Table 2.
BPG | BPD | M32 | M4S | SS | Total (N) | Kernel | σ | k dominant eigenvalues | k selected | |
---|---|---|---|---|---|---|---|---|---|---|
Fp1 | 3,085 | 845 | 1,327 | 460 | — | 5,717 | Gauss | 26 | 5 | 5 |
Fp2 | 3,085 | 845 | 1,349 | 460 | — | 5,739 | Gauss | 26 | 5 | 5 |
F3 | 3,085 | 832 | 1,349 | — | 1,415 | 6,681 | Gauss | 22 | 4 | 5 |
F4 | 3,085 | 841 | 1,349 | — | 1,404 | 6,679 | Gauss | 20 | 4 | 5 |
C3 | 3,085 | 845 | 1,349 | — | 1,415 | 6,694 | Gauss | 20 | 5 | 5 |
C4 | 3,085 | 845 | 1,343 | — | 1,380 | 6,653 | Gauss | 20 | 5 | 5 |
P3 | 3,085 | 845 | 1,349 | — | 1,415 | 6,694 | Gauss | 26 | 4 | 5 |
P4 | 3,085 | 845 | 1,349 | — | 1,372 | 6,651 | Gauss | 20 | 5 | 5 |
Total number of PSD segments | 3,085 | 845 | 1,349 | 460 | 1,415 |
The value σ in the Gaussian Kernel corresponds to the best performing σ for each case. All clusters were performed by selecting k = 5 cluster centers to find.
“—” Indicates the headset did not contain that electrode. Gaussian kernel: , where ||x−x′||2 is the squared Euclidean distance between the two feature vectors, σ is a scaling parameter.