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The origin of life is typically understood as a
transition from inanimate or disorganized matter to
self-organized, ‘animate’ matter. This transition
probably took place largely in the context of
organic compounds, and most approaches, to
date, have focused on using the organic chemical
composition of modern organisms as the main
guide for understanding this process. However, it has
gradually come to be appreciated that biochemistry, as
we know it, occupies a minute volume of the possible
organic ‘chemical space’. As the majority of abiotic
syntheses appear to make a large set of compounds
not found in biochemistry, as well as an incomplete
subset of those that are, it is possible that life began
with a significantly different set of components.
Chemical graph-based structure generation methods
allow for exhaustive in silico enumeration of different
compound types and different types of ‘chemical
spaces’ beyond those used by biochemistry, which
can be explored to help understand the types of
compounds biology uses, as well as to understand
the nature of abiotic synthesis, and potentially design
novel types of living systems.

This article is part of the themed issue ‘Re-
conceptualizing the origins of life’.
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1. Introduction
To a first-order consideration, organic structure space is composed of all molecules containing
carbon which satisfy Lewis electron pairing rules [1]. This is practically limited to exclude
molecules which contain some types of structural features [2], for example those which would
render compounds unstable in water. Most considerations of this space include some practical
restrictions, such as having the output molecules being ‘meaningful’ in terms of pharmacological
space [3].

Organic structure space is estimated to be extremely large [4], of the order of 1033 to 10180

unique structures [3,5]. Organic formula space belies the complexity of organic structure space: a
single molecular formula can represent many structural isomers [6,7], although the number per
unique formula may be highly variable (see for example [8,9]). Today, this plentitude of chemical
structures offers scientists in medicinal chemistry, pharmaceutical research and biotechnology
an almost endless array of possibilities to design new drugs and materials. Life itself has likely,
during all steps of its evolution, optimized its biochemical processes within the vast organic
structure space available to it, and a better understanding of life’s biomolecular foundations in
relation to the surrounding chemical space might be one key to understanding its origin.

From its very beginnings, the development of algorithms for the enumeration of chemical
space was closely related to NASA’s exobiology activities. The complete and non-redundant
generation of all connectivity isomers, corresponding to a given molecular formula, was part
of the DENDRAL (a portmanteau of ‘dendritic algorithm’) program, established in the mid-1960s
[10,11]. In the 1970s and 1980s, mathematicians provided new techniques to increase the efficiency
of the first approaches [12,13], and, starting in the 1990s, implementations became available as
software packages for personal computers [14]. Recently, these methods have been rediscovered
for applications in astrobiology and origins of life research, particularly for generating and
analysing virtual chemical compound libraries of amino acids and nucleotide analogues [8,9,15],
although the scope of their potential application is much wider.

There are numerous settings across the Universe in which abiotic organic synthesis occurs
[16–19]. While catalogues of the organics in some of these settings, such as the interstellar
medium, are of relatively small size (of the order of 190 unique structures from mass 13
to 840 amu (see, for example, http://www.astro.uni-koeln.de/cdms/molecules/), others are
remarkably complex. For example, recent studies of carbonaceous chondrites suggest that the
number of unique identifiable molecular formula organic compounds (over the mass range from
150 to 1000 amu) may be of the order of 14 000–50 000 [20], and that these could correspond
to several million unique chemical structures. Studies using similar techniques examining the
products of Miller–Urey electric discharge experiments [21], Titan tholins and hydrogen cyanide
(HCN) polymers [22,23] have found similarly large numbers of unique formulae. Unfortunately,
while one-dimensional high-resolution mass spectrometry is able to determine exact masses
and therefore molecular formulae with a great deal of accuracy, as mentioned above there is
an enormous amount of structural isomerism in organic chemistry, thus each detected unique
formula may be representative of an as-yet-unknown number of structural isomers. It should be
noted that the mass fragmentation spectrum is an additional powerful tool which can be used to
potentially distinguish structural isomers.

In common with the organics found in abiotic simulations and some carbonaceous meteorites,
the number of relatively low-molecular-weight compounds which biology, as a whole, is capable
of producing is very large; for example, the Dictionary of Natural Products listed approximately
214 000 compounds as of March 2009 [24]. By contrast, the common core of modern biochemical
metabolism is remarkably small, of the order of 500 to a few thousand compounds [25,26].

These observations have some bearing on the origin and evolution of life. First, as it is now
clear that the abiotic organic chemical space of the Universe is very large, it must be acknowledged
that far less is known about prebiotic chemistry, the chemistry which led to the origin of life, than
has perhaps been presumed [27]. Second, as many of the secondary metabolites which make up
the grand diversity of biological natural products come from metabolic transformations mediated

http://www.astro.uni-koeln.de/cdms/molecules/
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by evolutionarily derived enzymes, and the chemical space to be explored is so incredibly large,
it is likely that there is little overlap of these compounds with abiological samples, and possible
that an independent biochemistry might develop along a very different chemical trajectory.

In silico chemical structure libraries have already been generated to examine a variety of
origins and astrobiology-related research questions. We review here some approaches and general
methods, and some results and ongoing work from our research group.

2. Material and methods
It was recognized some time ago that organic chemical structures are essentially graphs
[28–30], thus the key mathematical concept to represent structural formulae of organic
compounds is provided by graph theory. In a molecular graph, nodes correspond to atoms of
a chemical structure and edges encode covalent bonds between atoms [31,32]. For this purpose,
the nodes are labelled by the chemical identity of the represented atoms along with additional
higher order information describing, for example, the state of the atom, e.g. its charge, whether it
has associated paired or unpaired electrons, etc., while edges can also represent the multiplicity
of bonds, i.e. whether they are single, double or triple bonds. More refined models are able to
handle mesomerism and assign aromatic bonds [33].

Indeed, many concepts from graph theory are well suited to describe the structural properties
of chemical compounds [34,35], which can also be related to chemical properties. For instance,
the principle of subgraph relationships can be used to identify substructures or functional groups
of a molecule. Other measures, such as topological distances between nodes or lengths of cycles,
can be used to calculate invariants of molecular graphs, so-called topological indices or more
general molecular descriptors that are well suited to serve in combination with machine learning
techniques for predicting physico-chemical or biological properties via quantitative structure–
property or structure–activity relationships (QSPR, QSAR) [36,37].

The increasing demand to generate, store, screen and process large sets of organic compounds
using computers and to predict their properties with high accuracy has established new scientific
disciplines such as mathematical chemistry and chemoinformatics [33,38]. We use methods honed
in these disciplines to approach questions posed by astrobiology and the search for the origins of
life. In particular, we are studying the entirety of monomers that are capable of building life’s
functional biopolymers, proteins and RNA/DNA [8,9,15], as well as the larger chemical spaces
these special compound classes are a subset of.

Such studies require at least two steps: first, defining the chemical space to be investigated and
generating the molecular libraries of its constituents for further computational processing, and,
second, deriving and testing models that simulate how life on Earth or elsewhere in the Universe
could choose or has chosen its monomeric building blocks during chemical and early biological
evolution.

An obvious and simple way to retrieve molecular libraries of interest would be to query
chemical structure databases, such as PubChem (https://pubchem.ncbi.nlm.nih.gov), Beilstein
(now distributed as Reaxys, http://www.reaxys.com) or the Chemical Abstract Service (CAS)
registry (https://www.cas.org, which presently contains more than 127 million unique organic
and inorganic compounds). Although these databases contain a large repository of to-date
synthesized compounds and analysed natural products, they will always suffer a certain bias
of human interest, e.g. pharmaceutical utility or other economic ambitions, and of course the
extraordinary size of organic chemical space (see above).

An alternative, somewhat more technical, though much more comprehensive, way is to
generate the molecules of interest by means of dedicated algorithms and computer programs,
so-called structure generators. Although formerly being the domain of highly specialized
chemoinformaticians, computational chemists and chemical mathematicians, there are now
databases available which provide the content produced by structure generators (see, for
example, [2,3,39,40]). But, again, the main purpose of these projects was to explore and provide
promising structures for virtual drug screening rather than providing dense coverage of the

https://pubchem.ncbi.nlm.nih.gov
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chemical space relevant to life’s origins, or even dense coverage of chemical space as an interesting
phenomenon per se.

Nevertheless, chemical databases are an important means to verify the completeness and
significance of custom-generated specialty libraries [8,9]. On the one hand, there should be no
structures retrieved from databases that are not included in custom-generated libraries, and, on
the other hand, the overlap of custom-generated libraries with extant databases should ideally
be small, justifying the computationally more demanding approach. Owing to the vastness of
organic chemical space, so far these two considerations have proved valid in our experience.

There are two principally different ways to generate molecular graphs. One natural way
is to begin with a set of starting compounds and iteratively apply a set of graphically coded
chemical reactions to the starting materials and the upcoming intermediates. This process has
either natural or artificial stopping criteria, e.g. if no more new reaction products are generated,
or a certain number of iterations is reached, structure generation terminates. Reaction-based
structure generation has been implemented using reaction schemes [41], which describe generic
chemical reactions by a reaction centre graph and changes occurring during the reaction, closely
related to the Dugundji–Ugi model [42] and the approach of Temkin et al. [43]. Graph grammars,
as introduced in [44], have already been applied to problems in origins of life research [45–47].

However, reaction-based structure generation is determined by the seed compounds and the
reactions applied. This approach can be especially effective if the types of reactions and reactants
allowed within a system are well understood or constrained. However, if even a few starting
compounds or side-reactions are overlooked, this approach risks missing significant numbers of
potential reaction products. For some systems, especially those in which reactions or reactants are
poorly constrained, for example in exploring the development of systems in which catalysis could
facilitate unusual transformations, or for systems which could be seeded by unusual compounds
derived from highly energetic processes, such assumptions are better avoided in order to obtain
an output that is especially permissive of possibilities.

An alternative method addressing these concerns is a formula-based structure generation
starting from a molecular formula and optional (but generally useful) structural constraints.
In this method, the corresponding connectivity isomers are generated completely and non-
redundantly. The algorithmic principle applied here is called orderly generation [12,48].

For our studies, we have used a well-vetted and -used structure generator, MOLGEN 5 [49],
which provides a wide variety of structural constraints and further features that facilitate the
construction of in silico compound libraries. This program permits the use of so-called fuzzy
formulae that allow ranges to be specified for the numbers of atoms for each chemical element.
This makes it possible to explore multiple molecular formulae in one program call. Another useful
and time-saving feature of MOLGEN 5 is the ability to include lists of forbidden substructures
(badlists) that can be passed as input to the program. Using such badlists, it is possible to
suppress unlikely, typically unstable chemical structures in the output datasets. Comparison
of the output datasets with published databases again offers an opportunity to vet whether
the badlist substructures represent valid restrictions on real-world chemistry. This process of
generation and comparison can be repeated iteratively. If valid structures are found in databases
containing compounds that have, in fact, been synthesized and/or isolated from the chemical
literature, then the badlist is too restrictive.

It should be noted that formula-based structure generation does not formally take into account
synthesizability, although this criterion can be evaluated in the output structure sets using
various programs, for example the commercially available SYLVIA (estimation of the synthetic
accessibility of organic compounds) software package (https://www.molecular-networks.com/
products/sylvia).

Using MOLGEN, we were able to generate libraries of α-amino acids (of the sort used by
biology in constructing proteins, with diverse side chains on the α-carbon, and as opposed to
β-, γ- or δ- etc. amino acids) [8] and nucleoside analogues (for our purposes, molecules enabling
the attachment of a functional group such as a nucleobase which could provide non-covalent
recognition motifs (though these could, in principle, be extremely heterogeneous, allowing

https://www.molecular-networks.com/products/sylvia
https://www.molecular-networks.com/products/sylvia
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recognition by many manners of intermolecular interaction), and also provide at least two stable
functional groups that would still be stable when involved in covalent linkage in a polymer) [9].
For the second step, analysing the obtained libraries, we used molecular descriptors representing
properties that might be involved in selection processes during chemical and early biological
evolution.

Specifically, for the amino acids we explored and tested a model for biology’s selection of
the coded amino acids proposed by Philip & Freeland [50], based on their hydrophobicity, size
and charge, represented by the partition coefficient (logP), van der Waals volume (Vvdw) and
acid dissociation constant (pKa). This method, also called adaptive analysis, gives insight to the
adaptive properties of the amino acid alphabet. After generating and culling a very large set of
possible α-amino acids and calculating their three key chemical properties, randomly sampled
sets of α-amino acids were compared with the standard biologically coded amino acid alphabet
with respect to range and evenness to the above-mentioned three properties (logP, Vvdw and
pKa) [15].

For the nucleoside analogues, our approach broke new ground because there was as yet no
established theory as to how to generate a nucleoside analogue, other than trial and error based
on structure extension. Thus, we conducted a very broad analysis allowing a wide variety of
fuzzy formulae, including C, H, N and O, although S could be incorporated, in principle, by
atom substitution for O, which is another feature of this approach. As much as computational
power may be saved by representing a nucleobase ‘B’ in a generic nucleoside analogue structure
by an arbitrary univalent atom, divalent O can be replaced by divalent S without undertaking a
complete de novo structure generation process; however, to do this, symmetry groups need to be
taken into account.

3. Applications
We review here briefly the results of our previous research on amino acids and nucleoside
analogues.

(a) Amino acids
α-Amino acids are fundamental to biochemistry as the monomeric building blocks with which
cells construct proteins according to genetic instructions. However, the 20 amino acids of the
standard genetic code represent a small fraction of the number of α-amino acid chemical
structures that could plausibly play such a role, both from the perspective of the natural processes
by which life emerged and evolved and from the perspective of human-engineered genetically
coded proteins. Efforts to describe the structures composing this broader set, or even estimate
its size, had previously been hampered by the complex combinatorial properties of organic
molecules. Estimates of the number and types of coded amino acids which could have been
available to primitive biological systems are almost universally smaller than the actual coded
set [51]. The principal reasons for this discrepancy are that abiological mechanisms for the
exploration of structure space are inefficient (because abiological mechanisms are limited by
reagents and mechanisms) and biological mechanisms are directed in ways we cannot efficiently
model because they are history-dependent (e.g. because biology may discover new pathways
which, however inefficient initially, may become obvious biotransformations after sufficient
natural selection).

In exploring amino acid space, we generated two virtual amino acid libraries using two
different approaches. The first was a larger ‘unique’ library (UL) of 121 044 structures limited at an
upper bound of six carbon atoms, which covered the space of molecular formulae as completely as
possible, and the second was a smaller ‘combined’ library (CL) of 3846 structures, which included
all coded amino acids containing up to 11 carbon atoms (i.e. tryptophan). The CL approach was
developed as it was clear a UL approach would give an unwieldy structure set of the order of
1012 α-amino acid isomers up to, and including, 11 carbon atoms so as to include tryptophan.
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Figure 1. Sizes of the UL and CL α-amino acid libraries calculated during our previous studies. In order to reduce the total
set of mathematically possible structures to structures which are chemically plausible, a list of 156 forbidden substructures
was compiled.
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Figure2. Chemical space of computedα-amino acids, representedby size, hydrophobicity and charge in termsof vanderWaals
volume (Vvdw), partition coefficient (logP) and side chain acid dissociation constant (pKa). Green spheres represent the 20 coded
amino acids, blue and red spheres show two of the rare ‘better’ sets. The cluster at top-right is formed by somewhat larger and
more hydrophobic aromatic compounds.

It should be borne in mind that these are structural isomer counts, and that the number of
stereoisomers represented by these libraries is significantly higher, typically by a factor of 2–10
over this molecular weight range. Figure 1 shows the composition of these libraries itemized by
the number of carbon atoms. A detailed description of the library design methods and the badlists
used to derive these libraries has been published [8].

We later [15] used the CL approach from Meringer et al. [8] to verify a conjecture on the
optimality of the encoded amino acid alphabet formulated by Philip & Freeland [50]. These
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Figure 3. Enumerated set of nucleoside-like isomers of the natural ribosides. The structure corresponding to the natural
ribosides is highlighted in black. (Reproduced with permission from [9].)

authors hypothesized that size, hydrophobicity and charge are the three physico-chemical
properties of amino acids most likely to be responsible for their selection during the evolution
of the genetic code. Figure 2 shows a mapping of our virtual amino acid library into a three-
dimensional space defined by these properties. An adaptive set of amino acids was defined as
one whose members thoroughly cover these physico-chemical properties. Using this metric, we
compared the encoded amino acid alphabet with random sets of amino acids sampled from our
virtual library. We further computed the heats of formation of all isomers to attempt to estimate
the biosynthetic cost to a hypothetical organism using an alternative set. Sets that cover this
chemistry space better than the genetically encoded alphabet were extremely rare and always
energetically more costly. Further analysis of the computed more-adaptive sets revealed common
features and anomalies. These computations were interpreted as evidence that the set of 20 amino
acids found within the standard genetic code is the result of considerable natural selection. The
amino acids used for constructing coded proteins may represent a largely global optimum, such
that any aqueous biochemistry would use a very similar set [15].

(b) Nucleotide analogues
Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays
a central role as the intermediary carrier of genetic information in transcription and translation.
These roles, together with various catalytic and sensing functions of RNA in cellular processes
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Figure 4. Numbers of nucleoside analogue structures as a function of the number of carbon atoms in the molecule.
Enumeration is based on the formula spaces CnH5−(2n+1)O2–4B for structures lacking nitrogen and CnH5−(2n+3)N1–2O0–4B for
those structures including nitrogen.

(e.g. ribozymes and riboswitches), have been suggested to be functional remnants from a
previous ‘RNA world’ biochemical state. If RNA was involved in the origins of life, it should
have a facile prebiotic synthesis. A wide variety of such syntheses have been explored [52–55].
However, to date no one-pot reaction has been shown capable of yielding RNA monomers from
likely prebiotically abundant starting materials, though this does not rule out the possibility
that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given
structural constraints, such as the ability to form complementary base pairs and a linear covalent
polymer, a variety of structural isomers of RNA could potentially function as genetic platforms
[56]. To give some sense of the size of this ‘alternative nucleic acid’ structure space, all the potential
structural isomers of the ribosides (BC5H9O4, where B is nucleobase) that could potentially serve
as monomeric building blocks of nucleic acid-like molecules were thus enumerated using the
structure generation software (figure 3) [9].

Molecules were selected based on their likely stability under biochemically relevant conditions
(e.g. moderate pH and temperature) and the presence of at least two functional groups, allowing
the monomers to be incorporated into linear polymers. The resulting 227 structures were
then evaluated using molecular descriptors derived from QSPR studies and predicted physico-
chemical properties. Several databases were queried to determine whether any of the computed
isomers had been synthesized previously, which showed that very few of these computed isomers
had been described. Again, this is the structural isomer count, the number of stereoisomers
was approximately four times larger, although the set includes a number of isomers that are
achiral and/or prochiral. Based on these results, two broad conclusions could be drawn. First,
ribonucleosides may have competed with a multitude of alternative structures whose potential
proto-biochemical roles and abiotic syntheses remain to be explored. Second, based on QSPR
analysis, the natural ribosides are among the most volumetrically compact isomers, and this may
have been a factor contributing to their selection by biology.

The formula representing these 227 riboside isomers is of course only one out of many which
could conceivably be used to construct a nucleoside analogue. A variety of compounds with novel
compositions are known in the literature which have good base-pairing properties (e.g. [57–59],
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in addition to the deoxynucleosides of DNA). We have since computed the structural space of
nucleosides beyond C5H9O4B, which is as expected much larger (figure 4).

As was observed in the amino acid libraries, there is a roughly predictable exponential
growth in the number of structures with increasing number of carbon atoms, and a considerable
discrepancy (by a factor of 103–105) in the corresponding numbers of mathematically possible
and chemically plausible structures. Further analysis of these results is ongoing.

4. Conclusion and outlook
It is clear that organic chemical structure space is very large, and that abiotic, and possibly
prebiotic, chemistry sampled a significant but relatively small subspace of this set. Terrestrial
biology also samples this large space, but again in a relatively limited fashion.

As this space is so large, and its coverage by abiotic and biological chemistry so poorly
explored, structure generation offers a relatively cohesive and facile way to explore molecular
possibilities in silico, which may be further used to direct real-world synthesis, observation and
analysis. The types of questions enabled by these methods are of fundamental interest to the
natural and physical sciences, and in particular allow for exploration of how life originated and
might be instantiated beyond the Earth and in the laboratory.

According to our analyses so far, the set of coded amino acids and ribonucleotides used
by biology do indeed appear to be highly non-random and by some metrics highly optimal,
suggesting a significant amount of natural selection over the course of biochemical evolution.
If this is the case, then chemists attempting to understand the chemical origins of life may do well
to explore areas of organic chemical space which are not populated by the compounds used in
modern biochemistry.

We are planning to extend and refine our studies of the chemical space of amino acids and
nucleotide analogues. Possible directions would be to enlarge our amino acid libraries, e.g. by
taking the so-called 21st and 22nd proteinogenic amino acids, selenocysteine and pyrrololysine,
into account for library design, or even more amino acid structures that result from post-
translational modifications. The adaptive analysis can be extended to cover sets of more or less
than 20 members. Ongoing analysis of the structural space of nucleosides beyond C5H9O4B has
already been mentioned above.

There are still more compound classes to be explored, for example lipids, which may hold
interesting surprises with respect to the potential of other compounds to carry out the functions
required by cell membranes. Another example is the chemical space underlying the intermediates
of the reverse tricarboxylic acid cycle. A corresponding library has recently been generated [60]
and is about to be analysed. Furthermore, the use of chemical reaction iteration approaches to
understand not just the types of compounds which are structurally possible, but which are most
easily accessed by abiotic and biological chemistry will undoubtedly greatly refine our conception
of life’s choice of chemical components.
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