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Abstract

During the last few decades we have become accustomed to the idea that viruses can cause tumors. 

It is much less considered and discussed, however, that most people infected with oncoviruses will 

never develop cancer. Therefore, the genetic and environmental factors that tip the scales from 

clearance of viral infection to development of cancer are currently an area of active investigation. 

Microbiota has recently emerged as a potentially critical factor that would affect this balance by 

increasing or decreasing the ability of viral infection to promote carcinogenesis. In this review, we 

provide a model of microbiome contribution to the development of oncogenic viral infections and 

viral associated cancers, give examples of this process in human tumors, and describe the 

challenges that prevent progress in the field as well as their potential solutions.
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1. Introduction

As the human lifespan lengthens, the incidence of cancer worldwide is also increasing. The 

World Health Organization predicts the frequency of cancer occurrence to increase by 70% 

over the next two decades [1,2], indicating a rise in the global cancer epidemic. One of the 

established causes of cancer is viral infection, which is responsible for 20% of the global 

cancer burden [3]. Among these infections, the most common are Human Papilloma Virus 

(HPV) and Hepatitis C/B viruses with other less frequent contributors being Epstein - Barr 

virus (EBV), Human Immunodeficiency Virus (HIV), and Kaposi Sarcoma Herpesviruses 

(KSHV) [4]. These viruses use two different strategies to cause cancer: first, by directly 

affecting host cell machinery (e.g. HPV); and second, indirectly, by inhibiting the human 

immune system (e.g. HIV) [5,6]. It is common knowledge that the development of some 

cancers require viral infection, such as HPV for cervical cancer. It is less known, however, 

why most people infected with oncogenic viruses will never develop cancer.
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A hint in solving this puzzle may come from studies demonstrating the crucial role of 

microbiota (collection of microorganisms living with the host) in the course of viral 

infections [7–10]. Moreover, microbiota have been recently implicated in different diseases 

associated with aberrant immune responses ranging from diabetes and autoimmunity to 

obesity and cancer [11,12]. For example, a recent epidemiologic study reported an 

association between antibiotic exposure and the development of several malignancies such 

as esophageal, gastric, pancreatic, lung, prostate, and breast cancers [13].

Studies thus far have placed emphasis on gastrointestinal microbiota and its role in the 

development and progression of gut-associated malignancies [14]. For example, 

Helicobacter pylori causes gastric adenocarcinoma and is a classic case of oncogenic 

bacteria [15]. Intestinal infections with other bacteria such as Salmonella typhi [16] and 

Streptococcus gallolyticus (bovis) [17] were also linked to the development of hepatobiliary 

and colorectal cancers, respectively. These studies represent additional support for the 

hypothesis that some microbiota members as an understudied environmental factor 

contributing to protection from or the development of virus-associated cancers. Even though 

the gut microbiome represents the majority of bacteria in the human microbiome [18], other 

body sites such as the vagina and oral cavity have been explored for their participation in 

cancer development and progression.

Although oncogenic properties of virus and bacteria, individually, are popular topics, the 

interaction between these in the context of cancer has not been well investigated. In recent 

years, we have witnessed an increasing number of attempts to interrogate this three-way 

interaction, particularly the influence of microbiota on the progression and acquisition of 

oncogenic viral infections. However, the question whether bacteria are beneficial or harmful 

in this context remains unanswered for many cancers. In this review, we provide a model of 

microbiome contribution to the development of oncogenic viral infections, discuss examples 

of this process in human tumors, and describe obstacles in the field and their potential 

solutions.

2. Model description

The role of bacteria (and bacterial microbiota) in viral infections leading to cancer can be 

assigned to two broad categories: bacteria that influence viral particles, and bacteria that 

affect host interaction with viral infection.

On the one hand, healthy microbiota was shown to contribute to infections by interacting 

with viruses directly and through bacterial byproducts [7–10]. It was reported that 

commensal microbiota augment the transmission of mouse mammary tumor virus [19,20], 

bacterial lipopolysaccharides enhance virion stability of poliovirus [21], and enteric bacteria 

promote norovirus infection through histo-blood group antigen-like substances [9,22]. On 

the other hand, healthy microbiota are critical for immune system development, especially 

on mucosal surfaces [23]. Antibiotic-treated mice exposed to mucosal influenza virus were 

observed to have impaired innate and adaptive antiviral immune responses and delayed 

clearance of the virus [24]. These and other studies define microbiota as a putatively 

important factor for the development of virus-associated cancers.
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Herein we propose a model for the three-way interaction between bacteria, virus, and 

mammalian host, highlighting two distinct mechanisms for the contribution of microbiota to 

virus-associated cancers. The first involves the direct effect of interaction of bacteria and 

bacterial products on viruses, primarily affecting their infectivity (Fig. 1A). The second 

involves bacteria-host interactions leading to changes in host gene expression and 

subsequent activation/repression of viral expression or direct promotion of inflammation 

synergizing with the tumorigenic effects of a virus (Fig. 1B). There is evidence to suggest 

that the role of bacteria can be positive or negative in terms of disease progression with each 

of these cases. In this review, we discuss conventional tumor viruses and explore the role of 

gut, vaginal, and oral microbiota components in both of these mechanisms.

3. Gastrointestinal microbiome

The gut microbiome is the largest microbial community in the human body. Recent 

discoveries show its involvement in a variety of functions, including immune system training 

and metabolism regulation [25–27]. Separate members of gut microbiota as well as 

dysbiosis (i.e. non-specific alterations of mammalian microbial communities) have been 

implicated in disease development and progression. Among most prominent examples are 

diabetes [28], irritable bowel disease [25], and cancer [29,30]. Additionally, intestinal 

microbiota has been implicated in modulating the effect of different anti-cancer treatments 

[31–33]. Helicobacter species, in particular Helicobacter pylori, is the most well studied 

bacterial member of the gut community that causes cancer [15].

3.1. Hepatitis viruses

The second leading cause of cancer mortality is liver cancer [34]. The most prevalent 

histologic type of primary liver cancer is hepatocellular carcinoma (HCC) [35] primarily 

caused by chronic infection with hepatitis B (HBV) or hepatitis C (HCV) virus [36]. 

Although both viruses can cause cancer, HCV currently attracts stronger interest from the 

scientific community possibly due to the absence of a vaccine against HCV.

The pathogenicity of both HBV and HCV involves a combination of direct and indirect 

mechanisms. The HCV encoded core, nonstructural protein 5A (NS5A) and NS3, and HBV 

encoded X antigen (HBx) are able to promote host cell proliferation. Both viruses are 

similarly capable of blocking cell immune response, inhibiting apoptosis while promoting 

angiogenesis and metastasis. By contrast, chronic inflammation caused by oxidative stress 

also contributes to the process of carcinogenesis [6].

While HCV is oncogenic, not all patients suffering from chronic hepatitis C will develop 

cancer. One of the first indications that bacteria may be a critical parameter in liver cancer 

came with the observation that mice infected with Helicobacter were developing strong 

inflammatory responses leading to hepatocellular carcinoma [37]. Another group later found 

an association between H. pylori specific antibody levels and HCV associated hepatocellular 

carcinoma [38]. Helicobacter DNA was also found in liver and was associated with hepatitis 

C induced cirrhosis [39], which indicates the ability of H. pylori to invade the liver and 

putatively contribute to disease development (Fig. 2B). However, a more recent study 

conducted on HCV transgenic mice colonized with H. pylori found no indication of bacteria 
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translocation into the liver and no promotion of tumorigenesis [40]. Whether this 

experimental system failed to promote carcinogenesis, or H. pylori does not contribute to 

HCV-associated liver cancer, remains unknown.

Another Helicobacter species, Helicobacter hepaticus, has been shown to cause chronic 

hepatitis and liver cancer in rodents [37]. In the following study, Fox et al. have shown that 

presence of H. hepaticus in the gut lumen promotes development of hepatocellular 

carcinoma in HCV infected mice, acting synergistically with viral infection [41]. This 

process did not require bacterial invasion. Fox et al. also showed that in an aflatoxin B1 

HCC mouse model, H. hepaticus induced the nuclear factor-κB (NF-κB) along with 

downstream innate and Th1-type adaptive immunity. In a HCV transgenic mouse model, 

they also observed increased gene expression of an NF-kB-dependent inflammatory 

chemokine (CXCL9) in mice colonized with H. hepaticus [6,41,42] (Fig. 2C, D). 

Concordantly in both models, tumor growth was accelerated in the presence of H. hepaticus. 

These bacteria, detected in human intestine [43] and liver [44–46], is suspected to contribute 

not only to cirrhosis [47] and HCC [44], but also to a set of other conditions such as 

inflammatory bowel disease [43] and prostate cancer [48]. Consequently, this data suggests a 

synergistic relationship between H. hepaticus and HCV in human cancers.

The link between HBV related oncogenesis and gut microbiota has also been reported. In 

2011, Chen et al. found that enteric fungi diversity was positively correlated with a worsened 

disease state in chronic HBV infection [49]. More recently, Chou et al. showed that in adult 

C3H/HeN mice transfected with HBV, elimination of gut microbiota with antibiotics 

resulted in viral persistence phenotypes, including prolonged HBV surface antigens 

(HBsAg) presence, impaired anti-HBs production, and limited HBV core antigen (HBcAg)-

specific IFN-γ–secreting splenocytes [50]. Although these results suggest that the 

persistence of HBV infection in antibiotic-treated mice is attributed to an ineffective 

adaptive humoral and cellular immune response, specific bacteria were not identified in this 

study. Other studies observed that a decrease in fecal Bifidobacterium populations was 

associated with liver disease progression of HBV infection in humans [51,52]. In addition, 

Bifidobacterium species have been shown to decrease the protein and transcript levels of 

HBsAg in a HBV-transfected human hepatoma cell line [53]. Interestingly, Bifidobacterium 

can also increase host gene expression of IFN-signaling components such as STAT1 [53] and 

lower serum cholesterol levels [54–56]. Furthermore, IFN stimulation have been shown to 

downregulate lipid metabolic pathways [27], known in host cells to be necessary for HBV 

production [57,58]. Therefore, we propose that Bifidobacterium species are able to stimulate 

IFN-dependent pathways which results in a downregulation of lipid metabolism and a 

reduction in HBV infection (Fig. 2A). Further experimentation is warranted to establish how 

the antiviral and antitumor effects of these bacteria contribute to overall protection against 

malignancy.

4. Cervicovaginal microbiome

Despite the fact that microbiota in the vagina is less diverse than in the gut it can also 

contribute to protection against or susceptibility to some illnesses, especially sexually 

transmitted diseases. Healthy stable vaginal microbiome is thought to be a first line of 
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defense [59,60] against diseases caused by opportunistic and true pathogens: outcompeting 

dangerous bacteria or protecting the host with bacterial by-products, in particular lactic acid 

[61–64] and hydrogen peroxide [60,65,66].

Lactobacilli, commonly considered as such beneficial microbes, represent the dominant 

genus [67,68] in healthy vaginal microbiota. However, this does not seem to be universally 

applicable as Gardnerella-dominated microbiomes were observed as another frequent type in 

some populations [69]. Disruption of healthy vaginal microbiota (bacterial vaginosis - BV) 

[67] may increase risks of sexually transmitted infections (STI) [70], and even contribute to 

the disease progression, putatively, including cancer development.

4.1. Human papillomavirus

Human papillomavirus (HPV) is the most common STI in the United States and although 

the majority of HPV types are non-carcinogenic, there are at least 13 high-risk oncogenic 

types (hrHPV), with HPV16 and HPV18 leading the list [71,72]. One of the most common 

cancers caused by HPV infection remains cervical squamous cell carcinoma. However, HPV 

is also linked to anal, vulvar, vaginal, penile and head-and-neck carcinomas [73].

hrHPV infections remain the main predictors for cervical intraepithelial neoplasia (CIN), 

precursor to tumor, and cervical cancer development itself [74–76]. HPV infects basal 

epithelial cells. After infection HPV either exist in episomal form or can integrate into the 

cell genome causing genomic instability. Expression of HPV oncogenes E6 and E7 is also 

dependent on integration: in episomal form expression of E2 protein keeps expression levels 

of E6/7 low, but during integration open reading frame of E2 gene is disrupted and E2 no 

longer is able to control HPV oncogenes. E6, E7 and E5 HPV oncoproteins retain 

keratinocytes in proliferative state, avoiding apoptosis and clearance by the immune system. 

It was also reported that HPV is able to promote angiogenesis and deregulate cellular 

energetics [77].

Although hrHPV type infections are necessary for development of cervical cancer, in most 

cases the virus is cleared by the host. Only 0.3–1.2% of women eventually develop cervical 

cancer [78] which means that additional risk factors contribute to the disease progression 

and vaginal microbiota is possibly one of them. It appears that both, the protective role of 

normal vaginal microbiome and the contribution of certain pathogens, may play a role in 

development of cervical intraepithelial lesions and cancer.

While Lactobacillus gasseri-dominated vaginal bacterial communities are associated with 

faster clearance of HPV infection [79], dysbiosis, and bacterial vaginosis are associated with 

CIN development and progression [80,81] (Fig. 3D). Furthermore, it is unclear whether 

bacteria in the disrupted vaginal microbiome affect host susceptibility, virus survival, or 

infectivity. Some evidence (discussed below), however, points to the possible involvement of 

Prevotella genus that contains Prevotella bivia, a microbe known to be associated with 

bacterial vaginosis.

Normally inhibited by Lactobacillus [65], Prevotella species may become abundant when 

the homeostasis of the vaginal microbial community is disrupted by such factors as diet or 
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hormone status [82] (Fig. 3E). Recent findings also suggest host genetics as an important 

factor in Prevotella outgrowth [82]. Increasing in abundance, Prevotella species may provide 

nutrients (e.g. ammonia and amino acids), to other members of microbial community such 

as Gardnerella vaginalis and Peptostreptococcus anaerobius [83,84], and thus diversify the 

vaginal microbial landscape [69] (Fig. 3F). Furthermore, multiple studies of Prevotella 

associations with bacterial vaginosis and cervicitis [68,82,85] point to Prevotella as a 

conductor orchestrating the state of vaginal microbiomes. Additionally, a clear link between 

Prevotella genus and HPV infection [86], in particular with high risk HPV types [87], has 

been established. Adding to the potential importance of these microbes, Prevotella was 

cultured from cervical cancer samples in 1993 [88], and more recently we detected it as the 

most abundant genus in cervical cancer biopsies (unpublished). Finally, increased expression 

of NF-κB, Toll-like receptor (TLR), NOD-like receptor, and TNF-α signaling pathways in 

antigen presenting cells from blood, and increased levels of pro-inflammatory cytokines 

from vaginal lavage have been associated with microbial communities that include 

Prevotella [69]. Thus, it is likely that Prevotella or Prevotella-driven vaginal microbiome 

may act in favor of persistent HPV infection promoting cervical cancer development through 

upregulation of cell proliferation and chronic inflammation.

Aside from the common members of vaginal microbiota, pathogens have also been 

suspected in the promotion of HPV infection. For example, Chlamydia trachomatis, has 

been studied for some time as a potential co-factor of HPV in the process of tumorigenesis 

[89,90]. Investigation of the potential mechanism of how C. trachomatis infection may 

influence HPV infection and cancer development are underway. For example, it was 

demonstrated that C. trachomatis can decrease the expression of caveolin-1 (tumor 

suppressor) and increase C-myc mRNA levels (oncogene) [91]. A study conducted by Paba 

et al. found a correlation between C. trichomonas infection and upregulation of cytoplasmic 

and nuclear NF-kB, VEGF-c and survivin in HPV-positive CINs and cervical cancer [92], 

which points out to the possibility that C. trachomatis can also act through the NF-kB 

pathway, promoting local inflammation, cell survival and proliferation (Fig. 3G). Despite 

many studies and even mechanistic research, the scientific community has not yet reached a 

consensus about whether C. trachomatis plays a causal role in aiding HPV in carcinogenesis. 

Thus epidemiological studies that would investigate the temporal relationship between C. 
trachomatis and HPV infections are required to settle this long standing debate.

4.2. Human immunodeficiency virus

Human Immunodeficiency Virus (HIV) is a carcinogenic virus in its ability to act as a co-

factor for EBV and KSHV in carcinogenesis [93]. Immunosuppression, chronic antigenic 

stimulation, and cytokine dysregulation are reported to contribute to HIV-associated cancer 

development. However, the main cause of HIV-related cancer development remains 

immunosuppression: the inability of the immune system to recognize and clear host cells 

infected with potentially oncogenic viruses enables those viruses to express oncogenic 

proteins, which in its turn leads to cancer development [6]. Due to the absence of vaccines 

and ways to eliminate HIV, understanding risk factors contributing to the pathogenesis of 

HIV infections becomes a priority.
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Sexual transmission is one of the most common ways to acquire HIV, suggesting that 

vaginal microbiota may influence this process. Indeed, several studies found an association 

between the risk of HIV infection and bacterial vaginosis [94–96]. However, it is still 

unclear whether the absence or overgrowth of some bacteria in the vaginal microbiota would 

make women more susceptible to or protected from HIV infection.

In 2013, Aldunate et al. showed that physiological concentrations of lactic acid can 

inactivate different HIV subtypes [97]. Thus, Lactobacillus spp. which is known to produce 

lactic acid, may play an important role in protection against sexually transmitted diseases, 

including HIV [98] (Fig. 3A). In contrast, bacterial vaginosis predisposes females to 

sexually transmitted diseases [99], and can reactivate latent HIV infection [100,101]. 

Evidence suggests that bacteria are not acting directly on HIV, but rather via bacterial by-

products (e.g. butyric acid) [105,106]. Specifically, immunosuppression caused by HIV is an 

important step in the establishment of lifelong latent infection and avoidance of host 

immune response. Latently infected cells harbor the HIV proviral DNA genome integrated 

into heterochromatin, allowing the persistence of transcriptionally silent proviruses [102]. 

Hypoacetylation of histone proteins by histone deacetylases (HDAC) is involved in the 

maintenance of HIV latency by repressing viral transcription [103,104]. Interestingly, 

butyric acid-producing bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, 

Clostridium cochlearium, Eubacterium multiforme, and Anaerococcus tetradius), residing in 

different mucosal environments (gut, vaginal, and oral cavities), are capable of reactivating 

latent HIV infection through host HDAC pathways [105,106] (Figs. 3B, 4B). Butyric acid is 

known to inhibit the enzymatic activity of HDAC by directly competing with HDAC 

substrate at the catalytic center of the enzyme [107] (Fig. 4A). Butyrate originating from 

microbiota has been shown to promote immunosuppressive/immunoregulatory effects [108]. 

Considering this, it is plausible that in addition to reactivating viruses, butyric acid can 

inhibit antiviral immunity in the host directly.

Additionally, the epidemiological synergy of sexually transmitted infections (STI) with HIV 

transmission was reported in multiple studies. Ferreira et al. found that stimulation of HIV 

infected T-cells with TLR3, 4, or 5 ligands leads to enhanced HIV-1 replication via direct 

activation of HIV long terminal repeats, or by inducing secreted factors that promote HIV 

replication [109]. Among the pathogens suspected to contribute to HIV infection and 

reactivation, one player stands out - Neisseria gonorrhoeae: it was found to be highly 

associated with HIV infection [110] and activation of HIV expression [109,111,112]. Not 

only does N. gonorrhoeae drives an increase of activated CD4+ T-cells [111] and pro-

inflammatory cytokines in genital epithelial cells such as IL-6, IL-8 and TNFα [109], but 

exposure to the pathogen directly drives HIV expression in T cells in NF-kB and AP-1 

dependent manner [109,111]. Malott et al. showed that N. gonorrhoeae by-product heptose-

monophosphate is necessary for invoking these host responses [111] (Fig. 3C). Thus, the 

course of HIV infection can be altered negatively (by lactate producers) or positively (by 

butyrate producers or N. gonorrhoeae), preventing or favoring, respectively, development of 

immunodeficiency, which may increase susceptibility to EBV and KSHV infection, which 

are responsible for a substantial proportion of HIV-related cancers.
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5. Oral microbiome

Although many studies have been devoted to HIV in the genital tract, the connection 

between HIV, oral microbiome, and periodontal disease has also drawn the attention of the 

scientific community [113–116] [105,106]. Recent works have found associations between 

periodontitis, a chronic inflammatory disease of the periodontium occurring in response to 

bacterial infection, and several types of oral cancers [117–120]. Periodontal disease is 

marked by a disruption in the oral microbiome and is often associated with a shift to 

anaerobic bacteria such as Porphyromonas gingivalis, that has also been directly implicated 

in cancers [121,122]. Although common risk factors for these cancers include smoking and 

alcohol abuse, there are an increasing number of cases where no significant smoking or 

drinking history has been reported. Among other risk factors are viral infections HIV, HPV, 

herpesviruses (EBV, HCMV, KSHV) and oral hygiene [123]. Herpes-viruses, particularly 

EBV and KSHV, are known to cause cancer in the context of immunodeficiency caused by 

HIV/AIDS [124].

5.1. Herpesviruses

Herpesviruses have recently been implicated in the progression of periodontitis in the oral 

cavity [125–129]. Among these viruses, KSHV, EBV, and HCMV have also been associated 

with head and neck cancers, primarily those found in the mouth. A hallmark of 

herpesviruses is their ability to establish life-long latent infection in host cells. During latent 

infection, certain viral genes are repressed and viral progenies are not produced. The 

reactivation of lytic cycle genes in virus-infected cells marks the production of viral progeny 

which ultimately leads to host cell lysis. Both latent and lytic cycle genes are critical for 

tumorigenesis and the evasion of host immune response. In addition, studies exploring co-

infection and crosstalk between these viruses as well as with HIV has shown direct (virus-

virus) and indirect (through host immunity) interactions, most notably affecting the 

transition between latent and lytic viral cycles [124,130].

Human cytomegalovirus (HCMV) is not usually regarded as an oncogenic virus. However, 

HCMV infections have been implicated in malignant diseases from different cancer entities 

and can cause fatal diseases in immunocompromised patients [131]. Some evidence also 

suggests its role in sustaining chronic inflammation in the progression of cancer [132]. 

However, in the case of oral squamous cell carcinomas, Saravani et al. reported that only 

6.3% of 48 patient samples were found to have detectable HCMV [133]. Although this 

patient population had low incidence of HCMV detection, it does not discount the possibility 

of synergy between HCMV and periodontal disease (not explored) in the development of 

oral cancer subtypes. In fact, HCMV has been associated with active periodontal disease and 

P. gingivalis [126–129]. Thus, strengthening the argument to keep HCMV among potential 

co-factors contributing to chronic inflammation that leads to oral tumorigenesis.

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 

(HHV-8), is a herpesvirus that has become a well-known oncovirus in immunocompromised 

individuals infected with HIV [134]. This virus is consistently associated with Kaposi’s 

sarcoma, a cancer developed from cells that line the lymph or blood vessels and usually 

appears as a tumor on the skin or mucosal [135]. Latent transcripts in KSHV include genes 
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and miRNAs that favor viral persistence and replication while promoting host-cell 

proliferation and survival. Furthermore, lytic cycle genes favor viral replication by affecting 

the DNA damage response, reprogramming metabolism, promoting survival, and mediating 

immune evasion, all of which have a role in promoting cancer development [6]. In 2007, 

Morris et al. explored the effects of supernatants from cultures of different bacteria on 

KSHV infected BCLBL-1 cells [136]. They found that metabolic end products from 

pathogens (gram-negative anaerobic periodontopathogens F. nucleatum and P. gingivalis) 

induced lytic replication of KSHV through the activation of a stress-activated MAPK 

pathway in host cells. More specifically, butyric acid from bacteria supernatants were found 

to inhibit cellular HDACs and activate the p38 kinases pathway, resulting in 

hyperacetylation of histones on immediate early viral promoters (Fig. 4C). The targeting of 

HDACs by P. gingivalis is also seen in the reactivation of HIV as we discussed previously.

Epstein–Barr virus (EBV) was the first virus shown to cause cancer in humans and is 

associated with a wide range of human cancers originating from epithelial cells, 

lymphocytes and mesenchymal cells [137]. Infection is transmitted from host to host via 

salivary contact, and the virus passes through the oropharyngeal epithelium to B 

lymphocytes, where it establishes a lifelong latent infection. EBV has three main latency 

patterns, each of which have a role in avoiding host response while promoting B-cell 

survival/proliferation [6]. Although not deeply studied, there is increasing evidence that 

EBV early lytic genes, particularly those encoding homologues of Bcl-2 (BALF1), IL-10 

(BCRF1) and c-fms receptor (BARF1), may be involved in oncogenesis as well as in 

promoting viral infection. Reactivation of the virus and production of progeny contributes to 

several human diseases including nasopharyngeal carcinomas and lymphomas [138]. Similar 

to KSHV and HIV, the latent virus was found to be reactivated upon stimulation with 

supernatant from P. gingivalis (containing high concentrations of butyric acid) through the 

inhibition of HDACs [138]. This inhibition resulted in increased acetylation of adjacent 

histone and transcriptional activation of the BZLF1 promoter, whose gene product ZEBRA 

is known to be the master regulator in EBV transition from latency to lytic state [138] (Fig. 

4D). Taken together with the case of KSHV, there is compelling evidence for the ability of 

butyric acid producing bacteria such as P. gingivalis (main player in periodontitis) to 

reactivate latent herpesvirus infection and contribute to the development of cancer in the oral 

cavity.

As described above, butyric-acid producing bacteria (especially the periodontopathogens P. 
gingivalis) can regulate the viral life cycle in host cells. Periodontopathogens can induce a 

reactivation of HIV which in turn may lead to the opportunistic infection of herpesviruses 

due to immunodeficiency. Latent infection of EBV and KSHV can be reactivated by the 

same bacteria leading to the induction of oncogenes and transformation to malignancy. 

Independent of bacteria, a model of KSHV and EBV co-infection in vitro has shown 

complementing lytic activation [139], suggesting a more complex model of reactivation in 

which periodontopathogens may act in tandem with direct inter-viral interaction to regulate 

infection and the development of cancers. Although HCMV has not been studied extensively 

in the same context, its association with P. gingivalis and periodontal disease offers hints of 

viral-bacterial interaction potentially involving mechanisms used by other herpesviruses.
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6. Human endogenous retroviruses

Endogenous retroviruses (ERVs) are endogenous viral elements located in the genome of 

jawed vertebrates, including humans, and are thought to be relics of ancestral infectious 

retroviruses [140]. Human endogenous retroviruses (HERVs) compose about 4–8% of 

human genome [141]. While there is not enough evidence to solidify the role of HERVs in 

causing human cancers, the connection between the two is constantly been researched [140]. 

Reactivation of HERV expression in cancers [140,142] can contribute to genome instability 

and is suspected to be a prominent player in disease development. Furthermore, resurrection 

of murine leukemia virus (MLV) in immunocompromised mice was found to be dependent 

on intestinal microbiota [143]. In humans, environmental and intestinal microbes were able 

to modulate the transcriptional activity of endogenous retroviruses [144]. It is not clear 

whether this process contributes to cancer development. Nonetheless, multiple studies show 

that upregulated HERV expression in cancerous cells can drive inflammatory responses by 

upregulating type I interferon pathways [145–147] and eliciting T-cell specific antitumor 

immunity [148]. These findings may indicate the role of the immune system in recognizing 

the reactivation of “sleeping” HERVs as a sign of cell transformation and clearing the 

potential threat before it develops into malignancies.

7. Risk factors of virus-associated cancers and microbiome

Risk factors for cancer, such as age, lifestyle, diet and genetics, have been identified but the 

mechanisms underlying their contribution to disease are not always well understood 

[149,150]. The discovery of the role of commensal microbiota and pathobionts in cancer 

development and progression suggests that at least some risk factors may be linked to the 

disease through microbiota. For example, while smoking is a risk factor for nasopharyngeal 

carcinoma [151], it is also associated with dysbiosis in oral microbiota [152], which in its 

turn can contribute to periodontal disease leading to cancer development [153]. In cervical 

cancer, a high number of sexual partners is a well-known risk factor. This association has 

been commonly attributed to increased chances to be exposed to high risk HPV [154]. 

However, women with multiple sexual partners also present disruption of vaginal microbiota 

(bacterial vaginosis) [155,156] that may facilitate chronic HPV infection and cervical cancer 

as discussed earlier (Section 4.1). Another example is liver cancer, for which diabetes and 

obesity have been identified as risk factors [149,157]. Interestingly, in obese people among 

many changes in the gut microbiome, a decrease in Bifidobacterium was reported [158]. 

Because this bacterium has been shown to play a positive role in elimination of HBV (as 

described in Section 3.1), this may partially explain the association between diet-induced 

obesity and liver cancer. Although environmental and hereditary factors make virus-bacteria-

host interactions even more complex to investigate, it is crucial to remember that 

understanding the role of these external factors may become a powerful tool for cancer 

prevention and treatment.

8. Summary

It has recently become evident that progress in the field of virus-associated cancers can be 

enhanced by elucidation of how bacterial microbiota contributes to virus-host interaction. 
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Although the dissection of these transkingdom interactions is evolving [159], we are still in 

the early stages of this journey. Indeed, epidemiological and even some mechanistic studies 

are accumulating. However, the scientific community has not yet reached a unanimous 

agreement on whether any specific cancer requires bacteria-virus interaction for 

carcinogenesis.

Herein, we have described a model of bacteria-virus interactions in the development of 

cancer. We identify two main mechanisms; the first is accomplished by the interaction 

between bacteria and virus resulting in changes in the course of viral infection. The most 

notable example of such mechanism is the inactivation of HIV via bacteria-derived lactic 

acid [97]. The second mechanism is an effect of the bacteria on the host resulting in 

alterations of host susceptibility to viral infection. This can happen in several ways: a) 

bacteria inducing pro-tumor chronic inflammation (e.g. activation of NF-kB pathway 

[6,41,69,92,109,111]), b) commensal bacteria promoting antiviral and antitumor immunity 

(e.g. Bifidobacterium in HBV [53,160]), and c) bacterial metabolite reactivating oncoviruses 

(butyric acid inhibition of host HDAC pathways reactivating HIV [105,106], EBV [138], 

KSHV [136]) (Table 1).

In addition to proposing the model, we identified key questions that have to be answered in 

order to move the field forward (Box 1) and major technological/logistical solutions that are 

required to answer these questions (Box 2).

Finally, treatment of cancer with chemicals and radiation are currently the most popular and 

efficient strategies [161,162]. More recently, our armamentarium was advanced with 

vaccines against oncoviruses [163] and immunotherapy [164], both using the immune 

system to prevent or kill cancer. Unfortunately, neither of these strategies allowed us to 

eliminate completely any oncovirus, nor to cure some cancers.

Therefore, novel approaches are required to significantly change the status quo of this field. 

We believe that this change should come with methods promoting a healthy microbiome, 

development of next generation antibiotics targeting individual bacteria, new probiotics, and 

companion diagnostics that will define a course of personalized/precision medicine for each 

individual patient based on their respective transcriptome and microbiome.
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Box 1

Current trending questions

- Which shifts in microbial communities (presence/absence of particular bacterial 

species or alterations in microbial community structures) can enhance oncogenic 

virus infection progression or, on the contrary, help to eliminate it?

- Which host molecular pathways involved in viral infections and tumorigenesis 

are altered by microbiota?

- Can host genetics shape microbiota toward being anti- or pro-tumorigenic?

- How do microbiota affect the success of anticancer therapies?

- How do antitumor treatments affect microbiota? Are these effects relevant for 

efficient treatments and treatment-related co-morbidities?
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Box 2

Emerging technologies and other solutions

- Experimental approaches for the generation of different types of omics data that 

would allow simultaneous assessment of functional states of each of viruses, host 

and bacteria (e.g. new and improved single cell technologies for both eukaryotic 

and prokaryotic cells).

- Computational tools for the analysis of multi-omics datasets that would provide 

robust predictions of regulatory relationships between all three kingdoms (e.g. 

transkingdom networks [165,166], LEfSe [167]).

- Generation of new experimental models: a) humanized animal models (e.g. 

gnotobiotic animal models for cancer caused by oncogenic viruses harboring 

human microbiota and immune system); b) cell lines and tissues with virus and 

bacteria present (e.g. differentiated 3D cell aggregates colonized with specific 

bacteria [168–173]); c) next generation in vitro models such as organ-on-chip and 

human-on-chip microfluidic devices that allow application of robotic systems.

- Creation of multidisciplinary teams (involving oncologists with expertise in basic 

and clinical science, systems biologist, virologist, microbiologists, and engineers) 

through special funding mechanisms or even the creation of new institutions.
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Fig. 1. 
Model of bacteria-virus interactions in cancer development and progression: A) direct 

interaction between bacteria or bacterial by-products and virus resulting in inhibition or 

promotion of viral infection into host cell; B) indirect interaction between bacteria and virus 

mediated by host response to bacterial stimuli through activation of various pattern 

recognition receptors.
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Fig. 2. 
The interplay between gut microbiome, host and human hepatitis viruses (HCV and HBV): 

A) healthy gut microbiota stimulates host immune system resulting in HBV infection 

clearance; B) Helicobacter pylori invades liver and contributes to chronic inflammation 

induced by HCV; C, D) Helicobacter hepaticus upregulates NF-κB dependent pathways in 

mouse gut (C) and liver (D), synergizing with HCV-related inflammation in the development 

of hepatocellular carcinoma.
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Fig. 3. 
Cervicovaginal microbiota and pathogens can influence the progression of viral infection 

associated with cancer development: A) Lactobacillus spp., predominant bacteria in the 

vaginal microbiome, secretes lactic acid capable of inactivating HIV; B) butyric acid 

secreted by vaginal microbiota induces HIV replication in Human CD4+ T lymphocyte and 

macrophage/monocyte cell lines harboring latent HIV; C) Neisseria gonorrhoeae induces 

IL-6, IL-8 and TNFα production in genital epithelial cells and upregulates HIV gene 

expression in T-cells via heptose-monophosphate induced NF-kB and AP-1 pathways; D) 

domination of vaginal microbiota by Lactobacillus gasseri is associated with faster HPV 

clearance; E) Lactobacillus spp. is able to inhibit the viability of Gardnerella vaginalis and 

Prevotella bivia; F) Prevotella spp. produces ammonia and different amino acids that benefit 

G. vaginalis and Peptostreptococcus anaerobius, contributing to bacterial vaginosis; G) 

Chlamydia trichomatis may influence cervical cancer development, either through synergy 

with HPV or by contributing to local chronic inflammation.
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Fig. 4. 
The role of periodontal disease in head and neck cancers can be mediated by the effects of 

HIV and herpesviruses (EBV and KSHV): A) butyric acid produced by periodontal 

pathogens such as Fusobacterium nucleatum and Porphyromonas gingivalis competitively 

inhibit Histone Deacetylases (HDACs), resulting in the reduced deacetylation of histone 

proteins and sustaining viral gene expression B) activation of HIV proviral gene expression 

through HDAC inhibition increases viral progeny production; HIV infection suppresses 

systemic immune responses and aides in the acquisition of other viral infections; C) 

inhibition of HDAC causes transcriptional activation of the BZLF1 promoter in EBV 

infected cells and results in production of ZEBRA, known switch for lytic cycle activation; 

D) inhibition of HDACs in KSHV-associated cells result in the induction of MAPK and 

expression of lytic genes. Both EBV (C) and KSHV (D) mechanisms promote the spread of 

viral infection and contributes to tumor development.
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