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Abstract

Objective—To determine if optimized imaging protocols across multiple computed tomography 

(CT) vendors could result in reproducible radiomic features calculated from an anthropomorphic 

phantom.

Methods—Materials with varying degrees of heterogeneity were placed throughout the lungs of 

the phantom. Twenty scans of the phantom were acquired on 3 CT manufacturers with chest CT 

protocols that had optimized protocol parameters. Scans were reconstructed using vendor-specific 

standards and lung kernels.

The Concordance Correlation Coefficient (CCC) was used to calculate reproducibility between 

features. For features with high CCC values, Bland-Altman analysis was also used to quantify 

agreement.

Results—The mean Hounsfield unit (HU) was 32.93 HU (141.7 to −26.5 HU) for the rubber 

insert and 347.2 HU (−320.9 to −347.7 HU) for the wood insert. Low CCC values < 0.9 were 

calculated for all features across all scans.

Conclusions—Radiomic features that are derived from the spatial distribution of voxel 

intensities should be particularly scrutinized for reproducibility in a multi-vendor environment.
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Introduction

Technological advancements in medical imaging hardware and software have enabled 

devices, such as Computed Tomography (CT) scanners, to be particularly helpful in 

depicting tumor compositional and morphological features with high quality1–5. Such 

advances have enabled the rapid progression of fields like radiomics. For example, in 

patients with lung adenocarcinoma, Coroller, et al.6 reported 35 radiomic features to be 

prognostic for distant metastasis and 12 features that predict survival. However, any value 

and practicality of noninvasively quantifying tumor characteristics is largely dependent on 

the repeatability and reproducibility of quantitative imaging features across medical imaging 

devices6–19, 32. As such, prior to the clinical application of radiomic features for patient care, 

they must be found to be repeatable and reproducible under the conditions that might be 

expected in clinical practice or a clinical trial with multiple scanners or sites6–19, 32.

To date, publicly available retrospective patient image datasets and phantoms have been used 

to identify robust radiomic features. With test/retest CT scans of 56 non-small cell lung 

carcinoma (NSCLC) patients Hunter, et al.11 identified machine-robust image features, but 

also reported that reproduciblity and redundancy of radiomic features depended on both the 

CT scanner and CT image type. To further understand the influence of CT scan parameters 

on radiomic feature reproducibility Mackin, et al.12 compared radiomic features calculated 

for NSCLC tumors from 20 patients with those calculated for 17 scans of a rectangular 

radiomics phantom. He showed that the variability calculated from different CT scanners is 

comparable to that found in CT images of NSCLC tumors. In a retrospective clinical trial 

Solomon, et al.19 reported on the degree to which radiation dose and iterative reconstruction 

algorithms affect the robustness of radiomic features extracted from tumors. However, the 

study was only conducted on General Electric (GE) CT scanners.

Although these studies highlight that variability in radiomic features exist, they are limited 

in several respects. In particular, several of the studies have not incorporated the effect of the 

latest advancements in CT hardware and software such as automated tube current 

modulation (TCM) and iterative reconstruction. All modern TCM systems are designed to 

automatically modulate the radiation dose and tube current according to a user-selected 

image quality reference parameter and the patient size/attenuation profile35,36. The 

underlying functionality varies across manufacturers, but the overall intent is to reduce noise 

variation across the inhomogenous body habitus. Due to concerns surrounding the stochastic 

risks from exposure to low doses of ionizing raidation dose, patient based test/retest studies 

used to determine radiomic feature robustness may not be practical in a multi-vendor 

environment12. Phantoms may be the most practical means to determine robustness, but the 

phantoms currently being used are either too homogenous in texture or unrealistic in shape 

(i.e., have a square or rectangular cross section) 12 for modern CT systems. Inserts 

consisting of variable textures12 were incorporated into an adult-sized anthropomorphic 

phantom to address these limitations. The anthropomorphic phantom consists of attenuation 

properties similar to human tissue and provides for a realistic context with which to evaluate 

modern CT scanners. Hence, the purpose of this study was to investigate if imaging 

protocols optimized for image quality and radiation dose across multiple CT vendors would 

result in reproducible radiomic features.
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Materials and Methods

Scanning Parameters and Anthropomorphic Phantom

Twenty scans of the hybrid anthropomorphic phantom (Figure 1a, b) were acquired on three 

CT manufacturers: a 64 detector row CT scanner (Discovery CT750 HD; GE Healthcare, 

Milwaukee, Wisconsin, USA), 32 detector row CT scanner (Somatom Definition AS, 

Siemens, Forchheim, Germany), and a 16 detector row scanner (Big Bore Brilliance, Phillips 

Healthcare, Cleveland, OH, USA). All scans were acquired using modified CT chest 

protocols that used manufacturer-specific TCM. The scan parameters common to each 

scanner were: tube potential of 120 kVp, 0.7s rotation time, large body filter, 512 × 512 

matrix, and a display field of view of 39 cm. All scans were reconstructed using the 

manufacturer specific standard and lung kernels and a reconstruction slice thickness of 5 

mm. The imaging parameters are listed in Table 1.

The anthropomorphic phantom consists of five simulated tissue types: soft tissue, lung, 

brain, spinal cord, and bone. The tissue types were engineered to produce photon attenuation 

values within 1% of those for real tissues for the bone and the soft tissue substitutes, and 3% 

for the lung tissue substitute over the range of 30–20 000 keV20. Although the 

anthropomorphic phantom contains different tissue types, two objects with varying degrees 

of heterogeneity, shredded rubber and sycamore wood, were introduced. Feature values 

extracted from the rubber insert were previously demonstrated to span the range of feature 

values found in human tissue, especially NSCLC12. The rubber insert presented with a 

porous, random and strong texture, whereas the wood insert consisted of a regular, repeated 

texture. While these exact patterns may not be found within human tumors, the enhancement 

or smoothing resulting from different reconstruction kernels will be similar to what is 

observed in heterogenous or homogenous tissues. For example, a NSCLC tumor may consist 

of several different densities and sharp discontinuities at the boundaries producing a wide 

range of Hounsfield unit (HU) values. A lung reconstruction algorithm would seek to over 

enhance such boundaries, whereas a standard algorithm would tend to reduce the noise and 

offer a smoother looking image. Similar observations would be noted with the chosen 

inserts. The inserts placed within the anthropomorphic phantom are shown in Figure 1a.

Quantitative Image Analysis

The first set of features evaluated in this study included the mean and median HU of the 

rubber and wood inserts. The second sets of features evaluated are based on the spatial 

distribution of voxel intensities or CT numbers (i.e. HU values) of a CT image. These 

features included the neighborhood gray-tone difference matrix (NGTDM)21 and the Gray 

Level Co-occurrence Matrix (GLCM)38. A total of 27 features were used in this study, Table 

2 provides a listing. Both features were chosen due to their common use in radiomics 

research investigations22–26.

The IBEX radiomics software package (MD Anderson) was used to calculate the NGTDM 

and GLCM features27. For each insert, ROIs were defined as shown in Figure 1c. The 

NGTDM features were calculated using a 3D image matrix27. The intensity range and 

number of bins were determined by evaluating the histogram for each respective insert. As a 

Mahmood et al. Page 3

J Comput Assist Tomogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



result, for both inserts, the number of bins used was 32. The intensity range varied with 

reconstruction kernel and insert type. The neighborhood matrix size was 3 in the X-

dimension. The slice thickness was set to 5mm, as shown in Table 1. A second set of 

features derived from the GLCM were also computed using IBEX. The IBEX algorithm 

calculates features in 3D in thirteen unique directions27. The distance between pixels d, was 

set to a value of d = 1.

Reproducibility Analysis

The variation in HU for each insert across all scanners and scan types was first explored. 

Then, while applying vendor specific standard or lung kernels to each scan, the 

reproducibility of the NGTDM and GLCM features was investigated. The scans were 

acquired with optimized acquisition parameters where the CTDIvol, voxel dimensions, 

pitch, and kVp were nearly equivalent. The following six combinations of scans were 

included in the reproducibility analysis: GE standard kernel (GE-SK) vs. Siemens standard 

kernel (S-SK), GE-S vs. Phillips standard kernel (P-SK), and S-SK vs. P-SK. The same 

sequence was used for the lung kernel (LK): GE-LK vs S-LK, GE-LK vs. P-LK, and S-LK 

vs. P-LK.

In a separate analysis, the reproducibility of NGTDM and GLCM features calculated on 

scans reconstructed with sharp lung and smoother standard kernels was explored. For this 

analysis, only the reconstruction kernel was allowed to vary within and between each CT 

vendor. Reproducibility of the following scan combinations was considered: GE-SK vs. GE-

LK, GE-SK vs. S-LK, GE-SK vs. P-LK; S-SK vs. GE-LK, S-SK vs. S-LK, S-SK vs. P-LK; 

and P-SK vs. GE-LK, P-SK vs. S-LK, and P-SK vs. P-LK.

Statistical Analysis

The Lilliefors test was used to test the normality of all features extracted from the phantom 

scans. A p value of less than 0.05 indicated statistical significance. The Concordance 

Correlation Coefficient (CCC) 29–31 was used to identify the most reproducible radiomic 

features. The CCC, as proposed by Lawrence and Lin, describes the extent to which paired 

measurements diverge from perfect agreement, reflecting both systemic differences between 

repeated measurements and variability11, 28,29.

The CCC is defined as:

Where  are the variances for each class, μ1 and μ2 are the group means. As 

suggested by McBride, et al., reproducible features with CCC > 0.9 were defined. A CCC 

value of greater than 0.9 indicated highly correlated values, whereas those below 0.9 were 

considered to be poorly correlated29–31. Kernels and scanning parameters that produced 

highly correlated results (CCC > 0.9) were identified. All the statistical analysis was 

performed by software written in MATLAB R2014b on a Microsoft Windows system.
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A Bland-Altman analysis and regression analysis was performed next. Due to the large 

number of possible combinations, plots with regression and the Bland-Altman analysis were 

limited to the features found to have the highest CCC values. Bland-Altman plots are scatter 

plots with the vertical axis showing the difference between two variables versus against their 

average in the horizontal axis32. The mean difference and 95% limits of agreement were 

reported on each plot. If features from any two scans were comparable, then the differences 

on the Bland-Altman plot would be small or near zero32. A negative value implied that 

feature values are greater on one particular scan method relative to another. A positive value 

indicated lower feature values relative to any particular scan method. The reproducibility 

coefficient (RPC) was calculated as 1.96 * standard deviation. The coefficient of variation 

(CV) was also reported within the Bland-Altman plots32.

Results

The normality test revealed that most NGTDM- and GLCM-derived features appeared to 

have normal distribution (p < 0.05). For those NGTDM and GLCM features found to be 

non-normal, a log-normal transformation was performed. Figure 2 shows the distribution of 

HU values for each insert across all scanners. With the rubber insert, the average HU across 

all scans was found to be 32.93 HU with a range of 141.7 HU to −26.5 HU. The mean HU 

of the sycamore wood insert was found to be −347.2 HU with a range of −320.9 HU to 

−347.7 HU.

Figure 3 shows the reproducibility of radiomic features between images reconstructed with 

vendor specific standard kernels. Within the heatmaps, a lighter color indicates a higher 

CCC value, which suggests greater reproducibility. The corresponding numerical CCC 

values of these radiomics features are overlaid onto the heatmaps. Figure 3a shows the CCC 

values for the rubber insert and Figure 3b shows the values for the wood insert. For both the 

rubber and wood inserts, all radiomic features were found to have CCC values that were less 

than 0.9. Similarly, Figure 4 compared the reproducibility of radiomic features across CT 

vendors, but for scans reconstructed with vendor specific lung kernels. In this case as well, 

all radiomic features were not found to be reproducible across vendors, with CCC < 0.9.

When comparing reproducibility of radiomic features extracted from an image reconstructed 

with a standard kernel to the same features extracted from an image reconstructed with a 

lung kernel, we found that the CCC is less than 0.9 for all features and across all vendors, 

see Figure 5a and 5b.

Regression and Bland-Altman analysis were performed next on the features within Figure 3 

and Figure 4 that had the largest CCC values. Figures 6 and 7 show the Bland-Altman 

analysis with limits of agreement, RPC, CV and the regression analysis for the GLCM 

homogeneity and GLCM SumEntropy feature calculated for the wood insert. The GLCM 

homogeneity feature had a CCC of 0.387 between Phillips-SK and Siemens-SK scans. The 

mean difference was 0.0009, (95% CI, −0.02 to 0.02), with a CV of 3.2% and RPC of 0.02. 

The CCC of the GLCM SumEntropy feature of the Phillips-SK and Phillips-LK was CCC = 

0.785. The Bland-Altman plot in Figure 7 shows that the mean difference for GLCM 

SumEntropy feature (CCC = 0.785) was slightly less than zero at 0.02 (95% CI, −0.05 to 
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0.01) with a CV of 0.33% and RPC of 0.03. The slight negative mean difference suggests 

that the GLCM SumEntropy feature may have had, on average, higher values on the 

Phillips-LK as compared to the Phillips-SK scans.

Discussion

The anthropomorphic phantom used in this study consisted of realistic tissue attenuation 

properties and components that are reproducible over time and position (i.e., the phantom is 

not compressed over time). For such an idealized case, we have demonstrated that with 

optimized scanning parameters across CT vendors, where voxel dimensions, CTDIvol, pitch, 

kVp and reconstruction kernels were similar, NGTDM and GLCM radiomic features were 

found to be not reproducible. The importance of deriving robust, reproducible and repeatable 

quantitative metrics from CT scans is critical for the progress of radiomics and personalized 

medicine. With increasingly large numbers of publications emerging about the connection 

between underlying tumor phenotype and radiomic features, strong consideration must be 

paid to the robustness of radiomic features, particularly NGTDM and GLCM features. In 

addition to publications demonstrating linkage of features to tumor phenotype, an equal 

number of publications are demonstrating the impact that CT acquisition scan parameters 

have on robustness of radiomic features6–16. One solution being proposed for robust 

radiomic features has been the standardization of CT acquisition methods40. However, as our 

results show here, even while using nearly identical scanning parameters for three CT 

scanners, radiomic features based on the NGTDM and GLCM methods are not consistent 

across the scanners used in this study. There are specific intrinsic factors within each scanner 

that cannot be compensated for.

The original inception of CT scanners was not for them to be accurate, quantitative 

measuring devices as found in calibration style laboratories32. Consistency of the 

fundamental unit of measurements for all CT scanners, the HU, is dependent on a number of 

items, such as the scanner detector characteristics and design, calibration methods, and 

quality control/maintenance41. Additional uncontrollable factors that vary from patient to 

patient and limit the accuracy of HU values is the fundamental physics of x-ray interaction 

that result in beam hardening artifacts41. As an x-ray beam hardens, the effective energy 

increases, resulting in voxel intensity or HU values that deviate from expectations. Hence, 

standardization of imaging protocols alone may not be enough to ensure robust NGTDM 

and GLCM radiomic features in a multi-vendor environment. For radiomics to progress, the 

engineering of features that are specific for textures found on 3D medical images, 

particularly CT images may be necessary, and/or robust correction factors may need to be 

implemented to ensure accuracy within a multi-vendor environment.

Although the data presented here is unique in that it is derived from anthropomorphic 

phantoms, some limitations must be discussed. Due to available resources, this study 

included only three scanners and a subset of image acquisition parameters that are used 

clinically. Siemens CT scanners offer many additional kernels that are used for different 

types of exams (e.g., body, head, etc.); however, we focused primarily on a kernel intended 

to be used with chest CT exams. Further, only images reconstructed with traditional filtered 

back projection were considered. Iterative reconstruction (IR) algorithms are increasingly 
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being used in practice and are known to produce images with differing textures19,34. 

However, due to the proprietary nature and continuous evolution of these IR algorithms, 

developing a consistent set of radiomics features that accurately describe the tumor 

microenvironments, or developing correction factors from images reconstructed using IR 

may not be practically feasible. Additionally, the inserts used within this study were of a 

fixed, small size, and ROIs used to calculate texture parameters did not include borders of 

the objects. Hence, the small ROI and small size of the inserts may have introduced bias into 

the final results. A follow up study will aim to investigate the impact of ROI size on feature 

reproducibility and also reasons as to why within vendor kernels presented with higher CCC 

values for some features. Lastly, although the anthropomorphic phantom consists of 

materials that simulate the attenuation properties of human tissue, it is static, of one size, and 

issues, such as patient motion, could not be accounted for.

In conclusion, we sought to determine if standardized imaging protocols could produce the 

most robust radiomic features. However, even under optimized scanning conditions with an 

idealized anthropomorhpic phantom, the NGTDM and GLCM features extracted from CT 

images were not reproducible across scanners. Radiomic features that are derived from the 

spatial distribution of voxel intensities should be particularly scrutinized for accuracy.

Acknowledgments

Source of Funding:

This research was funded in part through the NIH/NCI Cancer center support grant P30 CA008748.

References

1. Yu M, Stott S, Toner M, et al. Circulating tumor cells: approaches to isolation and characterization. J 
Cell Biol. 2011; 192(3):373–382. [PubMed: 21300848] 

2. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic 
response. Nature. 2013; 501(7467):346–354. [PubMed: 24048067] 

3. O’Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy 
response, resistance, and clinical outcome. Clin Cancer Res. 2015; 21(2):249–257. [PubMed: 
25421725] 

4. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. 
Radiology. 2015; 278(2):563–577. [PubMed: 26579733] 

5. Alizadeh AA, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor 
heterogeneity. Nat Med. 2015; 21(8):846–853. [PubMed: 26248267] 

6. Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in 
lung adenocarcinoma. Radiother Oncol. 2015; 114(3):345–350. [PubMed: 25746350] 

7. Figueiras RG, Padhani AR, Goh VJ, et al. Novel oncologic drugs: what they do and how they affect 
images. RadioGraphics. 2011; 31(7):2059–2091. [PubMed: 22084189] 

8. Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT 
images. IEEE T Bio-Med Eng. 2008; 55(7):1822.

9. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumor phenotype by noninvasive 
imaging using a quantitative radiomics approach. Nature Communications. 2014; 5:4006.

10. Boedeker KL, McNitt-Gray MF, Rogers SR, et al. Emphysema: effect of reconstruction algorithm 
on CT imaging measures. Radiology. 2004; 232(1):295–301. [PubMed: 15220511] 

11. Hunter LA, Krafft S, Stingo F, et al. High quality machine-robust image features: Identification in 
nonsmall cell lung cancer computed tomography images. Med Phys. 2013; 40(12):121916. 
[PubMed: 24320527] 

Mahmood et al. Page 7

J Comput Assist Tomogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of 
radiomics features. Invest Radiol. 2015; 50(11):757–65. DOI: 10.1097/RLI.0000000000000180 
[PubMed: 26115366] 

13. Yang J, Zhang L, Fave XJ, et al. Uncertainty analysis of quantitative imaging features extracted 
from contrast-enhanced CT in lung tumors. Comput Med Imag Grap. 2016; 48:1–8.

14. Fave X, Cook M, Frederick A, et al. Preliminary investigation into sources of uncertainty in 
quantitative imaging features. Comput Med Imag Grap. 2015; 44:54–61. 2015. 

15. Bartel ST, Bierhals AJ, Pilgram TK, et al. Equating quantitative emphysema measurements on 
different CT image reconstructions. Med Phys. 2011; 38(8):4894–4902. [PubMed: 21928661] 

16. Gallardo-Estrella L, Lynch DA, Prokop M, et al. Normalizing computed tomography data 
reconstructed with different filter kernels: effect on emphysema quantification. Eur Radiol. 2016; 
26(2):478–486. [PubMed: 26002132] 

17. Zhang J, Bruesewitz MR, Bartholmai BJ, et al. Selection of appropriate computed tomographic 
image reconstruction algorithms for a quantitative multicenter trial of diffuse lung disease. Journal 
of Computer Assisted Tomography. 2008; 32(2):233–237. [PubMed: 18379308] 

18. Wang, Y., Keller, BM., Zheng, et al. SPIE Medical Imaging. International Society for Optics and 
Photonics; 2013. Texture feature standardization in digital mammography for improving 
generalizability across devices; p. 867026-867026.

19. Solomon J, Mileto A, Nelson RC, et al. Quantitative Features of Liver Lesions, Lung Nodules, and 
Renal Stones at Multi–Detector Row CT Examinations: Dependency on Radiation Dose and 
Reconstruction Algorithm. Radiology. 2015; 279(1):185–94. [PubMed: 26624973] 

20. ATOM. Atom dosimetry verification phantoms. 2015

21. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man 
Cybern Syst Hum. 1989; 19(5):1264–1274. (1989). 

22. Vince DG, Dixon KJ, Cothren RM, et al. Comparison of texture analysis methods for the 
characterization of coronary plaques in intravascular ultrasound images. Comput Med Imag Grap. 
2000; 24(4):221–229.

23. Mendez AJ, Tahoces PG, Lado MJ, et al. Computer-aided diagnosis: Automatic detection of 
malignant masses in digitized mammograms. Med Phys. 1998; 25(6):957–964. [PubMed: 
9650186] 

24. Chicklore S, Goh V, Siddique M, et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT 
imaging by texture analysis. Eur J Nucl Med Mol I. 2013; 40(1):133–140.

25. Yu H, Caldwell C, Mah K, et al. Coregistered FDG PET/CT-based textural characterization of head 
and neck cancer for radiation treatment planning. IEEE T Med Imaging. 2009; 28(3):374–383.

26. Cook GJ, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor textural features in 
non–small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl 
Med. 2013; 54(1):19–26. [PubMed: 23204495] 

27. Zhang L, Fried DV, Fave XJ, et al. ibex: An open infrastructure software platform to facilitate 
collaborative work in radiomics. Med Phys. 2015; 42(3):1341–1353. [PubMed: 25735289] 

28. Ganeshan B, Abaleke S, Young RC, et al. Texture analysis of non-small cell lung cancer on 
unenhanced computed tomography: initial evidence for a relationship with tumour glucose 
metabolism and stage. Canc Imag. 2010; 10(1):137–143.

29. Lin LI-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 
45:255–268. [PubMed: 2720055] 

30. Lin LI-K. A note on the concordance correlation coefficient. Biometrics. 2000; 56:324–325.

31. McBride GB. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation 
Coefficient. NIWA Client Report: HAM2005-062. 2005

32. Raunig DL, McShane LM, Pennello G, et al. Quantitative imaging biomarkers: A review of 
statistical methods for technical performance assessment. Stat Methods Med Res. 2015; 24(1):27–
67. [PubMed: 24919831] 

33. Bushberg, JT., Siebert, JA., Leidholdt, EM., et al. The Essential Physics of Medical Imaging. 2nd. 
Williams and Wilkins; Philadelphia: p. 2002

Mahmood et al. Page 8

J Comput Assist Tomogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Solomon JB, Christianson O, Samei E. Quantitative comparison of noise texture across CT 
scanners from different manufacturers. Medical Phys. 2012; 39(10):6048–6055.

35. Bushberg, JT., Boone, JM. The essential physics of medical imaging. Lippincott Williams & 
Wilkins; 2011. 

36. Kalra MK, Maher MM, Toth TL, et al. Techniques and applications of automatic tube current 
modulation for CT 1. Radiology. 2004; 233(3):649–657. [PubMed: 15498896] 

37. Lambin P, van Stiphout RG, Starmans MH, et al. Predicting outcomes in radiation oncology—
multifactorial decision support systems. Nature Reviews Clinical Oncology. 2013; 10(1):27–40.

38. Haralick RM, Shanmuga K, Dinstein I. Textural features for image classification. IEEE Trans Syst 
Man Cybern. 1973; 3:610–621.

39. Armato SG, Meyer CR, McNitt‐Gray MF, et al. The Reference Image Database to Evaluate 
Response to Therapy in Lung Cancer (RIDER) Project: A Resource for the Development of 
Change-Analysis Software. Clin Pharmacol Therapeut. 2008; 84(4):448–456.

40. Nyflot MJ, Yang F, Byrd D, et al. Quantitative radiomics: impact of stochastic effects on textural 
feature analysis implies the need for standards. Journal of Medical Imaging. 2015; 2(4):041002–
041002. [PubMed: 26251842] 

41. Hsieh, J. Computed tomography: principles, design, artifacts, and recent advances. Bellingham, 
WA: SPIE; 2009 Nov. 

Mahmood et al. Page 9

J Comput Assist Tomogr. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a), a cross section of the anthropomorphic phantom with the rubber and wood inserts placed 

throughout the lungs. #104 is the rubber insert. #107 is the sycamore wood. (b), axial CT 

scan of the phantom cross section displayed on the left. The regions of higher electron 

density are brighter in the image and the regions of lower electron density are not as bright. 

(c) Cross section shows the placement of ROIs on each of the inserts.
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Figure 2. 
Left: Distribution of the HU value for the rubber insert. Right: Distribution of HU for the 

sycamore wood insert for all scans. Each HU value was extracted using equivalent sized 

ROIs and at the same slice locations. SK: Standard Kernel, LK: Lung Kernel.
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Figure 3. 
Heatmap consisting of CCC values for the radiomic features evaluated in this study. The 

CCC (0 to 1) was computed from repeat CT images acquired with vendor specific standard 

reconstruction kernels for (a) the rubber insert and (b) wood insert. The lighter the shade of 

gray, the higher the CCC value.
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Figure 4. 
Heatmap consisting of CCC values for the radiomic features evaluated in this study. The 

CCC (0 to 1) was computed from repeat CT images acquired with different reconstruction 

kernels for (a) the rubber insert and (b) wood insert. The lighter the shade of gray, the higher 

the CCC value.
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Figure 5. 
Heatmap consisting of CCC values for the radiomic features evaluated in this study. The 

CCC (0 to 1) was computed from repeat CT images acquired with different imaging settings 

for (a) the rubber insert and (b) wood insert. The lighter the shade of gray, the higher the 

CCC value.
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Figure 6. 
Comparison of GLCM Homogeneity feature calculated on images of the wood insert from 

Phillips and Siemens CT scans. The scans were reconstructed using the vendor-specific 

standard kernel. Left: Scatter plot with regression fit and confidence intervals plotted. Slope 

= 0.33 and intercept = 0.39. Right: Bland-Altman plot with lower and upper limits. RPC = 

reproducibility coefficient. CV = coefficient of variation.
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Figure 7. 
Comparison of GLCM SumEntropy feature calculated on images of the wood insert from 

Phillips CT scans. The scans were reconstructed using the vendor-specific standard and lung 

kernels. Left: Scatter plot with regression fit and confidence intervals plotted. Slope = 0.90 

and intercept = 0.47. Right: Bland-Altman plot with lower and upper limits of agreement. 

RPC = reproducibility coefficient, CV = coefficient of variation.
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Table 2

NGTDM and GLCM features used in this study.

Feature Name Category

1 Busyness

NeighborIntensityDifference3
(Computed from a 3D image matrix)

2 Coarseness

3 Complexity

4 Contrast

5 Texture Strength

6 Autocorrelation

GrayLevelCooccurenceMatrix3
(Computed from a 3D image matrix)

7 Cluster Prominence

8 Cluster Shade

9 Cluster Tendency

10 Contrast

11 Correlation

12 Difference Entropy

13 Dissimilarity

14 Energy

15 Entropy

16 Homogeneity

17 Homogeneity 2

18 Information Measure Corr1

19 Information Measure Corr2

20 InverseDiffMomentNorm

21 InverseDiffNorm

22 InverseVariance

23 MaxProbability

24 SumAverage

25 SumEntropy

26 SumVariance

27 Variance

Description of features can be found in Amadsun and King in ref. 21, Haralick, R. M., et al., ref. 38 and Aerts, H. et al., ref. 9.
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