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Abstract

Hybrid all-atom/coarse-grained (AA/CG) simulations of proteins offer a computationally efficient 

compromise where atomistic details are only applied to biologically relevant regions while 

benefitting from the speedup of treating the remaining parts of a given system at the CG level. The 

recently developed CG model, PRIMO, allows a direct coupling with an atomistic force field with 

no additional modifications or coupling terms and the ability to carry out dynamic simulations 

without any restraints on secondary or tertiary structures. A hybrid AA/CG scheme based on 

combining all-atom CHARMM and coarse-grained PRIMO representations was validated via 

molecular dynamics and replica exchange simulations of soluble and membrane proteins. The 

AA/CG scheme was also tested in the calculation of the free energy profile for the transition from 

the closed to the open state of adenylate kinase via umbrella sampling molecular dynamics 

method. The overall finding is that the AA/CG scheme generates dynamics and energetics that is 

qualitatively and quantitatively comparable to AA simulations while offering the computational 

advantages of coarse-graining. This model opens the door to challenging applications where high 

accuracy is required only in parts of large biomolecular complexes.
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INTRODUCTION

Molecular dynamics (MD) simulations are frequently employed to investigate the structure 

and dynamics of biomolecular systems as a complement to experiments.1, 2 There are 

numerous successful applications,3–6 but conventional all-atom MD simulations of solvated 

bio-systems remain still very expensive, limiting the ability to fully match biological spatio-

temporal scales.

One approach to addressing this limitation is to simplify the underlying system by means of 

coarse-graining (CG) approaches, in which several atoms are grouped into a single bead. A 

number of CG models for proteins with varying resolutions have been developed over the 

past years.7, 8 However, the loss in chemical details often hinders quantitative studies of 

many complex biological processes, such as molecular recognition for which the explicit 

inclusion of atomistic details remains a must. Often such processes are localized to small 

portions of a given system so that multiscale all-atom/coarse-grained (AA/CG) 

approaches9–15 could be used, where the biologically most relevant region of a system is 

treated at the atomic level of detail, while the rest of a given system is represented only at 

the CG level. Such a hybrid approach would preserve the advantages of both AA and CG 

approaches, i.e., providing accuracy where it matters while still reducing the computational 

cost.

AA/CG schemes have been proposed previously. One popular approach involves modeling 

an atomistic solute immersed in CG or dual-resolution AA/CG solvent16–21 environments, 

mainly to improve the scalability of atomistic simulations. For instance, Shi and co-

workers22 have employed force-matching technique to simulate an atomistic ion channel in a 

CG membrane and in CG water. However, extensive parametrization was required to balance 

AA and CG interactions. Similarly, Orsi and co-workers19, 23 have conducted dual-

resolution MD simulations of atomistic proteins in CG water or CG membrane 

environments. In another similar effort, the PACE force field couples a united-atom protein 

model with MARTINI CG water and/or MARTINI CG lipids.24–26 In PACE, cross-

resolution parameters were optimized by targeting experimental thermodynamic quantities. 

On the other hand, Zacharias et al.27 have developed a hybrid united atom/coarse-grained 

(UA/CG) model for proteins where the interactions of protein main chain sites are based on 

the GROMOS united atom force field. However, non-bonded interactions between side 

chains and between side- chain and main-chain sites are calculated at the level of a CG 

model using the knowledge-based ATTRACT28 potential.

Other efforts have attempted to directly mix AA and CG models at the macromolecular level 

with combinations of AA models with the popular MARTINI29 model being the most 

common approach. Rzepiela and co-workers30 have described a scheme to combine 

MARTINI29 and GROMOS 53a631 force fields by employing massless virtual interaction 

sites on relevant atomistic groups. This is conceptually similar to the center-of-mass 

particles employed in adaptive resolution hybrid schemes where there is no direct interaction 

between CG and AA atoms. Instead, the force acting on each virtual site is distributed to its 

constituent atoms weighted by their masses. In hybrid simulations with virtual sites, the 

unbalanced electrostatic screening from the CG water may induce abnormal behaviors. As a 
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remedy, Wassenaar and co-workers 32 attempted to mimic the electrostatic coupling using 

different relative dielectric constants with more advanced models. Following this scheme, 

Sokkar and co-workers33 found that the conventional CG model (MARTINI) couples too 

strongly with the AA model and that it leads to complete unfolding of a test protein within a 

very short time. To circumvent this problem, they introduced position-restrained AA water 

layers in the hybrid simulation. However, free energy calculations suggest that the restrained 

solvent layer still results in an over-stabilization of the protein native structure, which would 

limit applications to the study of protein dynamics with this scheme. Recently, Zavadlav and 

co-workers34 have reported an adaptive resolution scheme (AdResS)14, 35–37 simulation of 

protein G in multiscale water, in which water molecules dynamically change resolution 

between an atomistic (SPC)38 and coarse-grained (MARTINI) model. Zhang and Chen39 

reported a multiscale enhanced sampling (MSES) method where CG models are coupled 

with AA ones through restraint potentials in order to enhance the sampling of complex 

atomistic protein energy landscape and a similar approach was also followed by separate 

work by Kidera et al.40, 41 (also called MSES) and Roux et al.42 Finally, the Zuckerman 

group43 has developed a mixed AA/CG scheme for proteins based on a library-based Monte 

Carlo (LBMC) approach44, in which protein side chain configurations are pre-calculated and 

stored in libraries, while bonded interactions along the backbone are treated explicitly.

There are fewer attempts to apply intramolecular hybrid AA/CG models where different 

parts of a given protein are modeled at different resolutions. One such example is given by 

the Carloni group15 where MD simulations of proteins were carried out using a mixed 

resolution model. In this approach, the AA region was modeled by the GROMOS96 force 

field with only polar hydrogens explicitly considered while a simplified Gō potential was 

used for the CG region. An interface region was introduced between the AA and CG regions 

in order to bridge the large discontinuity between fine-grained and CG descriptions. Solvent-

protein interactions were only treated in terms of stochastic and frictional forces, 

proportional to the particle velocity and mass. The need for setting up the interface region 

and the use of a Gō potential to stabilize the CG part of the model limit practical 

applications of this approach.

A full integration of AA and CG models into a fully dynamic hybrid multi-scale scheme 

requires energetic and structural compatibility between the different representations for such 

a method to be successful. Ideally, the CG model should reflect a very similar energy 

landscape as the AA model but with reduced features to allow accelerated sampling at the 

CG level without deviating too far from conformations that are favorable at the AA level. We 

have recently developed the coarse-graining model PRIMO45, 46 specifically with the goal of 

maximizing compatibility with the latest all-atom CHARMM47 force field for proteins. 

PRIMO allows the reconstruction of all-atom models at negligible computational cost to 

accuracies of 0.1 Å48 and its energies are highly correlated with those of CHARMM45 

despite a significant reduction in the degrees of freedom. These features are unique among 

the CG models proposed so far and make PRIMO an ideal candidate for a tight coupling 

with atomistic force fields in an AA/CG approach. Recently, Predeus and coworkers49 have 

employed PRIMO and CHARMM47 force fields simultaneously for the conformational 

sampling of Trp-cage and melittin peptides in the presence of crowder proteins. In that work, 

crowder proteins were described at the CG level while the proteins of interests were 
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modeled with the atomistic CHARMM force field. However, there were no direct bonded 

interactions between CG and AA parts.

The objective of the present work is to assess the suitability of the PRIMO force field for 

direct mixing with the atomistic CHARMM force field within the same molecule. We tested 

the resulting AA/CG model in dynamics simulations of globular and membrane proteins. 

Furthermore, we evaluated the application of the AA/CG method in quantitative estimates of 

potentials of mean force for a large-scale conformational change in Escherichia coli 
adenylate kinase (AdK) via umbrella sampling MD simulations.

The rest of the paper is organized as follows. First, we briefly review the PRIMO model and 

the proposed AA/CG scheme. Then the simulation protocols are described, followed by 

results and discussions.

METHODS

Multiscale Model

We have adopted a three-component multiscale modeling scheme where the protein is 

represented at the dual-resolution (AA/CG) level and the surrounding solvent environment is 

treated at the continuum level via the generalized Born with molecular volume (GBMV)50 

model and augmented with an atomic solvation term (ASP)51. The PRIMO model and the 

AA/CG scheme is described in more detail below.

PRIMO CG Model

The PRIMO model and force field are described in detail elsewhere45. Here, we briefly 

summarize the main features of PRIMO. The backbone in PRIMO is represented with N, 

Cα, and a combined carbonyl site (CO) placed at the geometric center of the carbonyl C and 

O atoms. This ensures preserving the backbone hydrogen bonding interactions. Non-glycine 

side chains are represented with one to five CG sites. The CG sites were chosen in such a 

way that an analytical reconstruction of AA model is possible with near-atomistic 

accuracies.48 PRIMO uses virtual sites that are constructed on the fly from the CG 

interaction sites in order to maintain better bonding geometries. However, the virtual sites do 

not take part in non-bonded interactions. The PRIMO energy function (see Eq. 1) follows an 

all-atom-like physically motivated force field with additional terms for a combined 

generalized Born/atomic solvation parameter (GB/ASP) implicit solvent, an explicit angle- 

and distance-based hydrogen bonding interaction potential, and spline-based bonded 

potentials to maintain correct bond geometries at the CG level. The GB term is used with the 

GBMV model50, 52 which also provides an approximation for atomic solvent-accessible 

surface areas (SASA) that are needed for the ASP term.
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(1)

In the membrane version of PRIMO, PRIMO-M53, the standard GB term is simply replaced 

by the HDGB model54, and the SASA (solvent accessible surface area) term is scaled in a z-
dependent fashion along the membrane normal.

Mixed AA/CG Interactions

In the AA/CG scheme, we set the representation level of each CG or AA particle at the 

beginning of the simulation and it remains unchanged throughout the course of the 

simulations. The interactions at the fine-grained or atomistic level were evaluated by the 

CHARMM36/CMAP55–57 force field combined with the GBMV model50 while CG 

interactions were calculated via PRIMO45, 46. The two force fields are combined directly, 

without any additional scaling factors, buffer regions, extra sites, or any other modifications 

of either the CHARMM or PRIMO models.19 The transition between CHARMM and 

PRIMO was accomplished by switching resolution at the amino acid residue boundary. 

Since the all-atom backbone sites are mostly retained in PRIMO, this allows for a 

straightforward implementation of bonded terms across the carbonyl-amino backbone bond 

connecting two residues by mixing bonding terms from either the CHARMM36 or PRIMO 

parameter sets as appropriate (see Figure 1). More specifically, parameters corresponding to 

the bond (e.g., C-N1) and angle (Cα-C-N1, C-N1-CA1, O-C-N1, etc.) were taken from the 

CHARMM36 parameter set while the torsion parameters were taken either from PRIMO 

(e.g., C-N1-CA1-CO) or CHARMM36 (e.g., Cα-C-N1-CA1) force fields. Standard 

combination rules were applied for the mixed Lennard-Jones interactions. Electrostatic 

interactions between CHARMM and PRIMO regions were simply calculated according to 

the Coulomb law with the respective partial charges in the CHARMM and PRIMO force 

fields. MD simulations were performed with the combined Hamiltonian for the hybrid 

system with the potential energy: U = UAA + UCG + UAA/CG.
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Both CHARMM and PRIMO have been validated with implicit solvent and GBMV was 

used without modification for both levels of resolution to obtain the electrostatic part of the 

solvation free energy. As described previously, PRIMO has an additional atom-type 

dependent ASP term based on atomic SASA values (see Eq. 1) that was only applied to 

PRIMO sites. For the atomistic sites we used a simple non-polar SASA-based term with a 

surface tension coefficient of 0.015 kcal/mol/Å2.

Molecular Systems and Model Building

To validate the AA/CG mixed resolution method, we conducted unrestrained MD 

simulations of three proteins of different sizes and folding topologies (mainly α, mainly β, 

and mixed α/β), namely Trp-cage (PDB code: 1L2Y), SH3 domain (PDB code: 1SHG), and 

protein G (PDB code: 3GB1), respectively (see Table 1). In the case of the Trp-cage mini-

protein, we represented the first 14 residues at the AA level, while the remaining six residues 

were modeled at the CG level. The spectrin SH3 domain is a compact β-barrel made of five 

antiparallel β-strands, with a long 19-residue interconnecting loop between the first two 

strands. We modeled the 19-residue loop region at the CG level while the remaining part was 

described at the AA level. Finally, protein G consists of four antiparallel β-strands and an α-

helix. In this case, we choose to represent the helical region at the AA level while the β-

strand regions were modeled at the CG level. The CG content for the three proteins varied 

between 30 to 63% (see Table 1). For illustration, the starting structure of the SH3 domain 

modeled at the AA/CG level is shown in Figure 2. While most of the attention here is on 

soluble proteins, we also included a limited test of the membrane protein bacteriorhodopsin 

(PDB code: 1QHJ) where we combined PRIMO-M53 with the CHARMM36 force 

field.47, 55, 56 For the membrane protein, we chose to represent residues 5 to 103 at the AA 

detail while the remaining residues were considered at the CG level. Although the 

experimental structure contains retinal linked to Lys216 via a Schiff base we did not include 

retinal here since parameters for ligands are not available at the PRIMO level. For the four 

test proteins, the CG regions were chosen without regard of possible biological questions 

since the main focus for studying these systems is a proof of concept of the AA/CG scheme. 

Instead, we only considered avoiding a change in resolution in the middle of secondary 

structure elements when partitioning the systems into AA and CG regions.

Finally, we applied the AA/CG model to study a large conformational change in the 

phosphotransferase enzyme adenylate kinase (AdK). AdK is composed of three main 

domains, the core (CORE, residues 1–29, 68–117, and 161–214), the ATP binding domain 

(LID, residues 118–160), and the NMP binding domain (NMP, residues 30−67).58 It is well 

known that, upon ligand binding, AdK undergoes a transition from the inactive open 

conformation to the catalytically active closed conformation (see Figure 3)59. In the AA/CG 

scheme, the CORE domain was treated at the CG level while the LID and NMP domains 

were modeled at the AA level since the biological focus is on the dynamics of the LID and 

NMP domains.

Molecular Dynamics Simulations

All of the proteins were capped with acetyl (ACE) and N-methyl (NME) groups to avoid 

artifacts of interacting zwitterionic N- and C-termini sometimes seen in small proteins 
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simulated using implicit solvent. Although the PRIMO model allows longer time steps, the 

AA part requires an integration time step of 2.0 fs which was used for AA resolutions as 

well as the AA/CG model during production simulations. A multiple time-stepping 

algorithm could be implemented in the future to further increase the performance of the 

AA/CG method but was not considered here. The time step was set to 1.5 fs during the 

heating phases to maintain stable structures initially. The SHAKE60 algorithm was used to 

constrain bonds involving hydrogen atoms. All the simulations were carried out at 300 K 

and the temperature was controlled using a Langevin thermostat with a friction coefficient of 

10 ps−1 applied to all non-hydrogen atoms. In the AA/CG simulations, non-bonded 

interactions were cut off at 17 Å with a smooth switching to zero starting at 14 Å. However, 

in the case of bacteriorhodopsin, larger cutoffs of 16 and 18 Å at the beginning and end of 

the switching region, respectively, were used as suggested previously53. The non-bonded 

interaction list cutoff was set to 20 Å. Bacteriorhodopsin was initially placed in the 

membrane with its principal axis aligned with the bilayer normal (z-axis) and its center of 

mass at the origin of the membrane bilayer.

For comparison, we also carried out pure CHARMM (AA) and PRIMO (CG) simulations. In 

the reference AA simulations, we used the CHARMM3647, 50, 55, 56 force field in 

combination with either explicit (TIP3P water) or implicit (GBMV) solvent, termed AA/

TIP3P and AA/GBMV, respectively. In the explicit solvent simulations, long-range 

electrostatic interactions were treated by the Particle-Mesh Ewald (PME) summation 

method61 and van der Waals interactions were truncated with a cutoff of 10 Å. The PRIMO 

force field was employed in the reference CG simulations. A similar protocol as for the 

AA/CG simulations was followed for both the pure AA and CG simulations. However, an 

integration time step of 4 fs was used for the pure PRIMO simulation. All the simulations at 

different resolutions were conducted without any restraints starting from the corresponding 

energy-minimized experimental crystal structures. In the case of dual-resolution simulations, 

for each test protein, five independent simulations of 200 ns were conducted while reference 

simulations with AA/GBMV and at the CG level were also performed for 200 ns. The 

membrane protein bacteriorhodopsin was simulated for 50 ns at AA/CG and CG resolutions. 

To obtain timing information, we also simulated bacteriorhodopsin in an explicit POPC lipid 

bilayer. This system was setup using CHARMM-GUI62. Trp-cage in explicit solvent was 

simulated via 25 x 200 ns simulations, each started from different initial velocities, to fully 

capture the highly dynamic native state ensemble. Other proteins were simulated over 200 ns 

in triplicate in explicit solvent.

Replica Exchange Simulations of Trp-cage

In order to characterize and compare the conformational sampling of Trp-cage with the CG 

and AA/GBMV, and AA/CG models, temperature replica exchange molecular dynamics 

(REMD) simulations were carried out. All of the REMD simulations were started from the 

experimental structure. Eight to sixteen replicas were employed to span a temperature range 

of 300 – 500 K. Exchange moves between two consecutive replicas were attempted every 5 

ps with an acceptance ratio of ~30%. In all three REMD simulations, each replica was 

simulated for at least 10 ns and two sets of REMD simulations were carried out for the 

AA/CG model.
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Umbrella Sampling of Adenylate Kinase Loop Dynamics

Previous studies have suggested that the center of mass distance between the LID and CORE 

domains varies between 20.5 for the closed conformation to 29.5 Å for the open 

conformation.63 A free energy profile as a function of the LID-CORE distance was 

generated here via umbrella sampling by varying the distance between 19 to 32 Å at steps of 

0.5 Å. A force constant of 10 kcal mol−1 Å−2 was employed to harmonically restrain the 

domains in each umbrella window at the respective center of mass distances. Production 

simulations in each window were carried out for 10 ns, much longer than previous umbrella 

sampling of 500 ps to 2 ns per window for this system.58, 63, 64 The last 8 ns in each window 

were analyzed, and the weighted histogram analysis method (WHAM)65 was used to 

generate a combined potential of mean force (PMF) along the one-dimensional reaction 

coordinate. The same protocol was followed for the AA and CG umbrella sampling MD 

simulations.

Simulation and Analysis

All of the AA, CG, and mixed AA/CG simulations were carried out using version c38a2 of 

the CHARMM macromolecular modeling package47 where the PRIMO model is 

implemented. The MMTSB (Multiscale Modeling Tools for Structural Biology) Tool Set66 

in combination with CHARMM was employed for analysis. MSMBuilder67, version 3.8, via 

the python API and custom-written scripts was used for principal component analysis. For 

the analysis of the CG and AA/CG simulations, we reconstructed AA models for the CG 

parts using a previously described trajectory reconstruction procedure that achieves better 

than 0.1 Å accuracy for heavy atoms.45, 46, 48 All of the analysis presented here was done 

based on the all-atom reconstructed trajectories.

Availability

In order to run the AA/CG model described here, a recent version of the CHARMM 

macromolecular modeling package47 is needed along with standard all-atom CHARMM 

force field files and PRIMO force field files. The PRIMO force field is available from the 

authors upon request in a package that also includes utility scripts to facilitate setup and 

analysis of PRIMO CG models as well as AA/CG hybrid models.

RESULTS

Stable AA/CG MD Simulation of Globular Soluble Proteins

As a first test, we investigated whether the AA/CG scheme can be used to run stable MD 

simulations of different soluble proteins. A set of three soluble proteins with 20 to 62 amino 

acids and different topologies was examined. We analyzed the performance of AA/CG 

simulations with respect to the thermodynamic stability and dynamic properties of the 

proteins in comparison with results from pure AA or CG simulations as well as experiments.

In the simulations, the proteins generally reach a stable conformation within the first 50 ns, 

and Cα root mean square deviation (RMSD) values are generally kept below 4 Å for the rest 

of the simulations when the AA/CG scheme is used (see time series for proteins G and the 

SH3 domain in Fig. S1). However, one copy of SH3 dynamically unfolded and refolded 
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towards larger RMSD values (see Fig. S1). Trp-cage also explored partially unfolded 

conformations during the simulations (see below). Average RMSD values varied between 

2.42 and 3.71 Å and were lower, 1.70 to 2.75 Å when ensemble-averaged structures were 

compared with the experimental structures. Such deviations are somewhat larger than what 

is obtained in the AA/TIP3P (0.55–1.19 Å) and AA/GBMV (0.79–1.49 Å) simulations but 

they are lower than what the CG model alone provides for this set of proteins (2.94–4.35 Å). 

Conformation-averaged structures with the AA/CG model are shown in Figure 4 in 

comparison with the experimental structures. It can be seen that the native structures are 

overall well maintained with only minor deviations that appear to be more prominent in the 

regions modeled at the CG level (shown in blue in Fig. 4).

Average radii of gyration (Rg) were similar (see Table 2), but consistently larger than the 

experimental values and the averages obtained from the AA/TIP3P simulations indicating a 

slight overall expansion of the structures with the AA/CG model. Interestingly, using 

implicit solvent vs. explicit solvent with just the AA model appears to have the opposite 

effect (see Table 2). This suggests that replacing explicit solvent with implicit solvent may 

restrict conformational sampling to more compact states while the use of the hybrid model 

leads to broader conformational sampling where the proteins are at least as flexible in the 

AA/CG simulations as in explicit solvent. A similar trend was observed as well in previous 

hybrid simulations68. The tendency towards more expanded states with the AA/CG model is 

also reflected in increased solvent accessible surface areas (SASA) as shown in Table 3 

although molecular volumes are more similar. The increase in SASA is seen for both the AA 

and CG regions and is larger than using either the AA or CG models alone (see Table 3). 

This suggests that there may be weakened hydrophobic packing interactions in the hybrid 

model between the AA and CG regions that lead to a limited expansion of the structures.

We further characterized the conformational sampling of the three test systems via two-

dimensional potentials of mean force (PMF) as a function of RMSD and radius of gyration 

(Figure 5) as well as the first principal components (Figure 6). The principal components 

were obtained from a combined ensemble that included simulations at all model resolutions. 

It is apparent that that the sampling with the AA/CG model is broader, involving more 

extended states compared to the AA/TIP3P simulation. In all cases the, native state is within 

the low-lying areas of the energy landscapes with the AA/CG model and the overall free 

energy minima are close to the native state (see Fig. 5). The agreement with the AA/TIP3P 

sampling is especially good for the Trp-cage system where the overall shape of the energy 

landscape matches well with between AA/CG and AA/TIP3P with the main minimum 

located between 1 and 2 Å RMSD as in previous simulations of Trp-cage in both explicit 

and implicit solvents45. While the sampling with the AA/CG is also similar to AA/TIP3P for 

protein G and the SH3 domain when projected onto RMSD and radius of gyration, there are 

differences in the projections on the principal components, especially for SH3, that suggest 

that different unfolded states are visited (see Fig. 6). Again, the AA/GBMV ensembles show 

more restricted sampling whereas the ensembles sing PRIMO alone lead to ensembles that 

deviate more significantly from the native structure and the sampling seen with AA/TIP3P 

(see Figs. 5 and 6). Overall, the finding is that the AA/CG model generates conformational 

ensembles that overlap significantly with the sampling generated with explicit solvent but 

extend more broadly to include partially unfolded states. Broader conformational sampling 
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while still maintaining similar relative thermodynamics of native states is one goal of 

successful CG models. However, the resulting increased conformational flexibility seen here 

is in contrast to the model by Orsi and co-workers19 where the flexibility decreased for the 

hybrid systems compared to AA simulations.

We further analyzed how the structural stability varies between the regions represented at 

AA and CG levels. The per-residue RMSD values for both Cα and side chains are shown in 

Figure 7. With the AA/CG model, structural deviations are somewhat larger for the CG 

regions than for the AA regions in protein G and SH3 and there is also a moderate increase 

in RMSD for the AA regions with values that are generally intermediate between pure AA 

and CG models. However, for Trp-cage, the deviations are more similar to the AA models 

(see Fig. 7). This indicates that the AA/CG model may affect not just the sampling of the 

CG region but also to some extent of the AA region. The trends observed based on the Cα 
atoms are generally reflected in the side chains but with slightly larger RMSD values. Figure 

7 also shows the root-mean-square-fluctuations (RMSF) of Cα atoms. Again, the structural 

fluctuations with the AA/CG model are larger than with the AA models and less than with 

the pure CG model, except for the loop region between residues 12 and 29 of the SH3 

domain, where there is significantly more dynamics with the AA/CG model due to the 

partial unfolding in one of the simulations. The structural fluctuations are generally larger 

with the AA/CG model, not just in the regions represented at the CG models, again 

indicating that the partial CG representation affects the sampling of the entire structure.

We further analyzed the preservation of secondary structures and the sampling of backbone 

φ/ψ and χ1 side chain torsion angles. Overall secondary structures such as helical and β-

strand regions were generally well preserved between AA/CG and AA/TIP3P simulations 

based on hydrogen-bonding analysis via DSSP69 (see Figs S2 and S3). There were only 

minor variations at the edges of secondary structure elements that may be expected in 

dynamic simulations of flexible systems. The sampling of backbone φ/ψ torsions was also 

overall very similar between AA/CG and AA/TIP3P simulations (see Figs S4 and S5 and 

Fig. 8). Only some residues showed significant deviations in average backbone torsion 

angles between AA/CG and AA/TIP3P simulations and the torsion angles found in the 

experimental structures (see Fig. 8). The few significant deviations were seen mostly in the 

CG regions, including some residues at the interface between the AA and CG regions (for 

example in protein G and Trp-cage) but this analysis does not reveal significant problems 

with maintaining torsional sampling across the AA/CG boundaries. The sampling of side 

chains, characterized here via the χ1 torsions showed variations between the simulations and 

the experimental side chain values (see Fig. 8) and also between AA/CG and AA/TIP3P 

simulations (see Fig. S6 and S7). However, the general features were mostly similar and 

strong boundary effects were not apparent suggesting that the overall sampling of side chain 

conformations is also comparable between the AA/CG and AA/TIP3P models.

AA/CG MD Simulation of Bacteriorhodopsin in an Implicit Membrane

We also carried out limited testing of whether PRIMO-M, the membrane version of PRIMO 

is suitable for AA/CG simulations. We conducted AA/CG MD simulation of 

bacteriorhodopsin (PDB code: 1QHJ) by combining PRIMO-M and CHARMM36 with the 
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HDGB implicit membrane model. The RMSD plot shown in Fig. 9 suggests that the AA/CG 

simulation is stable and comparable to previously published results with PRIMO53. The 

average Cα RMSD obtained from CHARMM/PRIMO simulation was 3.2 Å while the CG 

simulation (PRIMO-M) yielded an average Cα RMSD of 4.0 Å. Cα RMSDs of the average 

structure over the entire trajectory were closer to the native with 2.8 and 3.6 Å for 

CHARMM/PRIMO-M and PRIMO-M simulations, respectively. The same protein was 

simulated earlier by Tanizaki and Feig54 using the CHARMM22/CMAP force field with 

HDGB 47, 70 where an average RMSD of 2.0 Å was reported from a 10 ns simulation. These 

results suggest that it may be possible to transfer the hybrid scheme to the membrane 

environment and thus can be employed to investigate the dynamic behaviors of membrane-

interacting peptides and proteins. However, this will need to be confirmed in a more 

thorough later investigation of how the AA/CG hybrid scheme performs for membrane 

environments.

Free Energy of Large Conformational Transition in Adenylate Kinase

As a final test we explored the ability of the AA/CG approach to reproduce free energy 

profiles for large conformational transitions. We chose the well-studied open-to-close 

transition in adenylate kinase (AdK) as the test case. Following previous studies, we applied 

umbrella sampling combined with the WHAM algorithm to generate PMFs along the 

distance between the CORE and LID domains as the reaction coordinate. Figure 10 displays 

the resulting free energy profile of the LID motion computed with the AA/GBMV, AA/CG, 

and CG models. In all cases, the free energy profile of the LID motion is characterized by a 

broad single-well as observed by Arora and Brooks58 and Song and Zhu71 consistent with 

broad conformational space exploration of the LID domain due to its flexible nature. It 

should be noted here that Arora and Brooks58 used the CHARMM22/CMAP47, 72 force field 

with GBMV50 while Song and Zhu71 utilized the CHARMM3657 force field with TIP3P 

water molecules. The free energy profile also indicates that the LID domain explores 

conformations ranging from the crystallographic open to the closed structure, which is in 

agreement with experiments.73–75 We note that our simulations suggest that the apo-closed 

state is not a metastable stable, and the apo-open state is energetically more favorable than 

the closed state for unligated AdK. The free energy difference between the open and closed 

states estimated from CHARMM/PRIMO was found to be ~8 kcal/mol, closer to the result 

with CHARMM (~9.5 kcal/mol) than with PRIMO (~6.5 kcal/mol). Our AA and AA/CG 

estimates of the relative energy between the open and closed state are comparable to other 

calculations that found 6–13 kcal/mol with different methods and force fields.7671775878 

However, we note that our findings are in contrast to the results by Lou and Cukier79 that 

found the open state to be energetically unfavorable using an Amber force field.

Most relevant for this study is the excellent qualitative and quantitative agreement between 

the PMFs generated with the AA/CG and AA models while the CG results only 

approximately reproduce the AA results. Hence, in this example, PRIMO alone can 

qualitatively capture the dynamic behavior of AdK while the AA/CG model also 

quantitatively reproduces the reference AA simulations.
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Computational Efficiency of the AA/CG Model

Hybrid models are attractive because of their computational efficiency and accuracy. The 

speedup of a hybrid AA/CG model intrinsically depends on the relative sizes of AA and CG 

components present in the system. The single-core computational performance with the 

AA/CG, AA/GBMV, and AA/TIP3P models (POPC lipids were included for the membrane 

system) was compared for all five proteins (see Table 4). The AA/CG scheme achieves a 

speedup in the range of 1.4 to 2.3 compared to AA/GBMV while there is a two- to five-fold 

increase in speed compared to explicit water simulations. For comparison, using the PRIMO 

CG model alone is about ten times faster than AA/GBMV while speed-up by factors of 10 to 

20 could be achieved with PRIMO compared to explicit solvent45. We are focusing on 

comparing single-core performances here because the parallel efficiency of explicit and 

implicit solvent and AA and CG simulations varies.

The much larger speedup of PRIMO alone vs. the AA/CG model is in part due to a longer 

time step that was used with the CG model. A standard AA time step of 2 fs was used here 

for the AA/CG simulations, but it is in principle possible to employ a multiple time-step 

approach, where the CG part would be propagated with a longer time step13, 80 to achieve a 

greater speedup. Furthermore, applications that involve larger molecules may consist of only 

a small region simulated at AA resolution while the majority of the system would be 

modeled at the CG level. In such a case, and assuming the use of a multiple time step 

algorithm, the computational cost of the AA/CG model could become similar to using just a 

CG model.

As the timing results also show, the AA/GBMV simulations become almost as expensive as 

the explicit solvent models for the larger systems (adenylate kinase and bacteriorhodopsin). 

As noted before, this is a consequence of the relatively high cost of the GBMV implicit 

solvent model that is used here.81 Explicit solvent simulations further benefit from better 

parallelization schemes82, 83 and GPU acceleration84–86. However, GPU acceleration is also 

possible for GB models87 and the replacement of the very expensive GBMV model by 

better-performing alternative GB implementations and other implicit solvent models, 

especially when combined with PRIMO or the PRIMO part of an AA/CG model remains a 

promising avenue for increased computational efficiency.

DISCUSSION AND CONCLUSION

The results presented here demonstrate that a direct-coupling AA/CG hybrid scheme based 

on the CHARMM and PRIMO models is feasible and can produce conformational sampling 

that is overall comparable to fully atomistic simulations. The AA/CG scheme was also found 

to not only provide qualitatively similar results to AA models but also quantitatively match 

the energetic profile for the open/close transition in adenylate kinase. We expect that AA/CG 

schemes would be especially useful for detailed mechanistic studies of dynamic elements in 

the context of very large complexes, such as the trigger loop in RNA polymerase II that 

required substantial computational resources in previous work from our lab using fully 

atomistic representations.6
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A key factor in the success of the introduced AA/CG scheme is the use of the PRIMO CG 

model that by itself is already able to describe the dynamics of peptides and proteins in an 

approximate fashion without requiring any constraints and that was parameterized based on 

the same AA force field (CHARMM36) that is used here in combination with PRIMO. 

Similar functional forms of PRIMO and CHARMM36 make a direct combination possible 

without the need of a buffer or coupling region, and in fact the AA/CG model that was tested 

here did not involve any further parameterization whatsoever. The results presented here 

indicate, though, that some tuning of non-bonded interactions could improve the model, in 

particular to address what appear to be reduced hydrophobic packing interactions that lead to 

slightly more expanded structures. The possibility of reconstructing structures at atomistic 

detail from the CG model using analytical functions at negligible cost would also allow a 

more elaborate AA/CG scheme where instead of direct mixing as done here, the CG model 

would see a reduced CG counterpart for residues in the AA region immediately adjacent to 

the CG region and the AA model would see a reconstructed atomistic counterpart for 

residues in the CG region next to the AA region. Such a scheme where resolutions are 

extended across the interface region to minimize boundary effects may be more similar in 

spirit to many QM/MM implementations. Tuning the direct-mixing protocol as well as a 

more integrated double-resolution interface model will be explored in future work.

An interesting feature of our AA/CG scheme is that the reliance on strongly physically 

motivated energy terms allows broader transferability than with most CG models. As an 

example, we are demonstrating that simply by switching the implicit solvent model to an 

implicit membrane version, it is possible to simulate membrane-bound systems. While we 

only show preliminary results here, we will also test further in future work how AA/CG 

hybrid models may be applicable for membrane environments, including coupling to 

DHDGB model developed by us88 to include membrane flexibility within the AA/CG 

scheme.

Ultimately, our goal is to develop a comprehensive multi-scale approach for modeling 

biomolecules in their native environments that would involve atomistic and coarse-grained 

levels as well as implicit solvent and elastic continuum models to cover different parts at 

different resolutions. We believe that such complex multi-tiered models are ultimately 

needed to simulate biological systems in highly complex cellular environments over 

biologically relevant time scales. We believe that the AA/CG scheme presented here is a first 

step in that direction.

The relatively high resolution of the PRIMO CG model and the use of the expensive GBMV 

implicit solvent model so far result in only modest computational gains. However, after 

establishing the proof of principle that fully dynamic AA/CG schemes can provide a 

reasonable substitute for full AA models, we will now also focus our attention on improving 

performance aspects by exploring alternative GB implementations, implementing multiple 

time step algorithms that would propagate the CG part with longer time steps, and 

optimizing parallel and GPU efficiencies.

In conclusion, we have presented the CHARMM/PRIMO AA/CG scheme that compares 

favorably with atomistic simulations both qualitatively and quantitatively while offering the 
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computational advantages of coarse-graining, both in terms of reduced computational costs 

and broader sampling. The model appears to be transferable to membrane environments, and 

it is in principle applicable to any protein system without requiring any structural restraints 

that are commonly needed in other CG models. In principle, this opens up a wide variety of 

mechanistic questions that could be studied with the AA/CG scheme introduced here but 

further assessment is needed to establish how this method performs for a larger set of 

systems and with different partition schemes between the AA and CG regions in terms of 

accuracy and computational efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hybrid AA/CG coupling scheme.
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Figure 2. 
SH3 domain (PDB code: 1SHG) in cartoon representation (left, colored by index from red to 

blue) and oriented in the same way at the AA/CG level (right) with residues 6–12 and 30–62 

at the atomic level and residues 13–29 described by PRIMO CG model. Atoms are colored 

by atom type: cyan (C); white (H); red (O); blue (N); yellow (CG side chain).
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Figure 3. 
The open (left) and closed (right) forms of adenylate kinase. The inhibitor P1,P5-

Di(adenosine-5′)pentaphosphate (AP5A) present in the crystal structure is shown in stick 

representation to indicate where the nucleotides would bind but no ligands were present in 

the simulations reported in this study.
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Figure 4. 
Ensemble-averaged structures from the AA/CG simulations (green: AA region, blue: CG 

region) compared to experimental structures (red).
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Figure 5. 
Potentials of mean force as a function of Cα-based radius of gyration and RMSD with 

respect to experimental structures for protein G (top), SH3 domain (middle), and Trp-cage 

(bottom) with with fully atomistic simulations with explicit solvent (AA/TIP3P), AA/

GBMV (AA/GB), the hybrid AA/CG model (AA/CG), or the PRIMO force field (CG).

Kar and Feig Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Potentials of mean force as a function of principal coordinates for protein G (top), SH3 

domain (middle), and Trp-cage (bottom) with with fully atomistic simulations with explicit 

solvent (AA/TIP3P), AA/GBMV (AA/GB), the hybrid AA/CG model (AA/CG), or the 

PRIMO force field (CG). For each system, common principal coordinates were determined 

from combining all of the trajectories.
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Figure 7. 
Per-residue root mean square deviations for Cα coordinates (top row, A–C) and side chains 

(middle row, D–F) and root mean square fluctuations for Cα coordinates (bottom row, G–I) 

with respect to the experimental structures for protein G (PDB code: 3GB1, left column, 

A/D/G), the SH3 domain (PDB code: 1SHG, center, B/E/H), and Trp-cage (PDB code: 

1L2Y, right, C/F/I) with the hybrid AA/CG model (AA/CG, black), fully atomistic 

simulations with explicit solvent (AA/TIP3P, red), AA/GBMV (AA/GB, blue), or coarse-

grained simulations using the PRIMO force field (CG, green). Shaded areas indicate regions 

modeled at the CG level in the AA/CG hybrid model.
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Figure 8. 
Per-residue average backbone torsions φ (top row, A–C) and ψ (middle row, D–F) and side 

chain χ1 torsion (bottom row, G–I) for protein G (left column, A/D/G), the SH3 domain 

(center, B/E/H), and Trp-cage (right, C/F/I) with the hybrid AA/CG model (AA/CG, black), 

fully atomistic simulations with explicit solvent (AA/TIP3P, red), AA/GBMV (AA/GB, 

blue), or coarse-grained simulations using the PRIMO force field (CG, green). Torsion 

angles in the experimental structures are shown in magenta. Shaded areas indicate regions 

modeled at the CG level in the AA/CG hybrid model.

Kar and Feig Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Time evolution of root-mean-squared-deviation (RMSD) of Cα atoms with respect to the 

experimental structure for bacteriorhodopsin (PDB code: 1QHJ). Results obtained from the 

hybrid AA/CG simulation (red) are shown as well as coarse-grained simulations using the 

PRIMO-M force field (green).
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Figure 10. 
Free energy profiles of the LID-CORE motion in adenylate kinase obtained from AA/CG 

(blue) umbrella sampling, compared with results from atomistic (red) and coarse-grained 

simulations (green).
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Table 2

Cα RMSD from experimental structures and radius of gyration.

Model Trp-Cage SH3 Protein G

Average Cα RMSD (Å) AA/CG 2.66 (0.13) 3.71 (0.41) 2.42 (0.16)

CG 4.28 (0.13) 4.44 (0.10) 3.29 (0.07)

AA/GBMV 1.66 (0.004) 1.01 (0.05) 1.25 (0.01)

AA/TIP3P 1.68 (0.08) 1.47 (0.50) 0.95 (0.02)

Cα RMSD of average structure (Å) AA/CG 1.70 2.75 2.00

CG 4.03 4.35 2.94

AA/GBMV 1.49 0.79 1.05

AA/TIP3P 1.19 1.09 0.55

Average Cα radius of gyration Rg (Å) AA/CG 7.45 (0.07) 10.50 (0.30) 10.74 (0.02)

CG 6.97 (0.15) 9.61 (0.04) 10.19 (0.03)

AA/GBMV 6.94 (0.001) 9.74 (0.01) 10.29 (0.01)

AA/TIP3P 7.04 (0.04) 10.02 (0.16) 10.37 (0.03)

Exp. (from PDB) 7.00 9.63 10.36

Standard errors are provided in parentheses.
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Table 4

CPU time spent for 10 ps of MD simulation (5,000 steps with 2 fs time step for AA/exp, AA/GBMV, and 

AA/CG models and 2,500 steps with 4 fs time step for CG model) for five different protein systems. AA/exp 

refers to simulations with explicit water or water and POPC lipids (bacteriorhodopsin). All the simulations 

were performed in serial on a single core of an Intel E5–2680v3 processor (2.5 GHz) using CHARMM c41a1. 

CPU times are provided in seconds. Speedups with respect to AA/GBMV are provided in parentheses.

System AA/exp. AA/GBMV AA/CG CG

Trp-cage 802 216 150 (1.4) 21 (10.3)

SH3 1139 820 584 (1.4) 80 (10.3)

Protein G 1689 715 316 (2.3) 74 (9.7)

Bacteriorhodopsin 3090 3219 1786 (1.8) 307 (10.5)

Adenylate kinase 3101 2915 1374 (2.1) 293 (9.9)
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