SCIENTIFIC DATA:

OPEN . Data Descriptor: Advancing The
Cancer Genome Atlas glioma MRI
collections with expert
. segmentation labels and radiomic
S | features

Published: 5 September 2017 -
Spyridon Bakas™?, Hamed Akbari®?, Aristeidis Sotiras'?, Michel Bilello™?, Martin Rozycki'?,

Justin S. Kirby?, John B. Freymann®, Keyvan Farahani* & Christos Davatzikos™?

Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard
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n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated
state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of
radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable
i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative
quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance
evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method.
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Background & Summary

Gliomas are the most common primary central nervous system malignancies. These tumors, which
exhibit highly variable clinical prognosis, usually contain various heterogeneous sub-regions (i.e., edema,
enhancing and non-enhancing core), with variable histologic and genomic phenotypes. This intrinsic
heterogeneity of gliomas is also portrayed in their radiographic phenotypes, as their sub-regions are
depicted by different intensity profiles disseminated across multimodal MRI (mMRI) scans, reﬂectin§
differences in tumor biology. There is increasing evidence that quantitative analysis of imaging features'~

extracted from mMRI (i.e., radiomic features), beyond traditionally used clinical measurements (e.g., the
largest anterior-posterior, transverse, and inferior-superior tumor dimensions, measured on a
subjectively-/arbitrarily-chosen slice), through advanced computational algorithms, leads to advanced
image-based tumor phenotyping®. Such phenotyping may enable assessment of reflected biological
processes and assist in surgical and treatment planning. Furthermore, its correlation with molecular
characteristics established radiogenomic research®'?, leading to improved predictive, prognostic and
diagnostic imaging biomarkers™'*~>?, hence yielding the potential benefit towards non-invasive precision
medicine™. However, it is clear from current literature’®**® that such advanced image-based
phenotyping requires accurate annotations of the various tumor sub-regions.

Both clinical and computational studies focusing on such research require the availability of ample
data to yield significant associations. Considering the value of big data and the potential of publicly
available datasets for increased reproducibility of scientific findings, the National Cancer Institute (NCI)
of the National Institutes of Health (NIH) created TCGA (cancergenome.nih.gov) and TCIA
% (www.cancerimagingarchive.net). TCGA is a multi-institutional comprehensive collection of various
molecularly characterized tumor types, and its data are available in NCI's Genomic Data Commons
portal (gdc-portal.ncinih.gov). Building upon NIH’s investment in TCGA, the NCI's Cancer Imaging
Program approached sites that contributed tissue samples, to obtain corresponding de-identified routine
clinically-acquired radiological data and store them in TCIA. These repositories make available multi-
institutional, high-dimensional, multi-parametric data of cancer patients, allowing for radiogenomic
analysis. However, the data available in TCIA lack accompanying annotations allowing to fully exploit
their potential in clinical and computational studies.

Towards addressing this limitation, this study provides segmentation labels and a panel of radiomic
features for the glioma datasets included in the TCGA/TCIA repositories. The main goal is to enable
imaging and non-imaging researchers to conduct their analyses and extract measurements in a
reproducible and repeatable manner, while eventually allowing for comparison across studies.
Specifically, the resources of this study provide i) imaging experts with benchmarks to debate their
algorithms, and ii) non-imaging experts (e.g., bioinformaticians, clinicians), who do not have the
background to interpret and/or appropriately process the raw images, with data helpful to conduct
correlative genomic/clinical studies. Following radiological assessment of both the Glioblastoma
Multiforme (TCGA-GBM™, n=262 [Data Citation 1]) and the Low-Grade-Glioma (TCGA-LGG”,
n=199 [Data Citation 2]) collections, we identified 135 and 108 pre-operative mMRI scans, respectively.
These scans include at least pre- and post-contrast T1-weighted, T2-weighted, and T2 Fluid-Attenuated
Inversion Recovery (FLAIR) volumes. The segmentation labels provided for these scans are divided into
two categories: a) computer-aided segmentation labels that could be mainly used for computational
comparative studies, and b) manually corrected segmentation labels (approved by an expert board-
certified neuroradiologist—M.B.) for use in clinically-oriented analyses, as well as for performance
evaluation and training of coméputational models. The method employed to produce the computer-aided
labels is named GLISTRboost>>*, which was awarded the 1st })rize during the International Multimodal
Brain Tumor Image Segmentation challenge 2015 (BraTS’15)°®*%49~>¢,

The generated data describe two independent datasets [Data Citation 3 and Data Citation 4], one for
each glioma collection, and include the computer-aided and manually-revised segmentation labels,
coupled with the corresponding co-registered and skull-stripped TCIA scans, in the Neuroimaging
Informatics Technology Initiative (NIfTT°”) format, allowing for direct analysis. Furthermore, a panel of
radiomic features is included entailing intensity, volumetric, morphologic, histogram-based, and textural
parameters, as well as spatial information and parameters extracted from glioma growth models®* . In
consistency with the FAIR (Findable, Accessible, Interoperable, Re-usable) principle, these data are made
available through TCIA and should enable both clinical and computational quantitative analyses, as well
as serve as a resource for i) educational training of neuroradiology and neurosurgery residents, and ii)
performance evaluation of segmentation methods. Furthermore, it could potentially lead to predictive,
prognostic, and diagnostic imaging markers suitable for enabling oncological treatment models
customized on an individual patient basis (precision medicine), through non-invasive quantification of
disease processes.

Methods

Data collection

The complete radiological data of the TCGA-GBM and TCGA-LGG collections consist of 262
[Data Citation 1] and 199 [Data Citation 2] mMRI scans provided from 8 and 5 institutions, respectively
(Table 1). The data included in this study describe the subset of the pre-operative baseline scans of these
collections, with available MRI modalities of at least T1-weighted pre-contrast (T1), T1-weighted post-
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contrast (T1-Gd), T2, and T2-FLAIR (Fig. 1a). Specifically, we considered 135 and 108 pre-operative
baseline scans from the TCIA-GBM and TCIA-LGG collections, respectively. Further detailed
information on the diversity of the imaging sequences used for this study is included in Table 2
(available online only). This table covers the TCIA institutional identifier, patient information (i.e., age,
sex, weight), scanner information (i.e., manufacturer, model, magnetic field strength, station name), as
well as specific imaging volume information extracted from the dicom headers (i.e., modality name, series
number, accession number, acquisition/study/series date, scan sequence, type, slice thickness, slice
spacing, repetition time, echo time, inversion time, imaging frequency, flip angle, specific absorption rate,
numbers of slices, pixel dimensions, acquisition matrix rows/columns).

It should be noted that the diversity of the available scans in NCI/NIH/TCIA is driven by the fact that
TCIA collected all available scans for subjects whose tissue specimens had passed the quality evaluation of
the NCI/NTH/TCGA program. Due to this collection being retrospective all the MRI scans are considered
‘standard-of-care’, without following any uniform imaging protocol.

Pre-processing

All pre-operative mMRI volumes were re-oriented to the LPS (left-posterior-superior) coordinate system
(which is a requirement for GLISTRboost), co-registered to the same T1 anatomic template®" using affine
registration through the Oxford center for Functional MRI of the Brain (FMRIB) Linear Image Registration
Tool (FLIRT)®*% of FMRIB Software Library (FSL)*+° and resampled to 1 mm? voxel resolution (Fig. 1b).
The volumes of all the modalities for each patient were then skull-stripped using the Brain Extraction Tool
(BET)*”® from the FSL**™*° (Fig. 1c). Subsequent skull-stripping, on cases that BET produced insufficient
results, was performed using a novel automated method based on a multi atlas registration and label fusion
framework®. The template library for this task consisted of 216 MRI scans and their brain masks. This
library was then used for target specific template selection and subsequent registrations using an existing
strategy of MUlti-atlas Segmentation utilizing Ensembles (MUSE)”". A final region-growing based processing
step, guided by T2, was applied to obtain a brain mask that includes the intra-cranial CSF. The resulted
volumes are the ones provided in [Data Citation 3 and Data Citation 4].

For producing the computer-aided segmentation labels, further preprocessing steps included the
smoothing of all volumes using a low-level image processing method, namely Smallest Univalue Segment
Assimilating Nucleus (SUSAN)”', in order to reduce high frequency intensity variations (i.e., noise) in
regions of uniform intensity profile while preserving the underlying structure (Fig. 1d). The intensity
histograms of all modalities of all patients were then matched”” to the corresponding modality of a single
reference patient, using the implemented version in ITK (HistogramMatchinglmageFilter).

It should be noted that we did not use any non-parametric, non-uniform intensity normalization
algorithm”7” to correct for intensity non-uniformities caused by the inhomogeneity of the scanner’s
magnetic field during image acquisition, as we observed that application of such algorithm obliterated the
T2-FLAIR signal (Fig. le).

Collection n Institutions contributed data—(n) TCGA ID Scanner (strength in T)
Henry Ford Hospital, Detroit, MI—(74) TCGA-06 GE (1.5, 3): Genesis Signa, Signa Excite
CWRU School of Medicine, Cleveland, OH—(38) TCGA-19 Siemens (1.5, 3): Avanto, Symphony, Verio
University of California, San Francisco, CA—(32) TCGA-08 GE (1.5, 3): Genesis Signa, Signa Excite
Emory University, Atlanta, GA—(31) TCGA-14 Philips (1.5): Intera
Siemens (1.5, 3): Avanto, Trio
TCGA-GBM 262 MD Anderson Cancer Center, Houston, TX—(25) TCGA-02 GE: Genesis Signa, Signa Excite
Duke University School of Medicine, Durham, NC—(24) TCGA-12 GE (1.5): Genesis Signa, Signa HDx,Signa Excite
Siemens (1.5, 3): Avanto, Trio, Symphony
Thomas Jefferson University, Philadelphia, PA—(22) TCGA-76 Philips (1.5, 3): Achieva
Siemens (1.5): Magnetom Vision
Fondazione IRCCS TCGA-27 Philips (0.5): Intera
Instituto Neuroligico C. Besta, Milan, Italy—(16) Siemens (1.5): Avanto
St Joseph Hospital/Medical Center, Phoenix, AZ—(98) TCGA-HT GE (1.5, 3): Signa Excite, Signa HDx, Signa HDxt
Henry Ford Hospital, Detroit, MI—(57) TCGA-DU Hitachi (1.16): Oasis

GE (1.5, 3): Genesis, Signa Excite, Signa HDxt,
Philips (1.5, 3): Intera, Ingenia

TCGA-LGG 199 Case Western Reserve University, Cleveland, OH—(22) TCGA-FG Siemens (1.5, 3): Avanto, Symphony, Skyra, Verio

Thomas Jefferson University, Philadelphia, PA—(20) TCGA-CS GE (1.5): Genesis Signa, Signa HDxt
Philips (1.5, 3): Achieva
Siemens (1.5): Magnetom Vision

University of North Carolina, Chapel Hill, NC—(2) TCGA-EZ Siemens (3): TrioTim

Table 1. Source of radiographic data for patients (n) provided in TCIA.
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Figure 1. Single slice multimodal (T1, T1-Gd, T2, T2-FLAIR) MRI scans of example subjects. Examples are
shown (a) in the original TCIA volume; (b-e) after application of various pre-processing steps; (f) for post-
operative volumes in the BraTS$ ’15 data. Note that the step shown in (e), which is usually used to correct for
intensity non-uniformities caused by the inhomogeneity of the scanner’s magnetic field during image
acquisition, was not applied in the current data as it obliterated the T2-FLAIR signal.

Segmentation labels of glioma sub-regions

Consistent with the BraTS challenge® the segmentation labels that we consider in the present study, and
make available through TCIA [Data Citation 3 and Data Citation 4], delineate the enhancing part of the
tumor core (ET), the non-enhancing part of the tumor core (NET), and the peritumoral edema (ED)
(Fig. 2). The ET is described by areas that show hyper-intensity in T1-Gd when compared to T1, but also
when compared to normal/healthy white matter (WM) in T1-Gd. Biologically, ET is felt to represent
regions where there is leakage of contrast through a disrupted blood-brain barrier that is commonly seen
in high grade gliomas. The NET represents non-enhancing tumor regions, as well as transitional/pre-
necrotic and necrotic regions that belong to the non-enhancing part of the tumor core (TC), and are
typically resected in addition to the ET. The appearance of the NET is typically hypo-intense in T1-Gd
when compared to T1, but also when compared to normal/healthy WM in T1-Gd. Finally, the ED is
described by hyper-intense signal on the T2-FLAIR volumes.

Computer-aided segmentation approach
The method used in this study to produce the computer-aided segmentation labels for all pre-operative
scans of both TCGA-GBM and TCGA-LGG collections is named GLISTRboost®>*® and it is based on a
hybrid generative-discriminative model. The generative part incorporates a glioma growth model®®°,
and is based on an Expectation-Maximization (EM) framework to segment the brain scans into tumor
(i.e., ET, NET and ED), as well as healthy tissue labels (i.e., WM, gray matter, cerebrospinal fluid, vessels
and cerebellum). The discriminative part is based on a gradient boosting’®”” multi-class classification
scheme, which was trained on BraTS’15 data (www.virtualskeleton.ch/BRATS/Start2015), to refine tumor
labels based on information from multiple patients. Lastly, a Bayesian strategy’® is employed to further
refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple
modalities available. Example segmentation labels are illustrated in Fig. 2.

GLISTRboost***® is based on a modified version of the GLioma Image SegmenTation and Registration
(GLISTR)” software. GLISTR jointly performs a) the registration of a healthy population probabilistic
atlas to brain scans of patients with gliomas using a tumor growth model to account for mass effects, and
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Figure 2. Single slice multimodal MRI scans of example subjects, illustrating all modalities used in
GLISTRboost>**® and example segmentation labels. The first three rows depict good segmentation examples,
whereas the following three depict bad segmentation examples, produced by GLISTRboost®®%,

b) the segmentation of such scans into healthy and tumor tissues. The whole framework of GLISTR is
based on a probabilistic generative model that relies on EM, to recursively refine the estimates of the
posteriors for all tissue labels, the deformable mapping to the atlas, and the parameters of the
incorporated brain tumor growth model®®* . GLISTR was originally designed to tackle cases with
solitary GBMs’*™®', and subsequently extended to handle multifocal masses and tumors of complex
shapes with heterogeneous texture®”. Furthermore, the original version of GLISTR”™®* was based on a
single seed-point for each brain tissue label to represent its mean intensity value, while the variance was
described by a fixed value for all labels. On the contrary, GLISTRboost incorporates multiple tissue seed-
points for each label, to model more accurately the intensity distribution, i.e., mean and variance, for each
tissue class. Note that both GLISTR and GLISTRboost take into account only the intensity value of the
initialization tissue seed-points on each modality, while they discard spatial information regarding the
coordinate position of the respective points. As a consequence, even if the initialized tissue seed-points
during two independent segmentation attempts have different coordinates, the output sets of
segmentation labels should be identical, given that the modeled intensity distributions during these
attempts are the same. In addition to the tissue seed-points, GLISTR and on that account GLISTRboost,
requires the definition of a single seed-point and a radius for approximating the center and the bulk
volume of each apparent tumor by a sphere. All these seed-points are initialized using the ‘Cancer
Imaging Phenomics Toolkit’ (CaPTk)® (www.med.upenn.edu/sbia/captk.html), which has been
primarily developed for this purpose, by the Center for Biomedical Image Computing and Analytics
(CBICA) of the University of Pennsylvania. Given the tumor seed-point and radius for a tumor, a growth
model is initiated by the parametric model of a sphere. This growth model is used to deform a healthy
atlas into one with tumor and edema tissues matching the input scans, while approximating the
deformations occurred to all brain tissues due to the mass effect of the tumors. A tumor shape prior is
estimated by a random-walk-based generative model, which uses the tumor seed-points as initialization
cues. This shape prior is systemically incorporated into the EM framework via an empirical Bayes
model®?. Furthermore, a minimum of three initialization seed-points is needed for each brain tissue label,
in order to capture the intensity variation and model the intensity distribution across all modalities. Use
of multiple seed-points improves the initialization of the EM framework, leading to more accurate
segmentation labels, when compared to the single seed-point approach®”. The output of GLISTR is a
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posterior probability map for each tissue label, as well as an integrative label map, which describes a very
good ‘initial” segmentation of all different tissues within a patient's brain.

This ‘initial’ segmentation is then refined by taking into account information from multiple patients
via a discriminative machine-learning algorithm. Specifically, we used the gradient boosting algorithm”®
to perform voxel-level multi-label classification. Gradient boosting produces a prediction model by
combining weak learners in an ensemble. We used decision trees of maximum depth 3 as ‘weak learners’,
which were trained in a sub-sample of the training set, in order to introduce randomness’”. The sampling
rate was set equal to 0.6, while additional randomness was introduced by sampling stochastically a subset
of imaging (i.e., radiomic) features at each node. The number of sampled features was set equal to the
square root of the total number of features. The algorithm was terminated after 100 iterations.

The set of features used for training our model was extracted volumetrically and consists of i) intensity
information, ii) image derivative, iii) geodesic information, iv) texture features, and v) the GLISTR
posterior probability maps. The intensity information is summarized by the raw intensity value, I, of each
image voxel, v;, at each modality, m, (i.e., I(v{")), as well as by the respective differences among all four
modalities, i.e., I(vi )- I(vi"%Y), Ivi)- 1(v{?), (v~ T(v{ AR, 1(v{19- 1(vi™h), 1w 99)- T(viD), T
(V;FIGd)_ I(ViTZFLAIR), I(ViTZ)- I(ViTl)’ I(V'iTZ)_ I(V'iTIGd)’ I(ViTZ)' I(ViTZFLAIR), I(ViTZFLAIR)- I(V;Fl), I(V;FZFLAIR)— I
(viTlGd), I(vi ZEARY 1(vi2). The image derivative component consists of the Laplacian of Gaussians and
the image gradient magnitude. Note that in order to ensure that the intensity-based features are
comparable, intensity normalization was performed across subjects based on the median intensity value
of the cerebrospinal fluid label, as provided by GLISTR. Geodesic information was used to introduce
spatial context information. At any voxel v; we calculated the geodesic distance from the seed-point at
voxel v, which was used in GLISTR as the tumor center. The geodesic distance between v; and v, was
estimated using the fast marching method®**®* and by taking into account local image gradient
magnitude®. Furthermore, we used texture features computed from a gray-level co-occurrence matrix
(GLCM)¥". Specifically, these texture features describe first-order statistics (i.e., mean and variance of
each modality’s intensities within a radius of 2 voxels for each voxel), as well as second-order statistics. To
obtain the latter, the image volumes were firstly normalized to 64 different gray levels, and then a
bounding box of 5-by-5-by-5 voxels was used for all the voxels of each image as a sliding window. Then, a
GLCM was populated by taking into account the intensity values within a radius of 2 pixels and for the 26
main 3D directions to extract the energy, entropy, dissimilarity, homogeneity (i.e., inverse difference
moment of order 2), and inverse difference moment of order 1. These features were computed for each
direction and their average was used. To avoid overfitting, the gradient boosting machine was trained
using simultaneously both LGG and GBM training data of BraTS’15, in a 54-fold cross-validation setting
(allowing for using a one out of the 54 available LGGs of the BraTS’15 training data, within each fold).

Finally, the segmentation results were further refined for each patient separately, by assessing the local
intensity distribution of the segmentation labels and updating their spatial configuration based on a
probabilistic model”®. The intensity distributions of the WM, ED, NET and ET, were populated separately
using the corresponding voxels of posterior probability equal to 1, as given by GLISTR. Histogram
normalization was then performed for the 3 pair-wise distributions considered; ED versus WM in T2-
FLAIR, ET versus ED in T1-Gd, and ET versus NET in T1-Gd. Maximum likelihood estimation was used
to model the class-conditional probability densities (Pr(I(v;)|Class) by a distinct Gaussian model for each
class. In all pair-wise comparisons described before, the former tissue is expected to be brighter than the
latter. Voxels of each class with spatial proximity smaller than 4 voxels to the voxels of the paired class,
were evaluated by assessing their intensity I(v;) and comparing the (‘Pr(I(v;)|Class;) with Pr(I(v;)IClass,).
The voxel v; was then classified into the tissue class with the larger conditional probability. This is
equivalent to a classification based on Bayes' Theorem with equal priors for the two classes,
i.e., Pr(Class;) = Pr(Class,) = 0.5.

Manual revision
The output of GLISTRboost segmentation is expected to yield labels for ET, NET, and ED. However,
some gliomas, especially LGG, do not exhibit much contrast enhancement, or ED. Biologically, LGGs
may have less blood-brain barrier disruption (leading to less leak of contrast during the scan), and may
grow at a rate slow enough to avoid significant edema formation, which results from rapid disruption,
irritation, and infiltration of normal brain parenchyma by tumor cells. As such, manual revision of the
segmentation labels was performed, particularly for LGG cases lacking ET or ED regions. Specifically,
after taking all the above into consideration, in scans of LGGs without an apparent ET area we consider
only the NET and ED labels (Fig. 3a,d), whereas in LGG scans without ET and without obvious texture
differences across modalities we consider only the NET label, allowing for distinguishing between normal
and abnormal brain tissue (Fig. 3e). The difficulty in calculating the accurate boundaries between tumor
and healthy tissue in the operating room is reflected in the segmentation labels as well; there is high
uncertainty among neurosurgeons, neuroradiologists, and imaging scientists in delineating these
boundaries. Therefore, small regions within the segmented labels that were ambiguous of their exact
classification, were left as segmented by GLISTRboost.

Manual revisions/corrections applied in the computer-aided segmentation labels include: i) obvious
under- or over-segmented ED/ET/NET regions (Fig. 3d-g), ii) voxels classified as ED within the tumor
core (Fig. 3b,c,g), iii) unclassified voxels within the tumor core (Fig. 3c-g), iv) voxels classified as NET
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Figure 3. Single slice multimodal MRI scans of example subjects, illustrating all modalities used in
GLISTRboost>*>® and examples of the computer-aided (automated) and the manually-revised (manual)
segmentation labels. The type of corrections applied during the manual-revision of the segmentation labels is
also shown in the left side of each row; (a) no correction, (b) minor corrections, (c) corrections in the
contralateral edema, (d) major (easy) correction of LGG without ET, (e) major (easy) correction of LGG
without ET or ED, (f) major (hard) corrections, (g) exceptional subject (TCGA-DU-7304) that could have a
meningioma in the midline as the apparent lesion seems to raise from the dura.

outside the tumor core. Contralateral and periventricular regions of T2-FLAIR hyper-intensity were
excluded from the ED region (Fig. 3cf), unless they were contiguous with peritumoral ED
(Fig. 3g—addition of apparent contralateral ED), as these areas are generally considered to represent
chronic microvascular changes, or age-associated demyelination, rather than tumor infiltration®.

Radiomic features panel

An extensive panel of more than 700 radiomic features is extracted volumetrically (in 3D), based on the
manually-revised labels of each tumor sub-region that comprised i) intensity, ii) volumetric®’,
iii) morphologic®® **, iv) histogram-based’’, and v) textural parameters, including features based on
wavelets™, GLCM®, Gray-Level Run-Length Matrix (GLRLM)’***"*% Gray-Level Size Zone Matrix
(GLSZM)*>™°7° and Neighborhood Gray-Tone Difference Matrix (NGTDM)'®, as well as vi) spatial
information'®", and vii) glioma diffusion properties extracted from glioma growth models®®*, that are
already evaluated as having predictive and prognostic value®®>*'°>'%*, The specific features provided are
all shown in Table 3 (available online only).

These radiomic features are provided on an ‘as-is’ basis, and are distinct from the panel of features
used in GLISTRboost. The biological significance of these individual radiomic features remains unknown,
but we include them here to facilitate research on their association with molecular markers, clinical
outcomes, treatment responses, and other endpoints, by researchers without sufficient computational
background to extract such features. Although researchers can derive their own radiomic features from
our segmentation labels, and the corresponding images we included a collection of features that have been
shown in various studies to relate to clinical outcome® and underlying tumor molecular
characteristics®®*>. Note that the radiomic features we provide are extracted from the denoised images,
and the users might also want to consider extracting features from the unsmoothed images provided in
[Data Citation 3 and Data Citation 4].
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Code availability

All software tools used for pre-processing, initialization, and generation of the hereby described
segmentation labels are based on publicbr available tools. Specifically, the tools used for the pre-
processing steps of skull-stripping (BET)®°® and co-registration (FLIRT)®>%* are publicly available from
the FMRIB Software Library (FSL)®*%¢ in: fsl.fmrib.ox.ac.uk. The software used for the further skull-
stripping approaches, i.e., Multi-Atlas Skull-Stripping (MASS)®* and MUSE”’, are publicly available in
www.med.upenn.edu/sbia/mass.html and www.med.upenn.edu/sbia/muse.html, respectively.

We developed CaPTk™ as a toolkit to facilitate translation of complex research algorithms into clinical
practice, by enabling operators to conduct quantitative analyses without requiring substantial
computational background. Towards this end CaPTk is a dynamically growing software platform, with
various integrated applications, allowing 1) interactive definition of coordinates and regions, 2) generic
image analysis (e.g., registration, feature extraction), and 3) specialized analysis algorithms (e.g.,
identification of genetic mutation imaging markers'?). Specifically for this study, CaPTk was used to 1)
manually initialize seed-points required for the initialization of GLISTRboost’**%, 2) apply the de-noising
approach (SUSAN)”" used for smoothing images before their input to GLISTRboost, as well as 3) to
extract the radiomic features released in TCIA [Data Citation 3 and Data Citation 4]. The exact version
used for initializing the required seed-points in this study was released on the 14th of October 2016 and
the code source, as well as executable installers, are available in: www.med.upenn.edu/sbia/captk.html.

Finally, our segmentation approach, GLISTRboost’>*®, has been made available for public use through
the Online Image Processing Portal (IPP—ipp.cbica.upenn.edu) of the CBICA. CBICA's IPP allows users
to perform their data analysis using integrated algorithms, without any software installation, whilst also
using CBICA's High Performance Computing resources. It should be noted that we used the Python
package scikit-learn'®* for the implementation of the gradient boosting algorithm.

Data Records
We selected only the pre-operative multimodal scans of the TCGA-GBM [Data Citation 1] and TCGA-
LGG [Data Citation 2] glioma collections, from the publicly available TCIA repository. The generated
data, which is made publicly available through TCIA’s Analysis Results Directory (wiki.cancerima-
gingarchive.net/x/sgH1) [Data Citation 3 and Data Citation 4], comprise pre-operative baseline re-
oriented, co-registered and skull-stripped mMRI scans together with their corresponding computer-aided
and manually-revised segmentation labels in NIfTT*” format. We have further enriched the file containers
to include an extensive panel of radiomic features, which we hope may facilitate radiogenomic research
using the TCGA portal, as well as comparison of segmentation methods, even among those scientists
without image analysis resources.

A subset of the pre-operative scans included in the generated data [Data Citation 3 and Data Citation
4] was also part of the BraTS’15 dataset (Table 4 (available online only)), which were skull-stripped, co-
registered to the same anatomical template and resampled to 1 mm® voxel resolution by the challenge
organizers. For this subset, we provide the identical MRI volumes as provided by the BraTS’15 challenge,
allowing other researchers to compare their segmentation labels to the leaderboard of the BraTS’15
challenge. Furthermore, the manually-revised segmentation labels provided in [Data Citation 3 and Data
Citation 4] are included in the datasets of the BraTS’17 challenge, for benchmarking computational
segmentation algorithms against tumor delineation validated by expert neuroradiologists, allowing for
repeatable research.

Technical Validation

Data collection

Our expert board-certified neuroradiologist (M.B.) identified 135 and 108 pre-operative baseline scans of
the TCGA-GBM and the TCGA-LGG glioma collections, via radiological assessment and while blinded
to the glioma grade. Since it is not always easy to determine if a scan is pre-operative or post-operative
only by visually assessing MRI volumes, and the radiological reports were not available through the
TCGA/TCIA repositories, whenever we mention ‘pre-operative scans’ in this study, we refer to those that
radiographically do not have clear evidence of prior instrumentation. Specifically, the main evaluation
criterion for classifying scans as pre-operative, was absence of obvious skull defect and of operative cavity
through either biopsy or resection.

We note that a mixed (pre- and post-operative) subset of 223 and 59 scans from the TCIA-GBM and
TCIA-LGG datasets, respectively, were included in the BraTS’15 challenge, as part of their training
(ngem =200, ny g =44) and testing (ngpm =23, nigg = 15) datasets, via the Virtual Skeleton Database
(VSD) platform>*'*® (www.virtualskeleton.ch). Since an explicit distinction as pre- or post-operative was
not provided for the BraTS’15 dataset, we conducted the radiological assessment of the complete TCIA
collections, blind to whether a scan was part of the BraTS challenge, and only included the BraTS’15
volumes identified as pre-operative (Fig. 1f) (Table 4 (available online only)).

Segmentation labels

The segmentation method we developed to produce the segmentation labels, GLISTRboost***%, was
ranked as the best performing method and awarded the 1st prize during the International Multimodal
Brain Tumor Image Segmentation challenge 2015 (BraTS’15)’****073% Specifically, the performance of
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the computer-aided segmentation labels was assessed during the challenge for the test data, through the
VSD platform, by comparing the voxel-level overlap between the segmentation labels produced by
GLISTRboost and the ground truth labels provided by the BraTS organizers in three regions, i.e., the
whole tumor (WT), the tumor core (TC) and the ET. The WT describes the union of the ET, NET and
ED, whereas the TC describes the union of the ET and NET. The performance was quantitatively
validated by the per-voxel overlap between respective regions, using the DICE coefficient and the robust
Hausdorff distance (95% quantile), as suggested by the BraTS’15 organizers®®. The former metric takes
values between 0 and 1, with higher values corresponding to increased overlap, whereas lower values in
the latter correspond to segmentation labels closer to the gold standard labels. Note that the quantitative
results for the test data were not provided to the participants, until a manuscript summarizing the results
of BraTS’14 and BraTS’15 is published. However, for reporting the performance of our method, we report
here the cross-validated results of the same metrics used in BraTS’15 for the subset of GBM subjects
included in the training set of BraTS’15 and identified as pre-operative in this study (Table 4
(available online only)). The median DICE values with their corresponding inter-quartile ranges (IQR)
for the three evaluated regions, i.e., WT, TC, ET, were equal to 0.92 (IQR: 0.88-0.94), 0.88 (IQR:
0.81-0.93) and 0.88 (IQR: 0.81-0.91), respectively. Equivalently, the 95th percentile of the Hausdorff
distance for WT, TC and ET were equal to 3.61 (IQR: 2.39-8.15), 4.06 (IQR: 2.39-7.29), and 2 (IQR:
1.41-2.83), respectively.

Furthermore, we used the Jaccard coefficient, in order to quantify the difference between the
computer-aided segmentation labels produced for all the scans identified as pre-operative and all the
manually-corrected labels that we provide in [Data Citation 3 and Data Citation 4]. The median
(mean + std.dev) Jaccard values for the three regions of interest ie.,, WT, TC, ET, were equal to 0.96
(0.93+0.1), 0.87 (0.78 +0.23), and 0.86 (0.73 +0.29), respectively.

Manval correction

The classification scheme of segmentation labels considered for the manual corrections of the GBM and
LGG cases describe all three segmentation labels (i.e., ET, NET, and ED) for both GBMs and LGGs with
an apparent ET area. However, whenever we note LGG scans without an apparent ET area and not
obvious texture differences, we considered only the NET label, allowing for distinguishing between
normal and abnormal brain tissue, as slowly growing tumors are not expected to induce ED.
Furthermore, due to high uncertainty (reported by neurosurgeons, neuroradiologists, and imaging
scientists) on the exact boundaries between the various tumor labels, particularly between NET and ED,
small regions that visual assessment was ambiguous of their exact classification, were left as segmented by
GLISTRboost.

Manual revisions/corrections applied in the computer-aided segmentation labels comprise: i) obvious
under- or over-segmented ED/ET/NET regions (Fig. 3d-g), ii) voxels classified as ED within the tumor
core (Fig. 3b,c,g), iii) unclassified voxels within the tumor core (Fig. 3c-g), iv) voxels classified as NET
outside the tumor core. Note that during the manual corrections only peritumoral ED was considered,
and both contralateral, and periventricular ED was deleted (Fig. 3¢,f), unless it was a clear continuation of
the peritumoral ED, in which cases was added (Fig. 3g). The rationale for this is that contralateral and
periventricular white matter hyper-intensities regions might be considered pre-existing conditions,
related to small vessel ischemic disease, especially in older patients.

The scheme followed for the manual correction included two computational imaging scientists
(S.B., A.S.) and a medical doctor (H.A.) working in medical image computing and analysis for 10, 12 and
8 years, respectively. These operators corrected mislabeled voxels following the rules set by our expert
board-certified neuroradiologist (M.B.) with 14 years of experience. The corrected labels were then
iteratively re-evaluated by the latter and re-iterated until they were satisfactory segmented.
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