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Abstract. A three-dimensional (3-D) convolutional neural network (CNN) trained from scratch is presented for
the classification of pulmonary nodule malignancy from low-dose chest CT scans. Recent approval of lung
cancer screening in the United States provides motivation for determining the likelihood of malignancy of
pulmonary nodules from the initial CT scan finding to minimize the number of follow-up actions. Classifier ensem-
bles of different combinations of the 3-D CNN and traditional machine learning models based on handcrafted 3-D
image features are also explored. The dataset consisting of 326 nodules is constructed with balanced size and
class distribution with the malignancy status pathologically confirmed. The results show that both the 3-D CNN
single model and the ensemble models with 3-D CNN outperform the respective counterparts constructed using
only traditional models. Moreover, complementary information can be learned by the 3-D CNN and the conven-
tional models, which together are combined to construct an ensemble model with statistically superior perfor-
mance compared with the single traditional model. The performance of the 3-D CNN model demonstrates
the potential for improving the lung cancer screening follow-up protocol, which currently mainly depends on
the nodule size. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.4.041308]
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1 Introduction
Annual lung cancer screening with low-dose chest CT has
recently been approved in the United States for the early detec-
tion and treatment of lung cancer for people at high risk, with
∼8.7 million Americans eligible for the screening.1 The costly
follow-up procedures provide motivation for the development of
systems for establishing the malignancy status of pulmonary
nodules from low-dose chest CT images. The purpose of this
paper is to determine the benefits of applying a machine learning
approach, three-dimensional (3-D) convolution neural network
(CNN) to the task of pulmonary nodule classification from low-
dose chest CT scans obtained from lung cancer screening,
through the performance comparison with traditional machine
learning approaches. In addition, the classifier ensembles of
the different combinations of the 3-D CNN and traditional
machine learning classifiers based on handcrafted 3-D image
features are also explored to study the key to the success of
the ensembles.

A typical automated system for lung cancer diagnosis
generally consists of two stages: pulmonary nodule detection
and pulmonary nodule malignancy classification. This paper
focuses on the latter stage, namely the discrimination between
benign pulmonary nodules and malignant pulmonary
nodules given the nodule location and size from the volumet-
ric low-dose chest CT scans acquired during the lung cancer
screening.

The conventional automated approaches to the discrimina-
tion between benign pulmonary nodules and lung cancer gen-
erally consist of four major stages:2 (1) nodule segmentation,
(2) image feature extraction from the segmented nodules, (3) fea-
ture selection based on the discriminative power of the features,
and (4) machine learning classifier training given the selected
features. Awide range of image features, such as gray-level dis-
tribution, size, morphology, and texture description, and various
types of machine learning models, including linear discriminant
analysis,3,4 support vector machines (SVM),5,6 massive training
artificial neural network,7 random forest,2 and distance-
weighted nearest neighbor (NN),6,8 have been explored in the
literature2,3,4,5,6,8 to address the problem of pulmonary nodule
classification. The fast volume growth rate of a nodule9 serves
as a reliable indicator for malignancy; however, it usually
requires more accurate image segmentation for the nodule vol-
ume measurement and at least two CT scans, which prolongs
diagnosis and exposes the patient to possible unnecessary
radiation exposure.5,6,8

The astounding revival of convolutional neural networks
(CNNs)10,11 since 2012, owing to the availability of large-
scale annotated image datasets12 and affordable parallel comput-
ing resources,13 has led to remarkable advances11,14–16,17 in sev-
eral computer vision applications of natural images and the birth
of deep learning, a new area of machine learning research. The
application of deep learning techniques to various automated
medical imaging analysis problems has also been explored in
a large number of published works,18 which can be summarized
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in the following three primary categories.19 First, off-the-shelf
deep features can be extracted directly from pretrained deep
learning networks and then fed into traditional machine learning
models, such as SVM and random forest, to address the detec-
tion or classification problems.20–23 Although the performance
of using only off-the-shelf deep features is normally inferior
to the traditional state-of-the-art features acquired by careful fea-
ture engineering,20–23 the ensemble of both can result in substan-
tial improvement.20–22 Second, fine-tuning deep learning models
pretrained on irrelevant and, typically, nonmedical images has
been demonstrated to outperform the state-of-the-art traditional
approaches.24,19 Third, effective deep learning models can also
be trained from scratch. It can be used either from end-to-
end13,19,25–27,28–34 or as a feature extractor,35,26,36,37 which
requires succeeding traditional approaches such as the conven-
tional classifier for classification applications or the deformable
shape model for segmentation applications.

Pulmonary nodule detection and classification from CT
scans is a 3-D problem, whereas most of the published work on
deep learning still adopts a two-dimensional (2-D) approach13,38

since the CNNs were originally proposed for 2-D natural images
with RGB color channels. To utilize the established network
architectures and pretrained network weights, the most common
solution is to map each 3-D volumetric CT scan into a three-
channel 2-D image by assigning three-orthogonal planes,
which can be axial, coronal, and sagittal slices20,23,24 or even
planes with random orientations13,19,25 to three different chan-
nels. It effectively reduces the network complexity, in terms
of the number of trainable weights and the required memory
for the computation as well as data storage, and reduces the
amount of the training data needed to avoid overfitting; how-
ever, the concern of the loss of 3-D information still exists.38

A number of recent publications have started to employ 3-D
CNNs in various types of medical imaging applications, includ-
ing pulmonary nodule28 and cerebral microbleed29 detection,
prostate finding30 and breast mass31 classification, and different
types of anatomy segmentations.32–36 A 3-D CNN has been
shown to achieve significant performance enhancement attrib-
uted to the consideration of contextual information along the
third-spatial dimension, compared with the corresponding 2-D
CNN, by Çiçek et al.32 for the segmentation of xenopus kidney,
Dou et al.29 for the detection of cerebral microbleeds, and Li
et al.31 for the classification of breast masses. For the application
of pulmonary nodule classification, no published work has been
found on the employment of a 3-D CNN, which may potentially
provide benefits due to the consideration of the full 3-D data.5

In the CNN proposed by Shen et al.,26,27 although 3-D image
patches around the nodules are directly fed into the input
layer, the network is still not completely 3-D because no
convolution operation or pooling operation is performed along
the third-spatial dimension, which is treated as the channel
dimension.

The matching of size distribution for malignant and benign
nodules in the validation set is necessary for a meaningful
assessment of automated systems for pulmonary nodule
classification as first noted in 20078 and also in Refs. 2 and 6.
Datasets with benign nodules dominating the small size range
and malignant nodules dominating the large size range are very
common in the published studies39,3,4,7,40 since the nodule malig-
nancy is highly correlated to nodule size. However, algorithm
performance evaluated on such a dataset can be misleading
and overly optimistic2,6,8 because a simple size classifier that

is based on nodule size thresholding only may achieve promis-
ing performance due to correctly classifying very large and very
small nodules. However, such a classifier would not be effective
for classifying the malignancy status of nodules of intermediate
sizes, which are the most frequent in lung cancer screening and
of most interest to clinical practice.

A balanced class distribution (i.e., an approximately equal
number of benign and malignant nodules in our case) is another
favorable property of the validation set for a classification prob-
lem evaluated using receiver operating characteristic (ROC)
curves. A large skew in class distribution in the validation set
can lead to an overly optimistic view of an algorithm’s perfor-
mance based on ROC curves.41 Therefore, it can be unfair to
directly compare the ROC curves of the algorithms evaluated
on the datasets with different amounts of skewness.

The reported performance of automated nodule classification
systems spans a very large range,2,3–8,24,35,26,27 with area
under the ROC curve (AUC) ranging from 0.502 to 0.93.27

However, the performance of studies is generally not compa-
rable due to two primary reasons.2 First, different datasets
were employed for the evaluation of each study; therefore, direct
comparison is meaningless.42 Additionally, as discussed above,
a biased validation set may lead to an unfair assessment of its
performance.19 Moreover, studies3,4,6,7,8 that focus on pulmonary
nodule classification from low-dose CT images acquired during
lung cancer screening are considered more challenging6,8 com-
pared with other studies2,5,24,35,26,27 that include standard-dose
CT images acquired during clinical practice due to the small
size of the present nodules and the high level of image
noise.6,7 The current scan protocol in lung cancer screening
(fixed CT scan resolution of 512 pixels across lungs) limits
the number of pixels available for analysis, especially for nod-
ules of small size, which are the most clinically relevant nodules
for early detection of lung cancer. Second, different evaluation
schemes were used. For instance, the malignancy status is con-
firmed by biopsy outcome in some studies,2,3,4,6,7,8,35 whereas, in
other studies,5,24,26,27 the malignancy status is established purely
based on malignancy ratings of radiologists after reviewing the
CT scans, where interobserver differences can be significant.2,24

In addition, the cross-validation strategy, such as leave-one-out
compared with fivefold cross-validation, may have a significant
impact on the resulting performance.19

In this paper, we applied a 3-D CNN trained from scratch to
the classification of pulmonary nodule malignancy using a
class-balanced and size-matched low-dose chest CT dataset,
where the malignancy status is pathologically confirmed. Since
the exact same training and validation dataset as well as the
evaluation scheme were employed in a previous study based
on handcrafted features and traditional machine learning models
by Reeves et al.,6 a direct performance comparison between the
3-D CNN and the conventional approaches to the pulmonary
nodule classification is possible. The ensemble models of
the different combinations of the 3-D CNN and traditional
machine learning models were also explored. Our hypothesis
is that the CNN can learn the 3-D image features automati-
cally and achieve at least the same classification perfor-
mance compared with the conventional approaches that are
based on handcrafted image features and traditional machine
learning classifiers. In addition, since the features learned
by a 3-D CNN should be complementary to the handcrafted
features, the ensembles should achieve further performance
improvement.
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2 Methods
In this study, we applied a 3-D CNN to a class balanced and size
matched low-dose chest CT dataset for the classification of
pulmonary nodule malignancy. The 3-D CNN was trained and
tested in the context of a fivefold cross-validation and was evalu-
ated based on the ROC curves. Several ensembles of the 3-D
CNN and traditional models were constructed to explore the
potential performance gain resulting from the combination of
complementary features and classifiers.

2.1 Nodule Image Preprocessing

Each nodule CT volume is cropped into a real space cube around
the nodule center with a margin of 20% of the nodule radius as
shown in Fig. 1 to include approximately the same volume for
background context as the nodule itself. The nodule location
(center) and size (radius) are calculated from automated
nodule segmentation.6,9 The cropped 3-D image region is then
resampled using tricubic interpolation to an isotropic fixed size
3-D image.

For these CT images, the x- and y-dimensions have the same
resolution and the z-dimension (slice spacing) usually has a
lower resolution. As detailed in Sec. 3.1, the pixels in the data-
set, in general, varied in a size range from 0.5 to 0.85 mm in the
x- and y-dimensions and from 1.0 to 2.5 mm in the z-dimension.
Two different resampled image sizes were independently
explored for the CNN network: 16 × 16 × 16 and 32 × 32 × 32.
For the 32 × 32 × 32 image size, oversampling occurred in all
three dimensions since none of the cropped image regions
had any dimension with >32 pixels in the original CT scan.
For the 16 × 16 × 16 image size, 27.6% of the cropped
image regions (corresponding to the largest nodules) had an
x − y-dimension >16 pixels; no cases had >16 pixels in the
z-dimension (the largest cropped region x–y dimension was
31 pixels (median ¼ 13) and the largest z-dimension was 15 pix-
els). Therefore, for these 27.6% cases, there was some amount of

undersampling (possible information loss), although oversam-
pling always occurred in the z-dimension.

The image pixel values are first converted to the Hounsfield
unit (HU) scale, then clipped between ½−800;200� HU consid-
ering the common image intensity distribution of pulmonary
nodules, and scaled by 1/200. The resulting image intensity dis-
tribution is in the range ½−4;1� with most of the nodule pixels
approximately zero-centered in the range ½−1;1�.

2.2 Convolutional Neural Network Architectures

ACNN10 is a specialized type of feedforward neural network (or
multilayer perceptrons), which incorporates convolution opera-
tions in at least one of its computational layers and is typically
applied to input data with grid-like topology, such as image
data.43 A feedforward neural network is made up of a number
of concatenated computational layers, where the computational
outcome, namely the feature map, of each layer is simply
a mathematical mapping of the output of the previous layer.
The composition of all computational layers contained in the
network together defines a mapping Y ¼ fðX; θÞ from the
input tensor X (3-D image matrix in our study here) to the output
tensor Y (1-D class vector in our study here), where θ is a set of
mapping parameters (or weights) to be learned during the train-
ing process.43

Two 3-D CNN architectures, CNN1 and CNN2, are consid-
ered in this paper. CNN1 takes an input image of size 16 × 16 ×
16 and consists of two 3-D convolutional (conv) layers followed
by two fully connected (FC) layers with one rectified linear units
(ReLU) layer inserted between each pair of adjacent hidden
layers as shown in Fig. 2. The spatial dimension and the number
of channels of the feature map in each hidden layer are denoted
at the bottom of the figure. The dimension and the number of
kernels as well as the size of padding and stride used in each
conv layer and the number of output neurons in each FC
layer are denoted at the top of the figure. CNN2 takes an
input image of size 32 × 32 × 32 and correspondingly employs
a deeper (one additional convolutional layer) and wider network
as shown in Table 1.

The presented CNN architecture, including the input volume
size, types of layers, network depth, kernel size, and the number
of kernels and neurons, was based on the architectures proposed
in several recent studies,13,19,27,28,29,36 taking into consideration
the size of the input image volume and the training set to avoid
overfitting. It is infeasible to employ many layers of feature
abstractions as discussed by Dou et al.29 since our task is a
binary classification problem with a relatively small size of
input 16 × 16 × 16 or 32 × 32 × 32. Moreover, less complicated
CNN architectures are better suited due to the small scale of the
training dataset. In fact, in several recent studies13,27,28,29,36 using
CNN trained from scratch for discrimination task in medical im-
aging processing, no more than three-convolutional layers are
used and the maximal number of convolutional kernels is 64.

2.3 Ensembles of Convolutional Neural Network
and Traditional Models

Classifier ensembles have been shown to consistently outper-
form a single best classifier,20,44,45 assuming sufficient diversity
among the included classifiers. The presented CNN model can
be considered complementary to the conventional machine
learning models20,24 because of two main reasons. First, tradi-
tional models are built upon handcrafted features that were

Fig. 1 Cropped 3-D CT volume used as the input to the CNN.
(a) 16 × 16 × 16 resampled isotropic CT volume centered at a nodule
and (b–f) five axial slices at the corresponding axial level.
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designed empirically with respect to gray-level distribution,
size, morphology, and texture pattern, whereas the features
employed by the CNN are learned by the network automatically.
Second, the design of the two types of classifiers is also differ-
ent, namely, they target optimizing different types of loss func-
tions with CNN potentially providing significantly increased
model capacity. Therefore, ensembles of CNN and traditional
models have the potential to give rise to remarkable performance
enhancement.

Two types of traditional nodule classification models, the
size-universal model and size-binned model presented by
Reeves et al.,6 are used in combination with the CNN model
to construct ensemble models in this paper. The size-universal
model consists of one classifier that is trained in the class-bal-
anced and size-matched dataset and is applicable to classifying
nodules of any size. The size-binned model consists of several
classifiers, each of which is trained with and applicable to nod-
ules of a specific size range. Both the three-bin model [including

B6 for diameter of (5, 7) mm, B8 for diameter of (7, 9) mm, and
B12 for diameter of (9, 14) mm] and the two-bin model [includ-
ing B6 for diameter in (5, 7) mm and B8 + 12 for diameter in
(7, 14) mm] were presented in Ref. 6.

The same set of handcrafted image features is used in the
aforementioned two types of traditional nodule classification
models. The feature set consists of 46 3-D image descriptors
in terms of morphology, density, curvature, and margin gradient.
The details on the definition and generation of the image fea-
tures are described by Reeves et al.6 Four traditional classifiers,
including distance-weighted NN,46 logistic regression (LOG),47

support vector machine with polynomial function kernel
(SVMp), and support vector machine with radial basis function
kernel (SVMr),48 were explored for each of the two models.

The CNN model and the traditional models are combined
into ensemble models by a second-stage classifier20,23 as shown
in Fig. 3. Before the combination, the classification scores pre-
dicted by each single model are first standardized to zero-mean

Fig. 2 The presented CNN1 architecture. The spatial dimension and the number of channels of the fea-
ture map in each hidden layer are denoted on the bottom. The dimension and the number of kernels as
well as the size of padding and stride used in each conv layer and the number of output neurons in each
FC layer are denoted on the top.

Table 1 Description of two 3-D CNN models. The kernel size, padding size, and stride size are the same for all spatial dimensions; thus, only one
number is specified in the table, e.g., kernel size of 3 indicates 3 × 3 × 3 for 3-D network. A conv layer with n kernels is denoted as conv-n, with
default kernel size of 3, padding of 1, and stride of 1. An FC layer with n output neurons is denoted as FC-n. A ReLU nonlinearity layer is inserted
after each conv layer and the first FC. All parameter values other than the default are specified explicitly below. The same output layer Softmax +
Cross entropy is used for both models and not shown below.

CNN models Input Architecture

CNN1 Size: 16 × 16 × 16 conv-16 + conv-64 (stride of 3) + FC-64 + FC-2

Channels: 1

CNN2 Size: 32 × 32 × 32 conv-32 + conv-64 (kernel of 4 and stride of 2) + conv-64 (stride of 3) + FC-64 + FC-2

Channels: 1
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and unit-variance. A second-stage classifier then takes the stand-
ardized scores as input features and generates classification
scores to serve as the final prediction of the ensemble model.

3 Experiments
For the verification of the proposed hypothesis stated at the end
of the introduction, three primary experiments were conducted.
First, the two CNN models were trained and evaluated using
fivefold cross-validation. Second, the 3-D CNN1 model was
then compared with the four size-universal traditional models
presented by Reeves et al.6 Since exactly the same training–
validation–testing partition and evaluation schemes were
employed, the effectiveness and strength of the 3-D CNN
model can be demonstrated. Third, the classifier ensembles con-
structed with different combinations of single classifiers were
compared to explore the key to performance enhancement in
classifier ensembles.

3.1 Dataset Description

The dataset was constructed by combining CT scans from two
large lung cancer screening studies, the National Lung Cancer
Screening Trial (NLST)40 and Early Lung Cancer Action
Program (ELCAP).39 Only one instance of a nodule was used
per subject. The status of malignant nodules was confirmed
by either biopsy or histology of resected tissue, while the status
of benign nodules was established based on a negative outcome
of the biopsy or histology of resected tissue or by 2 years of
no clinical change determined by a board certified radiologist.

The dataset is class-balanced with equal size distribution for
benign and malignant nodules. The same number of benign and
malignant nodules, namely 163 of each, was included. The size
distribution for the benign nodules is the same as that for the
malignant nodules: 44.79% nodules with a diameter between
5.0 and 7.0 mm, 28.22% nodules with a diameter between
7.0 and 9.0 mm, and 26.99% nodules with a diameter between
9.0 and 14.0 mm. Only solid nodules and solid components of
part-solid nodules are considered, as in the study by Reeves
et al.6 A summary of the distribution of the nodule sizes and
classes is given in Table 2.

The CT scans were obtained using a wide range of scanners,
including Siemens, GE medical systems, Philips and Toshiba
scanners, and image resolutions, where 95.4% CT scans have
in-plane resolution in the range of [0.5, 1.0] mm and 98.2%
CT scans have vertical resolution in the range of [1.0, 2.5]
mm. More details about the process of dataset construction
are described in Ref. 6.

3.2 Training and Testing

The dataset is randomly divided into five approximately equal-
sized folds with balanced size and class distribution. The five-
fold partition is the same as that used by Reeves et al.6 to ensure
fair comparison. During the fivefold cross-validation, each fold
is iteratively tested while the other four folds are further split to
be used for the training set (85%) and validation set (15%). The
performance of the five testing folds is averaged and considered
the overall performance of the testing model.

Data augmentation is employed during the training of CNN
models to reduce overfitting. Each nodule volume is rotated into
eight different orientations, including four rotations by 90 deg
about the z-axis and two rotations by 180 deg about the x-axis
(in this case, it can also be viewed as rotation about the y-axis) as
indicated in Fig. 4, which results in an augmented dataset of
326 × 8 ¼ 2608 nodule volumes. Many additional augmenta-
tions through other angle rotations or mirroring are possible.
Rotations of 90 deg about the x- or y-axes were avoided due

Fig. 3 The construction of the ensemble models. Models of four different categories are differentiated by
colors: size-universal single models (pink), size-binned single models (green), size-universal ensemble
models (yellow), and size-binned ensemble (blue) models. For the inputs to the second-stage classifiers,
the dashed line indicates the respective input may or may not be used.

Table 2 The distribution of nodule sizes and classes.

Number
of

nodules

Min. size
(diameter
in mm)

Max. size
(diameter
in mm)

Average
size

(diameter
in mm)

Median
size

(diameter
in mm)

Malignant 163 5.01 14.00 8.05 7.21

Benign 163 5.02 13.91 8.01 7.27

All 326 5.01 14.00 8.03 7.22
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to the difference in resolution between the x-, y-, and z-dimen-
sions; x- and y-resolutions of all scans are <1.0 mm, while
z-resolution of all scans is ≥1.0 mm and 60% scans are
≥2.0 mm. The augmented data are not used during the testing.

The weights in the conv layers are initialized using random
Gaussian distributions with a standard deviation of 0.01, and the
weights in the FC layers are initialized according to the Xavier
algorithm as suggested by Glorot and Bengio.49 In each round of
the fivefold cross-validation, the network is trained up to 6000
epochs with the mini-batch size of 16 nodule image volumes.
Early termination is adopted to reduce overfitting based on
the performance tested in the validation set.

Stochastic gradient descent with a moment of 0.9 is used for
the training. To avoid overfitting, L2 regularization and dropout
(only for the first FC layer) with a dropout ratio of 0.5 are incor-
porated. The initial learning rate η0 and weight decay parameter
C are hyperparameters tuned by random search in the range
η0 ∈ ½1 × 10−5; 1 × 10−2� and C ∈ ½1 × 10−4; 1 × 10−2� based
on the performance tested in the validation set. The learning
rate is decreased according to the strategy defined as

EQ-TARGET;temp:intralink-;e001;63;354ηðnÞ ¼ η0
ð1þ 1 × 10−4nÞ0.75 ; (1)

where ηðnÞ is the learning rate at training iteration of n.
The CNN is implemented and evaluated using Caffe

framework50 on 5 Intel(R) CPUs 2.6 GHZ with CentOS Linux
OS and 2 NVIDIA Tesla K40c GPUs.

3.3 Ensembles

As is summarized in Table 3 and Fig. 3, 18 ensemble models are
constructed using different combinations of seven single models
(M1 to M7). To demonstrate the benefits resulting from the
incorporation of the 3-D CNN model into the ensembles of
other traditional models, the ensemble models are constructed
in pairs, one with 3-D CNN and the other without 3-D CNN,
as in M8 versus M9, M10 versus M11, M12 versus M13,
M3 versus M14, M15 versus M16, M17 versus M18, M19 ver-
sus M20, M21 versus M22, M23 versus M24, and M6 versus
M25. Different combinations of the single models are explored
with gradual exclusion of models with inferior performance,
such as LOG, SVMr, and NN, to illustrate the effects of the
number and quality of single models on the overall ensemble
performance.

For the selection of the second-stage classifier, nine different
classifiers including KNNs,46 LOG, linear SVM,51 SVMp,

SVMr, decision tree, random forest,52 AdaBoosted tree,53 and
Gaussian naive Bayes54 are explored, with hyperparameters
in each classifier tuned using the validation set. For each ensem-
ble model, the classifier that achieved the best performance
(averaged over fivefolds) in the validation set is selected as
the second-stage classifier. The training and evaluation of the
classifier ensembles are implemented using the Scikit-learn
python package.55

3.4 Evaluation

The ROC curve averaged over five cross-validation folds for
each classifier is plotted, and the respective area under the
curve (AUC) and standard deviation (σ) are reported. As a
measure of the difference between a pair of ROC curves, the
statistical significance p-value (with significance level of 0.05)
of the difference is computed based on the DeLong test.56 The
p-values for five cross-validation folds are combined using
Fisher’s method.57,58 The statistical tests on ROC curves are
implemented using pROC R package.59

4 Results
The performance comparison for two presented 3-D CNN mod-
els, CNN1 and CNN2, is summarized in Table 4. CNN1 outper-
forms CNN2; thus, it is used in the construction of ensemble
models listed in Table 3. The performance of 7 single models
and 18 ensemble models is summarized in Table 3. The columns
marked by “+” indicate the classifiers included in the respective
model on each row. The performance of each model is summa-
rized in six rightmost columns, including overall AUC� σ,
AUC� σ for each size bin and the p-values for the ROC differ-
ence compared with M3 (SVMp) and M6 (two-bin). M3 and M6
are selected as references because they are the best traditional
size-universal single model and the best traditional size-binned
model, respectively.

The comparison of the ROC curves of seven single models
(M1 to M7) is shown in Fig. 5. Size-universal models (M1 to
M5) are plotted in a solid line, and size-binned models (M6 to
M7) are plotted in a dashed line. The comparison of the ROC
curves of four size-universal ensemble models (M8, M9, M12,
and M13) is shown in Fig. 6. Two single models M3 SVMp and
M5 CNN are also shown for reference since they are the best
traditional size-universal single model and the best size-univer-
sal single model, respectively. The models (M5, M9, and M13)
that include CNN are plotted in solid lines, and the models (M3,
M8, and M12) that are built only with traditional models are
plotted in dashed lines. The comparison of the ROC curves
of three size-binned ensemble models (M15, M16, and M25)
is shown in Fig. 7. Two single models M6 two-bin and M5
CNN (size-universal) are also shown for reference since they
are the best traditional single model and the best size-universal
model, respectively. The models (M5, M16, and M25) that
include CNN are plotted in solid lines, and the models (M6
and M15) that are built only with traditional models are plotted
in dashed lines. For the clarity of the figures, not all ensemble
models in Table 3 are included in the plots.

5 Discussion
The task of 3-D nodule analysis in lung cancer screening differs
from the traditional tasks in 2-D imaging in that there is a very
wide range of nodule sizes, resulting in the number of pixels on
target for a nodule varying by a factor of 57 in our dataset. The

Fig. 4 Data augmentation by rotation. (a) Four orientations on the
axial (x − y ) plane and (b) two orientations along the vertical (z)
direction.
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difference in resolution is shown in Figs. 8(g) and 8(n). With the
CNN1 (16 × 16 × 16) model, the largest 27.6% of the nodules
were slightly under-sampled, with most of these nodules in the
B12 group, while there was no under-sampling for the CNN2
(32 × 32 × 32) model. This may account for the difference in
performance between the two models as shown in Table 4.
The CNN1 model had better performance for the smaller nod-
ules in the B6 and B8 groups, while the CNN2 model exhibited
better performance for the larger and more detailed nodules in
the B12 group. A better classification model can be constructed
without any retraining by simply using CNN1 for nodules in B6
and B8 and using CNN2 for nodules in B12, and it achieves
overall AUC� σ as 0.761� 0.084, although the ROC differ-
ence is not statistically significant with respect to CNN1.

The size-universal single classification model of 3-D CNN
(M5) has been shown to achieve better AUC compared with
the size-universal single models (M1 to M4) constructed
using handcrafted features and traditional machine learning
approaches as shown in Fig. 5 and Table 3, although the
ROC difference between the 3-D CNN model and the best tradi-
tional model M3 is not statistically significant (p-value 0.256).
Since the exact same fivefold training and testing partition and
evaluation scheme were used, the direct performance compari-
son demonstrates the strength of the 3-D CNN approach with
the benefits of eliminating manual feature design and selection,
which relies on task-specific expert knowledge and can be rather
time consuming. Moreover, due to the much smaller scale of
available training examples compared with computer vision
applications in natural images,11,14,15,16 it is reasonable to
hypothesize that better performance can be obtained by the
3-D CNN model if more training examples are available, and,
thus, deeper network architectures can be utilized, based on the
relation between the performance and the dataset size observed
in other studies.60,27

The size-binned single models (M6 and M7) outperform all
the size-universal single models (M1 to M5) as shown in Fig. 5
and Table 3, although the ROC difference between the best size-
binned model M6 and the best size-universal model 3-D CNN
M5 is not statistically significant (p-value 0.444). It suggests
that, given more training examples, a size-binned 3-D CNN
model may potentially achieve better performance than its size-
universal counterpart because of the advantage of considering
the nodules of different size ranges separately. Additionally,
in the presented size-universal 3-D CNN model, to ensure a uni-
form target object scale that is usually considered helpful for the
training of CNNs, nodules of different sizes are scaled to image
volumes of the same size in pixels. This results in very different
image representations of nodules and nearby structures, such
as more blurring effect and larger scale of the attached vessels
for small nodules, as shown in Fig. 8, and, thus, has a potential
negative effect on the final classification performance. Unfortu-
nately, due to the limited size of current dataset, a size-binned

Table 4 The summary of performance of two 3-D CNN models, CNN1 and CNN2. The overall AUC and AUC for each size bin are averaged over
fivefolds with corresponding standard deviation (σ) reported below.

CNN models AUC for B6� σ AUC for B8� σ AUC for B12� σ Overall AUC� σ

CNN1 0.734� 0.051 0.804� 0.089 0.682� 0.119 0.732� 0.052

CNN2 0.649� 0.058 0.738� 0.108 0.761� 0.082 0.698� 0.047

Fig. 5 The comparison of ROC of single models M1 to M7. The size-
universal models (M1 to M5) are plotted in solid lines, and the size-
binned models are plotted in dashed lines (M6 to M7).

Fig. 6 The comparison of ROC of size-universal ensemble models
M8, M9, M12, and M13. Two single models M3 SVMp and M5
CNN are also shown for reference. Models that include CNN are plot-
ted in solid lines, and the models that are built only with traditional
models are plotted in dashed lines.

Fig. 7 The comparison of ROC of size-binned ensemblemodels M15,
M16, and M25. Two single models M6 2-bin and M5 CNN (size-
universal) are also shown for reference. Models that include CNN are
plotted in solid lines, and the models that are built only with traditional
models are plotted in dashed lines.
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3-D CNN cannot be trained to converge, as only 44.79% of the
training set can be used to train a 3-D CNN for size bin B6,
28.22% of the training set for bin size B8, and 26.99% of
the training set for bin size B12. Finally, for all models shown
in Table 3, the best overall AUC is 0.735 for B6, 0.823 for B8,
and 0.830 for B12, which is consistent with the classification of
small nodules being more challenging6,8 due to the larger num-
ber of target pixels for larger nodules.

The incorporation of the 3-D CNN model into the ensembles
of other traditional models always leads to performance
enhancement compared with the ensemble counterparts without
the 3-D CNN as shown in Table 3 and Figs. 6 and 7 (solid lines
versus dashed lines). The models with the best performance in
each of the three categories shown in Table 3, including M5 for
size-universal single model, M13 for size-universal ensemble
model, and M25 for size-binned ensemble model, all include
3-D CNN in its composition, whereas the simple combination
of traditional models, such as M8, M10, M12, M15, M17, M19,
M21, and M23, can only lead to negligible performance
improvement compared with the best single model, with no stat-
istical significance, as shown in Table 3. The ROC differences

between the best performance ensemble models and the respec-
tive best performance traditional single model, i.e., M13 versus
M3, and M25 versus M6, are statistically significant (p-values
<0.01).

The results of the ensemble models demonstrate that the
diversity among the individual models in the composition is
the key to the success of the ensembles, which is consistent
with the discussion by Kittler et al.44 and Kuncheva and
Whitaker.45 As illustrated in the examples given in Figs. 9
and 10, misclassifications by different single classifiers (M1
to M7) often do not overlap; consequently, different single clas-
sifiers usually exhibit complementary advantages in recognizing
different image patterns, leading to an optimized classifier
ensemble. Since all of the traditional models explored in this
paper are built upon the same set of handcrafted image features
and trained with the same training data, the diversity among
them is limited. On the contrary, the 3-D CNN model takes
the raw image volumes as inputs and learns the features auto-
matically by the network itself, which often provides comple-
mentary information about the image patterns to be classified
compared with the traditional models,20,24 and, thus, can

Fig. 8 (a–e) Five axial CT slices sampled from the input 3-D volume of a nodule (nodule 1) with diameter
of 5.1 mm, (f) the segmentation of nodule 1 shown in 3-D axial view, (h–l) five axial CT slices sampled
from the input 3-D volume of a nodule (nodule 2) with diameter of 12.09 mm, (m) the segmentation of
nodule 2 is shown in 3-D axial view, (g, n) axial slices cropped from original CT before rescaling,
corresponding to (c, j) respectively. Since the nodules are first cropped based on nodule size and
then scaled to the same image size, the image appearance of the nodule and nearby structures
(such as vessels) can be rather different.

Fig. 9 Examples of malignant nodules N1 to N4 (a–h) shown on the first row and benign nodules N5 to
N8 (i–p) shown on the second row. For each nodule, the central axial slice from the CT scan is shown on
the left, and the segmentation of each nodule is shown in 3-D axial view on the right.
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potentially be harnessed to improve the overall ensemble
performance.

Excluding single models with inferior performance from
the ensemble models can also be beneficial to the ensemble

performance as can been seen in the comparison of M13 versus
M9 and M25 versus M16 in Table 3. On the other hand, exclud-
ing more single classifiers with inferior performance may be
detrimental to the ensemble performance due to the decreased

Fig. 10 The model response output by seven single models (M1 to M7) and the best ensemble model
(M25) for nodules N1 to N8 as defined in Fig. 9. Malignant nodules N1 to N4 (a–d) are shown in the left
column and benign nodules N5 to N8 (e–h) are shown in the right column. For the purpose of direct
comparison, the classifier response output by each model has been normalized to zero mean and
unit standard deviation. A larger value of response indicates a higher probability for malignancy predicted
by the model.
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diversity as can been seen in the comparison of M14 versus M13
in Table 3. Therefore, the number of single models to be included
needs to be optimized in the construction of ensemble models.

This paper is the first study to employ a 3-D CNN trained
from scratch to address pulmonary nodule classification from
low-dose chest CT. Due to the consideration of the full 3-D
image volume, it has the potential for better performance32,31,29

compared with other work based on 2-D CNN.35,24 In addition,
unlike using a pretrained CNN in the study by Buty et al.,24

training a CNN from scratch eliminates the constraint on
using the same network architecture as the pretrained CNN,
which may be suboptimal for the specific task of interest.21,22

However, in the situation where the computation resource is lim-
ited and the training data are insufficient to train a deep neural
network, which is often true for automated applications in medi-
cal imaging,21 the use of 2-D CNN becomes attractive because it
avoids the need for training from scratch and allows the utiliza-
tion of off-the-shelf deep features and fine-tuning from pre-
trained networks that were trained with large-scale annotated
natural image datasets.12,21

To quantify the benefit of using a 3-D CNN architecture for
pulmonary nodule classification, a 2-D CNN model, CNN3,
with comparable network architecture to the best performing
3-D CNN model, CNN1, was also evaluated. The 2-D network
maps each 3-D volumetric image into a three-channel 2-D image
by assigning three orthogonal views (axial, coronal, and sagittal
views centered at the nodule) to different input channels follow-
ing the approach used in Refs. 20, 23, and 24. Thus, the 2-D
architecture is described by: conv-16 (stride of 1) + conv-64
(stride of 3) + FC-64 + FC-2, which compares with CNN1 as
described in Table 1. The same dataset (including the same
image preprocessing, data augmentation, and cross-validation
split) and the training strategy as described in the Secs. 2 and
3 were used for the 2-D model. The hyperparameters, including
the initial learning rate η0 and weight decay parameter C, were
retuned for the 2-D model based on the performance tested in
the validation set. The 2-D network achieved an overall AUC of
0.688, which is less than the overall AUC for the 3-D network of
0.732; a difference of 0.44. CNN3 may not be the optimal 2-D
architecture for this task; other 2-D architectures were consid-
ered, but none of them outperformed the 3-D model CNN1.

The malignancy status of nodules was established in this
paper by either biopsy or histology of resected tissue, which
should be considered a much more reliable truth reference com-
pared with the subjective malignancy ratings of radiologists.
The nodules exhibit a significant intraclass variation in image
appearance on CT scans, i.e., a wide variation among the same
class (benign or malignant), as demonstrated by the examples
listed on the same row in Fig. 9, whereas the interclass variations
can be small, i.e., the appearance of the benign and malignant
nodules can be rather similar, which makes the visual discrimi-
nation between benign and malignant nodules challenging, as
demonstrated by the examples listed in the same column in
Fig. 9. As shown in the observer study in LUNGx challenge,2

the interobserver variations among experienced thoracic radiol-
ogists in the task of malignancy rating even on diagnostic chest
CT are significant, with AUC ranging from 0.70 to 0.85. As
a result, the presented study cannot be directly compared with
the studies using subjective malignancy ratings as the truth
reference.5,24,26,27

In future work, there are two possible extensions to consider.
First, different ensemble classifiers can be trained for nodules of

different size ranges to take advantage of the fact that the per-
formance for some single classifier is superior for one size bin
but inferior for another size bin. Second, the complementary
information learned by conventional classifiers can be incorpo-
rated into the CNN by feeding predictions of conventional
models or handcrafted features as input to the FC layers and
then trained from end-to-end to replace the use of ensemble
classifiers.

6 Conclusion
This paper presents a 3-D CNN trained from scratch for the chal-
lenging task of classifying pulmonary nodule malignancy from
low-dose chest CT obtained from the annual screening of lung
cancer. The dataset consisting of 326 nodules is constructed with
balanced size and class distribution with the malignancy status
pathologically confirmed. The experiments were designed to
replicate those in the study by Reeves et al.6 using the exact
same fivefold training and testing partition, truth definition,
and evaluation scheme for the direct performance comparison
of the 3-D CNN and conventional approaches. The results dem-
onstrate three primary advantages of applying 3-D CNN to pul-
monary nodule classification. First, both the 3-D CNN single
model (AUC of 0.732) and the ensemble models with 3-D
CNN (AUC of 0.780) outperform the respective counterparts
constructed using only traditional machine learning models
(AUC of 0.708 for the best single traditional model and
AUC of 0.748 for the best ensemble model constructed without
CNN). Second, 3-D CNN models eliminate the procedure of
manual feature design and selection that are required by the tra-
ditional machine learning models and rely heavily on domain-
specific expert knowledge. Third, complementary information
of nodules can be learned by the 3-D CNN and the conventional
models, which together are combined to construct an ensemble
model with statistically significant performance improvement
(p-value <0.05) compared with any single traditional model in
its composition. Although the current best performance model
with AUC of 0.780 is insufficient for direct diagnosis in
the clinical practice, the automated prediction outcome may
be useful in improving the lung cancer screening follow-up
protocol, which currently mainly depends on the nodule size.
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