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Abstract

Human papilloma virus positive (HPV+) tumors represent a large proportion of anal, vulvar,

vaginal, cervical and head and neck squamous carcinomas (HNSCC) and late stage inva-

sive disease is thought to originate from a premalignant state. Cyclic dinucleotides that acti-

vate STimulator of INterferon Genes (STING) have been shown to cause rapid regression

of a range of advanced tumors. We aimed to investigate STING ligands as a novel treatment

for papilloma. We tested therapies in a spontaneous mouse model of papilloma of the face

and anogenital region that histologically resembles human HPV-associated papilloma. We

demonstrate that STING ligands cause rapid regression of papilloma, associated with T cell

infiltration, and are significantly more effective than Imiquimod, a current immunotherapy for

papilloma. In humans, we show that STING is expressed in the basal layer of normal skin

and lost during keratinocyte differentiation. We found STING was expressed in all HPV-

associated cervical and anal dysplasia and was strongly expressed in the cancer cells of

HPV+ HNSCC but not in HPV-unrelated HNSCC. We found no strong association between

STING expression and progressive disease in non-HPV oral dysplasia and oral pre-malig-

nancies that are not HPV-related. These data demonstrate that STING is expressed in

basal cells of the skin and is retained in HPV+ pre-malignancies and advanced cancers, but

not in HPV-unrelated HNSCC. However, using a murine HNSCC model that does not

express STING, we demonstrate that STING ligands are an effective therapy regardless of

expression of STING by the cancer cells.

Introduction

As our ability to detect cancerous cells in patients improves, there is an opportunity to treat

early tumors before they become invasive and metastatic. Most cancers are known to exhibit a
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premalignant state, where an expanded population of abnormal cells disrupts normal tissue

organization. This premalignant state can exist for years and may remain, resolve, or progress

to invasive cancer. Cancer screening programs—for example those based around the Papani-

colaou (Pap) smear for cervical carcinoma—aim to identify these abnormal cells for interven-

tion before further malignant transformation. Vaccination against HPV can prevent HPV

infection and thus, in principle, prevent HPV-associated malignancies. However, once tumors

develop, vaccination against the virus has limited potential impact on progression, perhaps

because prophylactic vaccination is directed to neutralizing antibody response to free virions

rather than effector T cell control of infected cells [1]. Current therapies for an abnormal

Pap smear include surgical excision or ablation. Immunotherapies, including Interferon alpha

and Imiquimod have been added to excisional therapies to decrease the rate of recurrence;

however, in randomized clinical trials it was found that neither approach impacts the rate of

recurrence of cervical dysplasia [2, 3]. In view of the limitations in current therapies, novel

treatment options are needed.

In the transgenic pancreatic ductal adenocarcinoma mouse model, Cre expression under

a pancreas-specific promoter activates expression of the mutant tumor-driving genes

Kras(G12D) and Tp53(R172H), leading to progressive carcinogenesis from pancreatic intraepithe-

lial neoplasia [4]. In addition, due to leaky Cre expression at variable penetrance, these mice

spontaneously develop papillomas of the face and vulva that closely resembles HPV-associated

papilloma in humans [4, 5]. The development of these papillomas provides an opportunity to

apply this model for investigation of novel treatment approaches to premalignant disease in

immunocompetent mice.

Recently, we and others have demonstrated that cyclic dinucleotide (CDN) ligand activa-

tion of the STimulator of INterferon Genes (STING) pathway strongly induces type I IFN and

TNFα, resulting in rapid regression of a range of advanced tumors [6, 7]. We therefore tested

the effect of STING ligands on papilloma in mice. Following direct injection, we observed

rapid regression of papilloma following short courses of treatment. To evaluate potential trans-

lation to premalignant disease in humans, we evaluated STING expression by immunohistol-

ogy in clinical tissue specimens. We found that STING is expressed in basal cells of the skin

and is retained in HPV-associated premalignancies and advanced cancers, but not in HPV-

HNSCC derived from non-basal cells. Since treatment with STING ligands causes rapid

regression of spontaneous murine papilloma this may represent an advance in the treatment

of virus-associated and premalignant diseases. However, STING expression by malignant cells

is not essential for treatment of advanced cancers.

Materials and methods

Ethics

All animal protocols were approved by the Earle A. Chiles Research Institute IACUC (Animal

Welfare Assurance No. A3913-01). De-identified human tissue sections were obtained under

IRB# 12–075 approved by the Providence Portland Medical Center IRB.

Animal models

Pdx-Cre+/- (Stock#014647, Jackson Laboratories, Bar Harbor, ME), Kras(G12D)+/- (Stock#

008179, Jackson Laboratories), and Trp53(R172H)+/- (Stock#01XM2, NCI Fredrick Mouse

Repository) mice were crossed to generate Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/-that gener-

ate pancreatic tumors [4]. At variable penetrance, mice develop papilloma of the face and ano-

genital region [4, 5]. Mice bearing papilloma with no evidence of pancreatic tumors and less

than 90d of age were accrued to this study. Masses were treated by injection of 25μg of the
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cyclic dinucleotide (CDN) c-di-GMP (Invivogen, San Diego, CA), Imiquimod (Invivogen) or

PBS vehicle, using a Hamilton syringe for small volume injections. In appropriate experiments,

CD8 T cells were depleted by i.p. injection of 50μg anti-CD8 antibody (YTS 169.4 –BioXCell,

West Lebanon, NH) one day before treatment and again 1 week later. Cell depletion was con-

firmed by quantitative flow cytometry of whole blood using fluorescent-conjugated antibodies

to CD3 and CD8 purchased from Ebioscience (San Diego, CA) and quantified using Accu-

Check fluorescent beads (Invitrogen, Carlsbad, CA) with samples analyzed on a BD LSRII flow

cytometer as previously described [8]. The SCCVII squamous cell carcinoma cell line was

kindly provided in 2014 by Dr. Lee (Duke University Medical Center, NC). Species identity

checks on these murine cell lines were performed murine-specific MHC antibodies, and were

tested for contamination within the past 6 months using a Mycoplasma Detection Kit (South-

ernBiotech, Birmingham, Alabama). 6–8 week old C3H mice were obtained from Charles

River Laboratories (Wilmington, MA) for use in SCCVII tumor treatment models. All mice

were monitored daily and tumor measurements taken every 2–3 days by staff trained in animal

care and use. For survival studies mice were euthanized on the day that their tumor exceeded

12mm in any diameter. No mice died before this endpoint was reached. Groups consisted of

6–8 mice per experimental group and all were euthanized for reaching the humane endpoint,

except those mice cured of tumor that were euthanized at approximately 60 days following

tumor challenge. Mice in these studies exhibited no overt symptoms through tumor progres-

sion or treatment and required no special treatments or housing.

Cytokine response

To assess the cytokine response of papilloma to STING ligand, papilloma were removed from

mice, dissected under sterile conditions into 1-2mm fragments and these were placed in com-

plete media in the presence or absence of 25μg/ml CDN. The papilloma explants were incu-

bated overnight at 37˚C then supernatants were collected for multiplex cytokine analysis.

Cytokine levels in the supernatants were detected murine multiplex bead assays (Life Technol-

ogies, Grand Island, NY) and read on a Luminex 100 array reader. Cytokine concentrations

for replicates of each sample were calculated according to a standard curve.

Immunohistology

Archived tissue blocks were obtained and 5μm sections were cut and mounted for analysis.

Tissue sections were boiled in EDTA buffer for antigen retrieval. Sections were first stained

with rabbit anti-STING (Cell Signaling Technologies, Danvers, MA) and primary antibody

binding was detected with HRP conjugated secondary antibodies followed by DAB develop-

ment and counterstaining. Images were acquired using a Leica SCN400 whole slide scanner.

For immunofluorescence staining, sections were stained with anti-CD3 (Spring Bio, Pleasan-

ton, CA) and primary antibody binding was visualized with AlexaFluor 568 conjugated sec-

ondary antibodies (Molecular Probes, Eugene, OR) and mounted with DAPI (Invitrogen,

Carlsbad, CA) to stain nuclear material. Images were acquired using a Zeiss Axio observer Z1

with attached Nuance Multispectral Image camera and software (Perkin Elmer, Wlatham,

MA). All images displayed in the manuscript are representative of the entire section and their

respective experimental cohort.

Patient selection

Representative blocks of archived tissue from 5 patients for each histology were obtained and

sectioned. In order to represent distinct types of oral dysplasia, we identified examples of

benign dysplasia, inflammatory conditions including lichen planus and candida ulcer, as well
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as examples of mild, moderate and severe dysplasia. To represent HPV-asssociated dysplasia

and premalignancy we identified examples of benign dysplasia, chondyloma, anal intraepithe-

lial neoplasia grade 3 (AIN3), and cervical intraepithelial neoplasia grade 3 (CIN3). Tissues

were sectioned and stained for STING as above. The degree of STING staining was scored by

the reviewing pathologist.

HPV+ and HPV- HNSCC array information

A panel of paraffin embedded tissue blocks was used to generate an array of tumors of mixed

HNSCC origins using a Perkin Elmer tissue microarrayer. Patient tumors were classified as

HPV+ if they scored as positive for p16 and originated in the oropharynx. Samples that were

negative for p16 and/or originated outside the oropharynx were scored as HPV-. Arrayed tis-

sues were sectioned and stained for STING as above. The STING staining score was deter-

mined by automated image analysis of tumors, grading the number of STING positive cancer

cells and their staining intensity to generate an expression score.

SCCVII expressing STING

SCCVII were transfected with a plasmid vector expressing murine STING (pUNO1-m-

STINGwt, Invivogen) and grown under antibiotic selection to generate stable clones express-

ing STING. To confirm expression, cells were lysed in RIPA buffer and denatured in SDS

loading buffer containing β2-mercaptoethanol, electrophoresed on 10% SDS-PAGE gels and

transferred to nitrocellulose. Blocked blots were probed overnight at 4˚C with primary anti-

bodies followed by HRP-conjugated secondary antibodies. Binding was detected using a Pierce

SuperSignal Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Rockford, IL) and

exposure to film. To confirm response to STING ligands, cells were left untreated, treated with

25μg CDN or with 10ng/ml IFNγ. 24hr later cells were analyzed by flow cytometry for expres-

sion of MHCI (H2Kk).

Statistics. Data were analyzed and graphed using Prism (GraphPad Software, La Jolla,

CA). Individual data sets were compared using Student’s t-test and analysis across multiple

groups was performed using ANOVA with individual groups assessed using Tukey’s

comparison.

Results

Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- mice were observed to develop papilloma at variable

penetrance, as has been previously reported [4, 5]. We found no association between papilloma

formation and progression of pancreatic adenocarcinoma in the mice, and generally papillo-

mas were present before progression to invasive carcinoma in the pancreas. Some mice devel-

oped more than one papilloma, with the location restricted to the periauricular and anogenital

regions. As reported in the literature, papilloma formation required both PDX-Cre and

Kras(G12D) genotypes suggesting a genetic origin [5]. Prior literature failed to find an infectious

origin for these papilloma [5], and in our colony, despite co-housing, papilloma were never

found in PDX-Cre- animals nor PDX-Cre+ Trp53(R172H)+/- mice that lacked Kras(G12D). Mice

were unperturbed by the papilloma, and though individual papilloma could attain large size,

we found no evidence of progression to invasive carcinoma, although tandem progression of

pancreatic adenocarcinoma in these mice precluded long-term follow up of the papilloma, per
se. Histological analysis of the papilloma demonstrated significant thickening of the skin with

formation of classical keratinizing papilloma as reported [5].

To determine whether the papilloma could be treated using STING ligands, mice bearing

papilloma were randomly assigned to treatment with a STING activating cyclic dinucleotide
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(CDN), or PBS vehicle control. In an example of a mouse with two small papillomas on the

face, one was treated by direct injection of CDN, and the other given vehicle control (Fig 1Ai).

These small CDN-injected papilloma rapidly reverted to skin with normal appearance follow-

ing treatment (Fig 1Aii). The site exhibited slight reddening, and histological analysis demon-

strated an inflammatory infiltrate in the subcutaneous space (Fig 1B). Interestingly, injection

of STING ligand into histologically normal skin at distant sites or in normal mice had no

observable effect (not shown). Thus, CDN injection appears non-toxic at these doses and

causes rapid, site-specific regression of experimental papilloma.

We then tested treatment of larger, 3-15mm papilloma with STING ligands. A single injec-

tion of 25μg CDN to each papilloma resulted in rapid loss of papilloma around the injection

site, but not full regression. Therefore, we developed a treatment course consisting of injec-

tions on d0 and d1, and again on d7 and d8, as the papilloma decreased in size (Fig 1Ci). Mice

were randomized to receive CDN, conventional treatment with the TLR7 ligand Imiquimod

or PBS vehicle. While Imiquimod did not significantly affect the size of the papilloma, CDN

treatment resulted in significantly reduced papilloma size (Fig 1Cii-iii) (p<0.001 days 4–15).

The CDN-treated papilloma showed evidence of blackening (Fig 1D), which was suggestive of

the hemorrhagic necrosis we have previously observed in STING ligand treatment of advanced

cancers [6]. Treatment resulted in complete regression of some papilloma, with skin returning

to normal appearance without skin breaks and with the return of hair. Histological examina-

tion of CDN-treated papilloma demonstrated regions of inflammatory infiltrate, but no major

areas of necrosis (not shown). These data demonstrate that in this mouse model of papilloma,

CDN is superior to Imiquimod and results in rapid local regression of papilloma.

To investigate whether the response involved adaptive immunity, papilloma were stained

for infiltrating CD3+ T cells. Few to no T cells were detected in PBS or Imiquimod-treated pap-

illoma (Fig 2Ai-ii), but 24 hours following CDN treatment CD3+ T cells were found associated

with the epidermis in the treatment site (Fig 2Aiii). In examples where mice exhibited more

than one papilloma, CDN treatment resulted in T cell infiltration in the treated papilloma with

poor infiltration to untreated sites (Fig 2Bi-ii). This is consistent with the observed site-spe-

cific response to CDN injection (Fig 1). T cells remained enriched in the epidermis of the

treatment site 14 days following treatment (Fig 2Biii). To determine whether T cells were

required for papilloma control by STING ligands, mice were depleted of CD8 T cells 1 day

prior to initiation of STING therapy (Fig 2Ci-ii). Control of papilloma by CDN treatment

occurred regardless of the presence of CD8+ T cells (Fig 2Ciii), consistent with an innate

rather than an adaptive immune control of disease. To measure innate cytokines that were

released following treatment with STING ligands, explants of papilloma were treated with

STING ligands and cytokine secretion was measured by multiplex bead assay. Treatment with

STING ligands resulted in a significant secretion of IFNβ, and a trend towards increased

TNFα secretion, but this did not reach statistical significance (Fig 2D) suggesting that as with

other innate stimuli used to treat papilloma, production of type I IFN may be a major mecha-

nism of action. To further understand the mechanism of innate rejection by CDN, we exam-

ined the cell populations that express STING in the papilloma. We know from our prior

studies that STING is not consistently expressed by all cell types; for example, pancreatic acinar

cells do not express STING, but the normal ductal cells of the pancreas and transformed pan-

creatic ductal adenocarcinoma cells express STING [6], and STING is widely expressed by

immune cell populations (reviewed in [9]). Histological staining of STING in the murine pap-

illoma demonstrated that the basal cell layer of the papilloma expresses STING but this is lost

on differentiation to keratinocyte layers (Fig 2E). However, endothelial cells and infiltrating

immune cells underlying the papilloma strongly express STING (Fig 2E), and these cells are

also the likely target for STING ligands [6, 7].

Premalignancy, malignancy and STING

PLOS ONE | https://doi.org/10.1371/journal.pone.0187532 November 14, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0187532


Fig 1. Treatment of murine papilloma with STING ligand. a) A Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- mouse exhibiting dual small

papilloma was i) injected with 25μg CDN in 5μl PBS to one lesion, and PBS alone to the other. ii) 18 hour later the CDN-injected lesion

Premalignancy, malignancy and STING
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To understand whether this expression pattern is shared in patients, we examined STING

expression in normal human tonsil and in a panel of human benign and premalignant oral

dysplasia. Representative examples are shown in Fig 3. Immunohistology demonstrated strong

expression of STING in cells of the tonsil (Fig 3Ai-ii), in particular, strong staining was

observed in the high endothelial venules (Fig 3Aiii), in cells within the light zone of the germi-

nal center that are consistent with follicular dendritic cells (Fig 3Aiv), and in cells within the T

cell zone that are consistent with interdigitating cells (Fig 3Av). STING expression was readily

detectible in immune cells underlying normal tonsillar epithelia, but was particularly high in

select tonsillar crypts (Fig 3Ai and vi), suggestive of ongoing local responses to bacterial or

viral exposure. In normal tongue, STING expression was restricted to the basal cell layer and

lost upon differentiation to keratinocyte layers (Fig 3Bi). In some areas of oral candidiasis

associated with benign thickening, STING expression was enhanced (Fig 3Bii). In mild or

severe dysplasia of the oral tongue, STING expression was mixed but did not increase with the

degree of dysplasia (Fig 3Biii-iv), and occasionally STING expression was not detected in the

squamous cells of severe oral dysplasia (Fig 3Biv). However, in each case, expression of

STING was readily detectable in endothelial cells and in immune cells in the submucosal layer

underlying the squamous layer. These data show that STING is expressed by basal cells in the

oral mucosa, which are a key target for HPV infection, but there is no significant association

with STING expression and the progression of dysplasia in the tongue or oral cavity.

While HPV is known to result in HPV-associated cancers in the palatine and lingual tonsils,

premalignant HPV+ neoplasia are rarely observed in either site. To evaluate STING expression

in HPV-associated premalignancies, we performed immunohistology of high grade cervical

intraepithelial neoplasia (CIN3), high grade anal intraepithelial neoplasia (AIN3), and condy-

loma, as well as benign hyperplasia and tissues from normal uterus as a control. The pattern of

normal tissue STING expression was very similar to that seen in the tonsil and tongue, with

predominant expression in the basal cells and underlying immune cells, and loss upon differ-

entiation into the keratinocyte layer (Fig 4A). STING was also expressed in all HPV-associated

dysplasia, with a trend towards increased expression of STING in CIN3 (Fig 4A and 4B). In

addition, in all cases, STING was expressed in endothelial structures and immune cells under-

lying the squamous epithelium. These data demonstrate that STING is expressed in basal cells

and expression is maintained or increased in these cells through HPV+ dysplastic progression.

To examine STING expression in advanced HPV+ and HPV- cancers, we stained a tissue

array from a panel of HNSCC from various anatomic sites. The tumors were classified as

HPV+ if they scored as positive for p16 by immunohistochemistry and originated in the oro-

pharynx. Samples that were negative for p16 and/or originated outside the oropharynx were

scored as HPV-. In all cases, STING was detectable in immune cells in the vicinity of the

tumor. However, HPV+ HNSCC exhibited high levels of STING expression in the cancer

cells (Fig 5Ai-ii), while HPV- HNSCC cancer cells exhibited low or absent STING expression

(Fig 5B i-ii). This expression was quantified using image analysis software according to the

proportion of cancer cells with high STING staining in the cytoplasm, confirming that HPV+

HNSCC exhibited significantly higher STING expression in cancer cells than HPV- HNSCC

(Fig 5C). These data suggest that HPV+ cancer cells preserve STING expression through

malignant progression from their basal cell origin, in contrast to HPV- HNSCC, which is

demonstrated regression. b) Papilloma treated with i) CDN or ii) PBS were harvested and examined by histology. c) i) Groups of Pdx-Cre+/-

Kras(G12D)+/- Trp53(R172H)+/- mice with large papilloma were randomized to receive treatment with 25μg CDN (n = 9), 25μg Imiquimod (n = 9),

or PBS vehicle (n = 3) injected on d0, 1, 7 and 8. ii) average size of papilloma through treatment. iii) Fold change in papilloma size through

treatment. d) Representative images of mice bearing papilloma treated as in c) imaged on d0, 1, 4, 7 and 8. Graphs show mean and

standard error of each measurement.

https://doi.org/10.1371/journal.pone.0187532.g001
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Fig 2. Infiltration of T cells following treatment with STING ligand. Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- mice exhibiting

papilloma were injected with i) PBS vehicle, ii) 25μg Imiquimod, or iii) 25μg CDN and the site harvested 24 hours later for

Premalignancy, malignancy and STING
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generally composed of keratinizing, non-basaloid epithelium that poorly express STING. This

is consistent with the loss of STING expression during normal squamous differentiation.

histology. Sections were stained for CD3 (pink) and DAPI nuclear counterstain (blue). Insets are an enlargement of regions of

interest. b) A Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- mouse exhibiting dual papilloma on opposite sides of the face was injected

with 25μg CDN to one lesion and the other left untreated. 24 hours later both papilloma sites were harvested and stained for

CD3 (pink) and DAPI nuclear counterstain (blue) on the i) treated and ii) untreated opposite side papilloma. iii) CD3 (pink) and

DAPI nuclear counterstain (blue) in a CDN-treated papilloma 14 days following initiation of treatment. Insets are an

enlargement of regions of interest. c) Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- mice exhibiting papilloma were left untreated or

depleted of CD8 T cells with 50μg anti-CD8 ip. 1 day prior to treatment with 25μg CDN injected on d0, 1, 7 and 8. Detection of

CD3+CD8+ T cells in the peripheral blood on d0 in representative i) NT or ii) CD8-depleted mice. iii) Average size of papilloma

through treatment. d) Explants of papilloma were left untreated or treated with 25μg/ml CDN overnight, and supernatants were

assessed for section of i) IFNβ and ii) TNFα by multiplex bead assay. e) Immunohistology for STING expression in Pdx-Cre+/-

Kras(G12D)+/- Trp53(R172H)+/- murine papilloma. Insets are an enlargement of regions of interest. Arrows depict STING+

endothelial cells (red arrows), STING+ immune cells (yellow arrows), STING+ basal cells (purple arrows), and STING-

differentiated non-basal epithelial cells (green arrows).

https://doi.org/10.1371/journal.pone.0187532.g002

Fig 3. STING expression in oral dysplasia. a) Staining for STING in normal tonsil. Highlighted areas include positive iii) endothelia, iv) follicular dendritic

cells, v) interdigitating cells, vi) tonsilar crypt. b) Staining for STING in i) benign dysplasia, ii) candida infection, iii) mild dysplasia/in situ, or iv) severe dysplasia.

https://doi.org/10.1371/journal.pone.0187532.g003

Premalignancy, malignancy and STING

PLOS ONE | https://doi.org/10.1371/journal.pone.0187532 November 14, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0187532.g002
https://doi.org/10.1371/journal.pone.0187532.g003
https://doi.org/10.1371/journal.pone.0187532


Fig 4. STING expression in HPV-associated disease. a) Examples of STING staining in i) normal uterus, ii) benign dysplasia,

iii) condyloma, iv) AIN3, v) CIN3. b) The degree of STING staining was scored on a scale from negative (-) to highly positive (+++).

The graph shows a summary of the proportion of each histology with each staining pattern.

https://doi.org/10.1371/journal.pone.0187532.g004
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These data would appear to suggest that therapies targeting STING would be ineffective in

HPV- HNSCC; however, host rather than cancer cell expression of STING has been shown to

be critical for therapies targeting STING [6, 10]. To test therapies in the absence of STING

expression in cancer cells, we made use of the murine SCCVII squamous cell carcinoma line

commonly used to model HNSCC in immune competent mice [11]. We identified that this

line lacks STING expression (Fig 6Ai) in contrast to our prior work with the Panc02 pancre-

atic adenocarcinoma cell line that expresses STING and can directly respond to STING ligands

in vitro [6]. To confirm lack of functional STING expression, SCCVII cells were treated with

CDN, which results in IFN-mediated upregulation of MHCI in responsive cells. SCCVII cells

cannot upregulate MHCI following direct treatment with CDN, but readily upregulate MHC

in response to IFNγ treatment (Fig 6Aii). Stable expression of STING in these cells restores

responses to direct treatment with STING ligands (Fig 6Ai-ii), confirming that unmodified

SCCVII cells cannot directly respond to STING ligands. Despite increases in MHC following

treatment with CDN, secretion of type I IFN was below the detection level of our assay, sug-

gesting that the engineered cancer cells are weakly responsive to in vitro stimulation. To evalu-

ate whether STING unresponsive SCCVII tumors could respond to treatment with STING

ligands in vivo, unmodified parental SCCVII tumors were established in immunocompetent

C3H mice and once established, treated with 2 daily injections of PBS alone or 25μg CDN in

PBS. CDN treatment resulted in a rapid, though transient tumor regression, which signifi-

cantly enhanced survival of these mice (Fig 6B). These data demonstrate that STING ligands

are effective where cancer cells lack STING expression.

Fig 5. STING expression in HPV+ and HPV- HNSCC. a) Examples of STING staining in two examples of

HPV+ HNSCC. b) Examples of STING staining in two examples of HPV- HNSCC. c) Intensity of STING

expression in HPV+ and HPV- HNSCC. Each symbol represents one patient. **** = p<0.0001.

https://doi.org/10.1371/journal.pone.0187532.g005
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show average tumor diameters and ii) overall survival.

https://doi.org/10.1371/journal.pone.0187532.g006
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Discussion

Despite anecdotal efficacy and good results in single arm studies, Imiquimod and type I IFN

have not demonstrated efficacy in randomized clinical studies of HPV-associated premalig-

nant disease. There remains a need for alternative agents to treat HPV-associated disease and

prevent progression into invasive cancer in high-risk groups. Ligands targeting the STING

pathway have been shown to activate potent inflammatory responses in vitro and in vivo, and

can result in dramatic regression of tumors in mice. We demonstrate in a mouse papilloma

model that the STING ligands are superior to Imiquimod for regression of papilloma, yet is

non-toxic to normal skin. We demonstrate that STING is expressed in the basal layer of nor-

mal tonsil and in tonsillar crypts, which are a presumed site of HPV infection. STING expres-

sion is preserved in HPV-associated premalignancies and in HPV+ HNSCC, but lacks

association with non-HPV oral dysplasia and HNSCC. Nevertheless, via effects on host cells

STING ligands can treat tumors derived from cancer cells that lack STING expression.

We acknowledge limitations inherent to the Pdx-Cre+/- Kras(G12D)+/- Trp53(R172H)+/- model of

papilloma, in particular the ongoing progression of tandem pancreatic tumors. However, the

genetic development of papilloma in these mice is similar to other squamous cell carcinoma

murine models. A number of systems are based on the K14 promoter to ensure activation of

oncogenes in basal keratinocytes. Mice with K14 driven expression of Cre bred with the same

Kras(G12D)fl/fl floxed mice used in our study, develop variably situated benign papilloma and addi-

tional cross with the same Trp53(R172H)fl/fl mice used in our study resulted in variably situated

invasive carcinoma [12]. Thus, it is possible that the papilloma in our Pdx-Cre+/- Kras(G12D)+/-

Trp53(R172H)+/- mice have the potential to become invasive carcinoma were it not for the domi-

nant progression of the lethal pancreatic tumors. Mutation of Ras family members and mutation

or loss of heterozygosity of Trp53 are commonly detected in models of mutagen-driven squamous

cell carcinoma [13], and the mutational profile was shown to be very similar to that of human

squamous cell carcinoma [13]. K14-driven expression of HPV16 E6 and E7 results in a systemic

epidermal dysplasia and low penetrance oncogenesis [14]; however, by combining this with the

4-NQO model of chemical carcinogenesis, which induces high penetrance formation of multifocal

papilloma that can progress to malignancy [15], the rate of progression can be significantly

advanced within the oral cavity (and esophagus) [16]. Similarly, cervical oncogenesis can be

driven in mice with K14-driven HPV16 E6 and E7 oncogenes via chronic local estrogen adminis-

tration [17, 18]. Models such as these would be ideal to further study STING ligands as therapeu-

tics that can treat papilloma in vivo and measure their ability to prevent the development of

invasive carcinomas in immune competent animals. However, in view of our data that STING is

expressed in the basal cell layer of the papilloma, but that this is lost on differentiation to keratino-

cyte layers, this may explain why HPV positive tumors express STING whereas HPV negative

tumors do not. HPV is known to infect the basal layer of stratified epithelium whereas non-HPV

squamous cell carcinoma tends to originate from the more differentiated keratinizing layers of the

epithelium. We propose that STING expression is linked to the basaloid squamous cell origin of

HPV+ cancer, and is not a result of HPV infection or due to expression of HPV-associated onco-

genes. Therefore, the presence or absence of STING expression in these alternative models will be

determined by the cell origin of oncogenesis rather than the presence of HPV genes.

While we show that STING is not frequently expressed in HPV- HNSCC, this does not nec-

essarily preclude ligands targeting STING as a therapeutic approach in HPV- HNSCC. We

have previously shown that STING expression in the host and not the cancer cell is critical for

responses to STING ligands and radiation therapy [6] and others have shown that host STING

is critical for responses to STING ligands alone [10]. As we demonstrate here using a STING-

HNSCC model, STING expression by the cancer cell is not essential for the response to
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STING ligands. We see similar responses to STING ligands in tumors where the cancer cells

express STING as in those where the cancer cells do not express STING [6]. In these invasive

carcinomas the mechanism of tumor control likely depends on TNFα and type I IFN produc-

tion by host cells, in particular via myeloid cells in the tumor environment, which in turn initi-

ate and propagate adaptive anti-tumor immune responses (6, 7). Recent data suggests that

cancer cell expression of STING is critical for the full effect of radiation therapy (19). While

this is not clear evidence for the therapeutic responsiveness of HPV positive head and neck

cancer, it is one possible explanation for the difference in response that is seen clinically. In the

papilloma model it is probable that the oncogene-driven benign papilloma lack the mutated

neoantigenic targets that would be necessary for an effective T cell-mediated adaptive immune

response [13]. Adaptive immune responses take time to develop and would be unlikely to

explain the rapid responses observed in the papilloma following administration of CDN. We

demonstrated that CDN were equally able to cause papilloma regression in the absence of CD8

T cells. Therefore, the rapid and sustained presence of T cells we observed in the CDN-treated

papilloma are likely due to treatment-induced inflammation, rather than mediating papilloma

regression, per se, and is consistent our data showing induction of type I IFN in the papilloma.

We previously demonstrated that early control of invasive carcinoma treated with STING

ligand was dependent on innate cytokines and was preserved in CD8-depleted mice as well as

Rag-/- mice lacking T cells [6]. However, the adaptive immune response, mediated by CD8 T

cells, was required for long term control in these experiments by preventing tumor recurrence

[6]. Therefore, the role of T cells may vary according to the timeline of response. Basal cell car-

cinoma can respond to direct treatment with innate cytokines [19], which can directly cause

pro-apoptotic and anti-proliferative effects on the hyperplastic basal cell layer [20, 21]. If

innate cytokines are the dominant mechanism of action, for example in Imiquimod mediated

rejection of actinic keratosis in immunosuppressed transplant recipients, adaptive immunity

may be unnecessary [22]. In the histology tissue sections we examined, STING was expressed

in immune cells in close contact with the basal cells and in close contact with both HPV+ and

HPV- tumors. We and others have shown that myeloid cells respond strongly to STING

ligands [6, 7], and these, rather than the dysplastic epithelial or cancer cells may be the target

cells for STING ligands administered in vivo. Thus, treatment with STING ligands may depend

on host cells producing TNFα and type I IFN, and these cytokines then act as effectors. How-

ever, we cannot at present exclude direct recognition of STING ligands by STING expressed in

abnormal basal cells as the cause of papilloma regression in our model. Further studies are nec-

essary to evaluate the mechanisms of papilloma control, the relative role of innate cytokines,

adaptive immunity and the relative response rates in STING+ and STING- cancers.

While our major goals in developing this therapy are preventing progression of premalig-

nant disease to lethal invasive cancer and treatment of invasive cancer, non-progressing

benign HPV-associated papilloma remain a significant public health concern. The non-abla-

tive rapid regression of papilloma following application of STING ligands could be highly

applicable to condyloma, verrucae, or warts. Moreover, since this therapy was effective without

onboard viral-associated genes, this therapy could be applicable to intraductal papilloma and

choroid plexus papilloma that are of unknown cause. We propose that STING represents a

novel innate immune target for treatment of benign dysplasia and premalignancy involving

basal cells, in addition to its emerging role as a therapy for invasive carcinomas.
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