not just for its scientific findings but also when its 

data is reused in other works. Data description papers can document and provide credit for 

high-quality data acquisition efforts for the open community. We assert that if data sharing 

and open science priorities in general are to take hold, support from academic institutions, 

journals and granting agencies is crucial for improving the incentives for open practices and 

developing ways to give appropriate credit for efforts in data sharing.

Finally there is the very real worry of failing to comply with human ethics provisions for 

protecting subject privacy. It can be argued that, once file headers are scrubbed of personally 

identifiable information and structural images have facial features obscured, the data are 

completely anonymized and thus freely sharable. However, individual ethics boards have 

varying views on this, and it is best to write ethics consent documents explicitly with data 
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sharing in mind. This topic would greatly benefit from leadership from national research 

organizations to seek consensus and then establish exactly what comprises anonymized brain 

imaging data. In particular, ethics boards often only try to minimize the risk to subjects 

when we are also obliged to maximize the benefit of our research to science and society, so 

as to honor the contribution of our subjects12. The future value of shared data must be 

considered in ethical decision making.

While studies lacking shared data and having opaque methodological detail are typical, 

some authors have embraced the challenges of sharing data and analysis methodology. Some 

recent examples that are particularly thorough and elegant include Waskom et al.13 and 

Whitaker et al.14, each of which published a complete array of analysis scripts for generating 

all figures and results in the paper (https://github.com/mwaskom/Waskom_JNeurosci_2014 

and https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016, respectively), and 

Pernet et al.15, which likewise shared raw data and analysis scripts as well as all results maps 

in electronic form. From an organizational perspective, some labs are simply making open 

science a policy. Most recently, the Montreal Neurological Institute announced that their 

work would be open, with all results and data made freely available at the time of 

publication16. These few examples demonstrate that some researchers are embracing open 

science principles, but do the tools exist to make it practical on a widespread basis?

Existing tools for open neuroimaging

There is an emerging ecosystem of open science tools for neuroimaging research. Tools are 

available to assist in creating human ethics documents that maximize the ease of later data 

sharing before any data is collected; and for everything from experimental model 

presentation and preprocessing to statistical modeling, neuroimaging benefits from 

numerous free and well-supported software tools (see Supplementary Table 1 for an 

incomplete list). This constellation of tools could be seen as fuel for limitless researcher 

degrees-of-freedom, and indeed there is a need for the community to identify a set of 

‘reference pipelines’ for common analyses. However, since each tool makes particular 

assumptions about neuroanatomical and neurophysiological processes, it is not possible to 

recommend the optimal analyses for every possible type of data and analysis objective. Only 

with user experience and reproducibility comparisons will the field be able to identify what 

are the preferred analytical approaches.

There is a particular embrace of data sharing in the resting-state fMRI community. Since 

resting-state analyses methods remain in flux, sharing of this data has particular value as it 

allows future improvements in methods to be assessed and benchmarked relative to previous 

analyses. For resting and task fMRI and structural MRI, there are a number of projects that 

have led the way in this area, including the sibling projects FCON1000 and INDI (http://

fcon_1000.projects.nitrc.org, ref. 17), and the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI; http://www.adni-info.org). The freely available data from these studies have become 

invaluable resources for methodologists evaluating novel image processing algorithms, not 

to mention the value of the primary scientific outputs from these projects.
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One promising new standard is the Brain Imaging Data Structure (BIDS)18, a simple system 

for organizing MRI data after conversion to the NIFTI format. BIDS provides a common, 

consistent directory hierarchy and naming system for files, as well as supporting ‘sidecar’ 

files for key associated data (like stimulus timing information for task fMRI). With a fixed 

standard for representing data, this has supported the creation of a number of ‘BIDS apps’, 

self-contained programs that can automatically process data arranged according to BIDS. 

Simple, widely used standards such as this have the potential to dramatically reduce the 

effort required to exchange and share data.

New tools are set to dramatically advance computational reproducibility. A challenge to even 

something as simple as rerunning the same data with the same code is the ever-changing 

versions of software and the libraries that software depends on. The last five years have seen 

the growth of virtual machines and containers to share not just data but complete 

environments for processing data. A virtual machine (VM) is an emulator of a computer, 

including its hardware, operating system and file system. It can be shared as a single file and 

when run, an entire computer system comes into existence based on a snapshot of the 

libraries and software interdependencies of one particular system. From within this VM, 

data can be run through a complete processing pipeline; with the original data of a study this 

will reproduce the results exactly, while new data can also be imported to evaluate the 

unique aspects of a pipeline. A downside to VMs is their gross size, as they are as large as 

any operating system. Containers are miniature VMs, lacking the full operating system but 

providing the specialized software and libraries required to execute a given task. The BIDS 

apps mentioned above rely on such containers, encapsulating software packages large and 

small that alleviate installation of a myriad of software dependencies.

Open science tools are gaining traction. For example, the CBRAIN web-based analysis 

service (http://www.cbrain.mcgill.ca) supports over 260 collaborators in 20 countries; the 

COINS service (http://coins.mrn.org) currently hosts data on over 40,000 subjects for 643 

studies; the LONI Pipeline (http://pipeline.loni.usc.edu) has an average of 100,000 daily jobs 

from 200 different analysis workflows; the Neurovault repository (http://neurovault.org) 

hosts 450 public collections; and the FCP/INDI openly shares over 15,000 resting fMRI and 

structural MRI data sets.

Continuous improvement of research practices

Despite a seeming wealth of tools, there remain specific areas in the field of neuroimaging 

that need to be embraced to increase reproducibility. Aside from the importance of carefully 

reporting the study design, methods and results mentioned above, we also identified 

priorities including archiving of statistical results, software engineering for reproducibility 

and optimizing projects for generalizability.

In genetics, the routine sharing of ‘summary data’ (z-score test statistics for each single 

nucleotide polymorphism) has facilitated meta-analyses and methodological developments. 

For example, there is now a tool (LD-score regression) that can estimate genetic correlation 

using just z-score summary data and has had a dramatic impact in a short timespan due to 

the availability of such results19. In brain imaging, we have no tradition of sharing summary 
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statistics (i.e., images of t- or z-scores or images of percent change effect and standard 

errors). As a result, the quality of meta-analyses are currently limited by their reliance on 

reported tables of maximum location coordinates, for which there is a substantial loss of 

information relative to the original statistic images20. In the current age, the costs of sharing 

such images of summary statistics (~1 MB compressed), either through generic or dedicated 

repositories (for example, Neurovault or BALSA (http://balsa.wustl.edu)), are relatively 

minimal. As such, COBIDAS recommends the deposition of unthresholded statistical 

images into archival resources for all studies. Widespread adoption of this practice will 

dramatically increase our capacity for more precise meta-analyses and allow more critical 

assessment of study results through exploration of complete 3D images.

One foundation of computational reproducibility is modern software engineering practice. 

Whether the analysis uses a small set of scripts or a comprehensive end-to-end pipeline, 

neuroimaging data analysis depends on coding. Modern software engineering includes 

practices like version control and unit testing. Version control ensures that revisions of the 

code are identifiable and archived, and ideally it is based on an open platform that allows 

wide inspection and input; unit tests verify the correctness of individual facets of the code 

and can be set to automatically run each time the code is updated. This is not to say that 

every group should hire a programmer but rather that every researcher writing scripts or 

code should obtain proficiency with basic software engineering skills and practices21 (see 

Software Carpentry for basics instruction for nonprogrammers; http://software-

carpentry.org). With routine research grounded in well-written, less-fragile code, it will be 

much easier to establish analysis pipelines that can both be reused within a lab and facilitate 

computational reproducibility verified by others.

Study designs have traditionally been optimized to maximize statistical power to detect 

differences between groups. With a growing emphasis on prediction, whether (for example) 

identifying early risk for psychosis or progression of a neurodegenerative disease, studies 

should be optimized to build predictive models that will generalize to the population of 

interest in yet-unseen data. Large multisite studies that capture wide variation in human 

populations and site-specific technical idiosyncrasies are essential for building classifiers 

with good performance on new data. Whether obtained with prospectively optimized 

homogeneous acquisition and preprocessing strategies (for example, Human Connectome 

Project22 or the UK Biobank (http://imaging.ukbiobank.ac.uk/)) or via larger but more 

heterogeneous, aggregate multisite approaches (for example, FCON1000/INDI, PING 

(http://pingstudy.ucsd.edu), and the ABCD Study (http://abcd-study.org)), which are ideal 

for retrospectively determined optimized image processing strategies23, the generalizability 

of predictive models will be a key design objective and performance indicator in the future.

Beyond the investigator

Many of the practices advocated here and in the full COBIDAS MRI report require 

individuals to change the way they conduct research. Almost every such change requires an 

investment of time and resources. While we argue these have implicit rewards (for example, 

shared data will never be lost when the postdoc moves on), the advance of open science will 

require leadership at the institutional level. To provide appropriate incentives, universities 
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and research centers need to explicitly consider the value of sharing of data and code as a 

unique research output in promotion and review exercises. Journals should require that 

papers’ statistic images be archived and should promote papers with exemplary open science 

practices, like those that share data, code or executable containers such as VMs. Foundations 

and granting agencies need to make data sharing a priority, recognizing and funding the 

explicit costs of data management required to make this happen. And finally, professional 

organizations like OHBM should prioritize efforts in education to make open science 

practices accessible to all. With the coordinated efforts of individual researchers, academic 

institutions, journals, granting agencies and professional organizations, we can accelerate the 

drive toward open science and maximize the reproducibility of neuroimaging findings going 

forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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